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ABSTRACT. Skin conditions are common worldwide and involve rapid and precise diag-
nosis in order provide appropriate care and reduce complications. Based on manually
extracted histological features, an intelligent framework based on machine learning algo-
rithms was created in this study to diagnose and classify skin diseases. Seven categories
of skin lesions from the HAM10000 database were used. A number of preprocessing tech-
niques were applied to the images, such as the Wiener filter for noise reduction and the
Black-Hat transformation and inpainting algorithm for hair removal. The LabelMe tool
was used to apply a hybrid segmentation method based on created by hand masks to in-
crease discrimination accuracy. The Otsu algorithm was only applied inside the lesion
boundary, improving the lesion area’s isolation accuracy. Three traditional classifiers:
Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). were
trained using the features that were extracted using both the Gray Level Co-occurrence
Matriz (GLCM) and Local Binary Pattern (LBP). To address the problem of class im-
balance, the Synthetic Minority Over-sampling Technique (SMOTE) technique was used
to balance the data. With a 99% accuracy rate and an F1-score of 0.9837 after balancing,
the Random Forest model bettered the other models, according to the results. These find-
ings demonstrate how well fine-grained preprocessing methods, textural characteristics,
and machine learning algorithms work together to create an accurate system for detect-
ing skin conditions, particularly in environments with limited resources.

Keywords: Skin Disease Classification; GLCM; LBP; Machine Learning; HAM10000;
SMOTE

1. Imtroduction. Skin lesions are a broad category of disorders, from benign ones like
eczema and acne to more dangerous diseases like psoriasis and melanoma clinical exam-
inations, histological examination and the experience of dermatologists are normal used
to diagnose most cases of these skin disorders [1]. The potential depends on the expertise
of humans, which may be sensitive to errors and mistakes in diagnosis. Additionally,
standard systems tend not to have ability to diagnose the early kinds of skin cancers like

melanoma, nor discriminate between similar diseases, e.g., eczema and psoriasis [2]. These
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limitations have created the necessity for advanced methods, such as artificial intelligence
(AI), to enhance patient outcomes, reduce human errors, and enhance the precision of
diagnoses [3]. Artificial intelligence, often referred to as (Al), acts as a powerful re-
source can analyze large volumes of data, identify patterns, and provide classifications
that are more accurate and trustworthy. The application of artificial intelligence in der-
matology represents an important change in the diagnosis, treatment, and management
of skin conditions. In this setting, artificial intelligence has become a powerful change
agent, presenting the opportunity to transform dermatology by analyzing extensive data
at remarkable speed, precision, and capacity [4]. Artificial intelligence, machine learning
and deep learning have shown significant potential gin automating the identification to
skin cancer, classifying skin lesions, and predicting treatment responses [2]. Al based
systems enable remote diagnosis and monitoring, which increases the availability of skin
care services for remote and underserved locations [5]. As a result, the demand for effec-
tive, portable, and extremely accurate diagnostic models that work in both clinical and
resource-constrained environments is increasing. Even though deep learning approaches
have been the subject of numerous recent studies, conventional machine learning algo-
rithms are still a transparent and efficient choice, particularly when paired with in depth
utilized textural features. This study suggests a hybrid framework for classifying skin
diseases. It is based on extracting textural features using both the Local Binary Pattern
(LBP) and the Gray Level Co-occurrence Matrix (GLCM), then using conventional clas-
sification algorithms involving Random Forest (RF), Decision Tree (DT), and Support
Vector Machine (SVM). The data imbalance problem was also resolved and model perfor-
mance was enhanced for all skin lesion classes using SMOTE technology. The aim of this
framework is to improve diagnostic accuracy and increase access to dermatological health-
care by offering a dependable, economical, and computationally efficient automated skin
disease diagnosis solution. This study provides several key contributions to the field of
automated skin disease diagnosis using machine learning and interpretable feature-based
approaches:

1. A novel hybrid classification framework is proposed that integrates handcrafted tex-
ture features (GLCM and LBP), hybrid segmentation strategies, and traditional
ML classifiers, offering a lightweight yet highly accurate alternative to deep learning
models, particularly in limited-resource environments.

2. The introduction of a customized segmentation pipeline, combining manual annota-
tion (via LabelMe) with Otsu’s thresholding, results in highly accurate lesion region
detection enhancing the quality of feature extraction and subsequent classification.

3. A comprehensive evaluation of three classical ML classifiers (SVM, Decision Tree,
and Random Forest) was conducted using multiple performance metrics (Accuracy,
Precision, Recall, Fl-score, and Log Loss), both before and after applying data
balancing techniques.

4. The application of SMOTE oversampling effectively addressed dataset imbalance,
significantly boosting performance on underrepresented classes and demonstrating
improved model robustness.

5. The Random Forest classifier, when trained on the balanced dataset, achieved a
classification accuracy of up to 99%, surpassing previous studies and highlighting
the efficiency of the proposed system without relying on deep neural networks.

6. Compared to recent studies, such as Wu et al. (2025), which employed deep concate-
nated features without segmentation, our framework offers improved interpretability
and precision by incorporating segmentation and handcrafted features.
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2. Literature Survey. The purpose of the multiple related research articles in this sec-
tion is to examine the techniques and tools employed in previous studies and to define
knowledge gaps that have not received enough attention in the scientific literature. Based
on the primary research trends in the field, the current section is structured to include
studies that use deep learning (DL), machine learning (ML), or a combination of both
techniques using hybrid approaches. The benefits and possible drawbacks of each study
will be emphasized through this systematic review, along with their level of applicability to
the current research topic, helping to support the necessity of the methodology suggested
in this paper [6]. In this study, color features and (GLCM) features were extracted, and
then several classification algorithms, such as SVM, K-NN, and a Fusion model, were ap-
plied to the classification of skin diseases. With a maximum accuracy of 61%, 141 images
from five classes in a comparatively small database were used. The model’s classification
performance suffered as a result of the study’s limitations, which include a small sample
size and low variance intra-class variation [7]. The researchers used CNN models like
DenseNet201, ResNet152, Inception v3, and InceptionResNet v2 to automatically extract
features from images from the HAM10000 and PH2 skin databases using deep learning
algorithms. With a 98.79% accuracy rate, the DenseNet201 model was the most accurate.
Despite its impressive performance, the researchers identified two main issues that can
limit classification accuracy in different clinical scenarios: image quality and data imbal-
ance [8]. With a total of 3,672 images from databases like ISIC and PH2, the researchers
aimed to compare deep neural networks and conventional machine learning methods for
the classification of skin conditions. GLCM was used to extract color and texture features,
and then models like ANN and AlexNet were used. The deep model outperformed the
traditional model with an accuracy of 99.81% compared to 98.24% for the former. Data
balance and lengthy training periods brought on by a lack of strong graphics processors
were major obstacles [9]. This study focused on using a MobileNet with transfer learning
to classify skin diseases into seven categories using 3,406 dermatologist-verified images.
Training was supported by augmentation and balance techniques to achieve more stable
performance. The model achieved a good accuracy of 94.4%. However, the study did
not address limitations related to image diversity or challenges related to generalizing the
model to untrained data [10]. In this study, 1,550 images from 514 patients using three
different cameras (iPhone 6s, Galaxy S6, and DSLR) were used to classify skin lesions
into benign and malignant categories using an ensemble of multiple CNN models. Using
iPhone photos, the model’s accuracy reached the maximum of 95.8%. Nevertheless, the
researchers pointed out that equipment variations may introduce bias into experimental
validation, which reduces the results’ applicability to a wider range of clinical scenar-
ios [11]. This study segmented and classified skin lesions using the ISBI 2017 and PH2
databases using a dual strategy that combined YOLO and GrabCut. The accuracy of the
results was 93.39% on ISBI and 92.99% on PH2, with dice values of roughly 84.26% and
88.13%, respectively. The findings show that manual segmentation and real-time detec-
tion algorithms can work well together, particularly in settings where efficiency and speed
are crucial [12]. Using a combination of deep features extracted by DenseNet-201 and
other fractal features like energy, variance, and entropy, the researchers proposed a model
for classifying skin diseases. K-NN and SVM algorithms (with both linear and Gaussian
structures) were used for classification in the study, which was based on the ISIC-2019
dataset, which had eight classes. 97.35% was the highest accuracy attained. The model’s
low sensitivity to rare classes posed the greatest hurdle because it may have an impact on
the precision of clinical prediction for less prevalent conditions [13]. The purpose of this
study was to compare how well various CNN models—including DenseNet201, GoogleNet,
InceptionResNetV2, and MobileNetV2—performed on the seven-class HAM10000 dataset.
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The accuracy of the other models ranged from 84-89% on the training data to 80-84% on
the test data, whereas DenseNet201 achieved 96% accuracy on the training data and 87%
accuracy on the test data. The training and test data showed a generalization gap, which
may indicate overfitting in certain models [14]. This study used the ISIC 2019 database,
which contained 25,331 images divided into nine categories, and an adaptive federal learn-
ing framework based on the ensemble of multiple deep neural networks (Ensemble CNN).
Local accuracy surpassed 90% in various categories, and the system demonstrated overall
accuracy of 95.6% in the first scenario and 89.0% in the second. After adaptation, there
was a slight drop in performance, suggesting that more work needs to be done to improve
the model before it can be applied in actual clinical settings [15]. 10,015 images from
seven categories in the HAM10000 database were used. CNN feature extraction tech-
niques and exploratory data analysis (EDA) were used to process and analyze the images.
After training for up to 50 epochs, the final performance had an accuracy of 93.35%. The
study’s biggest obstacles were the possibility of overfitting and the small amount of data
in relation to the variety of clinical cases [16]. This study applied classification algorithms
like SVM, KNN, and Decision Tree to ISIC-2019 and HAM10000 data and suggested
using GLCM and statistical features to extract image features. On the ISIC data, the
study obtained an accuracy of 95% using SVM, 94% using KNN, and 93% using DT;
on the HAM10000 data, the highest accuracy of 97% using SVM was attained. Despite
the outstanding outcomes, the researchers pointed out that certain segmentation errors
might compromise the classification accuracy, suggesting the necessity of implementing
hybrid learning algorithms going forward [17]. This study used a variety of classification
algorithms, such as SVM, KNN, and DT, to analyze ISIC 2019 (8 classes) and HAM10000
(7 classes) data in order to classify skin diseases by extracting color and GLCM features.
Results showed consistent performance, with both groups achieving 95% accuracy with
SVM, 94% accuracy with KNN, and 93% accuracy with DT. Despite the absence of direct
clinical evaluation, no noteworthy limitations were observed, indicating the stability of
the model’s operation with able to utilize model in future [18]. CNN, SVM, CART, and
wavelet transform were used in combination to analyze the skin of RCM images. Perfor-
mance was influenced by the fine details of the dermode junction (DEJ) and the quality
of the RCM, with classification accuracy ranging from 87% to 98%. The main challenge
is that different skin types have different levels of sensitivity, which may limit the model’s
applicability in a variety of clinical settings [19]. In order to differentiate between benign
and malignant skin lesions, this study used binary classification on the ISIC-2020 data-
base, which contains over 33,000 images. The MobileNetV2 model, which the researchers
employed with transfer learning technology, had a high accuracy of 98.2%. Nonetheless,
the study made clear that class imbalance is a significant problem that could compromise
the model’s clinical generalization accuracy, particularly given that the number of malig-
nant cases is significantly lower than that of benign cases [20]. The researchers used the
MobileNetV2 model to propose a CNN-based model that incorporates a “knowledge distil-
lation” strategy (SSD-KD). Using the ISIC-2019 dataset (25,331 images, 8 categories), the
model demonstrated an accuracy of 84.6%. The researchers pointed out that the model’s
ease of use may be limited because it requires specific configuration for Knowledge Distil-
lation architectures. The intricacy of the training environment also restricts the model’s
generalizability [21]. CNN was used for feature extraction in order to compare the perfor-
mance of two YOLO algorithms (YOLOv3 and YOLOv4) on ISIC data (1,460 images, 9
classes). The accuracy of YOLOv3 was 98.06% with a mAP of 88.03%, and the accuracy
of YOLOv4 was 98% with a mAP of 86.52%. Notwithstanding the excellent results, the
researchers pointed out that the model’s ability to identify fewer common species is con-
strained by the dataset’s small size [22]. The researchers applied the YOLOvS8 algorithm
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in its different versions (Nano, Small, Medium, Large, and Extra-large) to extract and
classify skin disease features using the DermNet dataset, which consisted of 178 images
that were enlarged to 1,246 images using augmentation techniques. With an accuracy of
76.19%, the YOLOv8x model performed the best. The study did not perform well on
guttate psoriasis, for example, and suggested using larger datasets to improve general-
ization [23]. A YOLOv8-based integrated framework for real-time skin cancer diagnosis
was presented by the researcher. It was trained on several overlapping datasets (ISIC
2020, HAM10000, PH2). Using cutting-edge boosting methods like CutMix and Mosaic,
the model achieved a 98.6% accuracy rate with a mAP@0.5, a Dice of 0.92, and an IoU
of 0.88. The study recommended broadening the experimental evaluation to encompass
various clinical settings, despite the strong performance, as the results are heavily reliant
on the quality of the data used. Analyzing earlier research makes it evident that numerous
studies have attempted to increase the precision of skin disease detection and classification
through the use of Al techniques, whether through deep learning or conventional learning
algorithms, as well as by applying different feature extraction techniques like GLCM and
LBP, CNNs, and YOLO. Nonetheless, the majority of these studies have shown certain
drawbacks, including depending on unbalanced or small databases, employing models that
fail to take realistic skin image distortions into account, or concentrating only on classifi-
cation without successfully integrating preprocessing steps. Designing an intelligent skin
disease classification system based on machine learning algorithms like SVM, DT, and RF
in conjunction with robust textural feature extraction techniques (GLCM and LBP) is
the goal of this research. Data balance processing with SMOTE further improves system
performance and guarantees a more accurate and dependable model when working with
real-world images in the HAM10000 database.

3. Materials and Methods. This section describes the methodology used to diagnose
and classify skin diseases using machine learning techniques. The workflow consists of
several key stages, including data collection, image preprocessing, segmentation, feature
extraction, data splitting (20% testing and 80% training), data balancing, and classifica-
tion. Figure 1 illustrates the flowchart of the proposed system.

3.1. Image Acquisition. This study uses HAM10000 dataset, which is a wide collection
Dermatoscopic images showing a variety of skin lesions. Professional dermatologist A
total of 10,015 images was marked and classified, divided into seven classes. These sections
include: vascular lesions (Vasc), Acinic Keratos (AKIEC), melanocytic navy (NV), benign
keratosis-like wounds (BKL), basal cell cars (flour), dertofibroma (DF), and melanomas
(flour) [24].

3.2. Data Preprocessing. Preprocessing is a crucial step in enhancing skin lesion im-
ages by removing artifacts such as hair and noise, which may interfere with accurate
classification. This study adopted two main techniques: hair removal and noise reduc-
tion. The hair removal process involved converting RGB images to grayscale, applying
the black-hat morphological operation, generating a mask, and then using inpainting to
restore lesion areas. For noise removal, Gaussian filtering was used to smooth the images
and eliminate high-frequency noise, followed by Wiener filtering to enhance pixel quality
based on local statistics. These preprocessing steps significantly contributed to improving
the clarity and reliability of the input images used in the classification phase.

3.3. Hybrid Segmentation (Annotation Tools and Otsu’s thresholding). Hybrid
segmentation combines manual annotation using LabelMe and Otsu’s thresholding to
enhance lesion localization. Experts draw polygons around lesion areas; these are saved
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as JSON files and converted to binary masks (lesion=1, background=0). The ROI is
extracted by applying the mask to the grayscale image. Otsu’s method is then applied
within this ROI to compute an adaptive threshold, producing a refined binary mask. This
mask is multiplied by the original RGB image to generate the segmented output.

3.4. Feature Extraction. Feature extraction is a crucial step before classification, con-
verting raw images into meaningful digital representations. In this study, two textural fea-
ture extraction methods were used: GLCM, which analyzes pixel intensity co-occurrence
to capture spatial texture patterns, and LBP, which compares each pixel to its neighbors
to produce binary patterns converted into histograms. These features enhance classifica-
tion accuracy and were used as input for machine learning models.

HAM10000 Dataset
¥

Preprocessing
= Hair and noise removal

3

Hybrid Segmentation
= Annotation Tool
« Otsu’s Threshodding
v
Feature Extraction
« GLCM
- LBP

Train-Test Split
( )
1 1

SMOTE Unbalanced Model
Balanced Model

| |
K 7

‘ Classification 1

_—

=y

- SVM RF DT
3
[ Performance Metrics ]

F1GURE 1. The proposed system of machine learning.

3.5. Classification. The process of giving pixels or areas within a digital image class
labels is known as Image classification. Its goal is to identify the category that an image
falls under and whether or not certain objects are present, there are usually two phases
to the classification process [25].

1. Training phase: In this stage, samples from various categories are used to teach
the classification model; by extracting relevant features, the model is intended to
discover the target’s underlying concept or patterns. Applying various mathematical
operations is part of this process, which keeps going until the model performs at the
required level. Based on the patterns it has learned, the trained model can then
allocate particular input data samples to the appropriate classes [26].

2. Testing phase: During this stage, the performance of the trained model on new
data is assessed. It evaluates how well the model produces accurate predictions or
classifications of actual data [26].
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Machine learning algorithms are widely used in classification. These algorithms are usually
divided into two main categories: Supervised Learning, it relies on previously labeled data
and is mainly used for classification tasks, and Unsupervised Learning: It uses unlabeled
data and aims to cluster data into similar groups (Clustering) [27]. Support Vector
Machine (SVM), Decision Tree (DT), and Random Forest (RF) are some of the most
widely used classification algorithms [28]. These are some of the most effective supervised
classification methods for visual and medical applications. The efficacy of these algorithms
in visual and medical applications is well known. Two models were trained using the
original unbalanced dataset and a balanced dataset following the application of SMOTE.
All three classifiers were used in this study to perform skin disease classification.

3.6. Phase of the Proposed Model’s Implementation. Following a review of the
theoretical ideas and methods utilized in the development of the system for detecting and
classifying skin diseases, this section outlines the specific practical procedures followed
in order to construct and assess the suggested system. Two experimental models based
on the HAM10000 dataset were developed and put into use in order to accomplish the
goals of this study. Initial with image processing and feature extraction and ends with
classifier training and evaluation, each model comprised an integrated set of steps. How
the two models address the issue of data imbalance is where they vary most. OpenCV,
Scikit-learn, Imbalanced-learn, and Ultralytics libraries were used to implement each step
in Python. This section attempts to provide a step-by-step explanation of the technical
and programming processes used, including:

3.6.1. Model 1: Using Unbalanced Data for Training. In this model, no class balancing
strategies were used, and the database was used in its original format. The following were
among the steps involved in implementation:

1. Data Preparation: the HAM10000 dataset, containing 10,015 color images of skin
lesions, was used in its original unbalanced form. Each of the seven classes (from
akiec to vasc) was digitally encoded from 0 to 6. The dataset was then divided into
80% for training and 20% for testing.

2. Image Enhancement Techniques: To enhance the quality of the input images
before feature extraction, several preprocessing operations were performed. Initially,
the color images were converted to grayscale, followed by the application of the
Black-Hat morphological operation using a 20x20 kernel to detect and isolate hair-
like artifacts. These artifacts were then removed through region reconstruction using
the INPAINT_TELEA method provided by the OpenCV library. Subsequently, noise
reduction was carried out by applying a combination of Wiener-like filtering and a
Gaussian filter with a 3x3 kernel, aiming to preserve edge details while minimizing
background noise and enhancing lesion visibility.

3. The Hybrid Method of Segmentation: In this step, lesion regions were manu-
ally outlined using the LabelMe annotation tool to generate polygonal masks that
delineate the area of interest. These masks were then converted into binary format
to serve as guidance for further processing. Within the bounds of each binary mask,
the Otsu thresholding algorithm was applied to enhance the separation between
the lesion and surrounding skin. This hybrid approach resulted in highly accurate
segmented images that clearly isolate only the lesion area for subsequent analysis.

4. Extraction of Features: In this step, texture features were extracted from each
segmented skin lesion image using two statistical methods. The Gray Level Co-
occurrence Matrix (GLCM) technique was applied to extract seven texture descrip-
tors, with a pixel distance of 1 and an angle of 0°. In parallel, the Local Binary
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Pattern (LBP) method was employed to generate ten histogram-based features us-
ing a neighborhood of eight pixels and a radius of one. The output of this process
was saved in a CSV file, where each row represented a feature vector consisting of
17 numerical values (features) followed by one class label.

. Classifier Training: The extracted features were used to train three conventional
machine learning classifiers: Support Vector Machine (SVM), Decision Tree (DT),
and Random Forest (RF). Each classifier was configured with specific parameters to
optimize performance. The SVM utilized the Radial Basis Function (RBF) kernel
and applied feature standardization through the Standard Scaler. The Decision
Tree classifier employed the Gini index as the splitting criterion, with a minimum
of two samples per leaf and a maximum feature threshold of 0.5. The Random
Forest model was trained using 100 trees, with default settings for the remaining
parameters. These models were trained and saved for use during the evaluation
phase. Table 1 summarizes the configuration details of each classifier.

TABLE 1. Configuration details of the machine learning classifiers.

Classifier | Configuration

SVM RBF kernel (default), with feature standardization using Standard Scaler
DT Splitting criterion: Gini, minimum samples per leaf = 2, max_features = 0.5
RF Number of trees = 100, other settings left as default

3.6.2. Model 2: Balanced Data Training (SMOTE). With the exception of using the
SMOTE technique to balance the training data, this model followed the same procedures
as the first model. Some of the modifications were the following:

1. Balance of Data: trained using a balanced dataset after applying the random
minority overfitting technique (SMOTE). Figure 2 shows class distribution before
and after balancing. The distribution of data becomes equal for all classes. Table 2
illustrates classes before and after using balancing technique.

2. Classifier Training: The initial model’s classifiers and parameters were retained
(SVM, DT and RF). After balancing, the trained models were stored for assessment.

5354 5354 5354 5354 5354 5354 5354
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W Balanced

5000

4000
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2000

Number of Samples

1000

akiec bee bkl df nv mel vasc
Class

FiGUuRrE 2. Original Vs Balance class distribution.
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TABLE 2. Imbalance and balance distribution of classes.

Class | Original Count | After SMOTE
akiec 257 5354
bee 425 5354
bkl 894 5354
df 88 5354
nv 880 5354
mel 5354 5354
vasc 114 5354

3.6.3. Performance Assessment and Model Testing. The same test set of 2,003 photos
divided into seven categories was used to evaluate the two models. The models’ efficacy
was assessed using a set of performance metrics:

TABLE 3. Definitions and Formulas of Evaluation Metrics Used for Classi-
fication Performance.

Metric
Accuracy

Definition / Formula
The proportion of correctly classified samples among all

samples. Measures overall correctness [29].

_ TP+TN
Accuracy = FPLTP+TNLEN (1)

The proportion of true positive predictions among all
predicted positives. Measures exactness [30].
Precision = w22

Precision

FP+TP

(2)

Recall

The proportion of true positives identified out of all ac-

tual positives. Measures completeness [30].
Recall = L (3)

FNTP
The harmonic means of precision and recall. Balances
both metrics, especially in imbalanced data [31].

_ Precisionx Recall
Fl-Score = 2 X Precision+Recall (4>

F1l-score

4. Results and Discussion.

4.1. Results of Feature Extraction. This section presents and analyzes the actual
results of extracting textural features from segmented images.

(1) GLCM features: GLCM include the properties energy, homogeneity, contrast,
correlation, and entropy, in addition to mean, variance, standard deviation, and RMS as
complementary statistical features. A CSV file containing the numerical values of the

extracted features was generated for each image. Table 4 shows a sample of the extracted
values by using GLCM.

TABLE 4. Different values of features.

Image Energy | Correlation | Contrast | Homogeneity | Entropy | Dissimilarity | ASM
ISIC_0000000 | 0.8098 0.9496 0.9136 0.8999 1.8826 0.9136 0.6479
ISIC_0000001 | 0.4040 0.9518 0.6880 0.6356 5.1884 0.6880 0.5874
ISIC_0000002 | 0.8795 0.9078 0.9421 0.9378 1.4720 0.9421 0.7736
ISIC_0000003 | 0.1522 0.9567 0.4996 0.3902 6.7993 0.4996 0.4972
ISIC_0000004 | 0.2116 0.9545 0.5537 0.4600 5.6770 0.5537 0.5328
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(2) Local Binary Pattern features (LBP): In addition to the textural features
extracted using GLCM, the Local Binary Pattern (LBP) algorithm was used to extract
fine-grained texture features from grayscale images of skin lesions. This technique relies
on analyzing the pixel distribution pattern around each central pixel and generating nu-
merical values representing the local texture structure in the image. The LBP was divided
into 10 histological levels (bins) representing different texture patterns (see Table 5), the
average of each bin was extracted for each image. The table below shows an example of
the resulting values from five images.

Compared to the results of the reference study, which was limited to GLCM features
and some statistical properties from the original color images, the following are noted:

TABLE 5. LBP values of features.

Image LBP O | LBP.1 | LBP2 LBP3 LBP 4 |LBP5|LBP 6| LBP.7 | LBP. 8| LBP.9
ISIC_0000000 | 0.0114 | 0.0146 | 0.0132 | 0.0275 | 0.0227 | 0.0214 | 0.0158 | 0.0161 | 0.8314 | 0.0269
ISIC_0000001 | 0.0305 | 0.0364 | 0.0336 | 0.0452 | 0.0497 | 0.0468 | 0.0328 | 0.0372 | 0.6193 | 0.0692
ISIC_0000002 | 0.0107 | 0.0123 | 0.0126 | 0.0192 | 0.0173 | 0.0182 | 0.0123 | 0.0142 | 0.8492 | 0.0240
ISIC_0000003 | 0.0436 | 0.0510 | 0.0457 | 0.0603 | 0.0594 | 0.0587 | 0.0423 | 0.0415 | 0.4920 | 0.1054
ISIC_0000004 | 0.0342 | 0.0426 | 0.0405 | 0.0562 | 0.0630 | 0.0519 | 0.0368 | 0.0382 | 0.5753 | 0.0613

Each bin’s value indicates the percentage of patterns that fit a specific distribution;
these values are then fed into classification models. This study’s feature base was enlarged
by adding both ASM and Dissimilarity from GLCM, along with LBP as a supporting tool
to extract fine-scale texture patterns.

In contrast, the previous study (comparative study) only used five features of GLCM
(Energy, Correlation, Contrast, Homogeneity, Entropy) along with four statistical features
(Mean, Variance, Standard Deviation, and RMS) as shown in Table 6.

TABLE 6. Features value of previous study.

Image Energy | Correlation | Contrast | Homogeneity | Entropy | Mean | Variance | SD | RMS
ISIC_0000000 | 0.44373 0.99365 0.11071 0.99390 3.7487 |103.96 | 7214.2 |101.60 | 11.065
ISIC_0000001 | 0.83246 0.96824 0.03458 0.99592 1.1987 | 7.8483 | 616.09 | 27.302 | 2.8532
ISIC_0000002 | 0.29760 0.96787 0.28550 0.97348 6.0337 | 122.31 | 4144.6 | 73.750 | 13.975
ISIC_0000003 | 0.26206 0.97325 0.30339 0.98302 5.0301 | 79.596 | 5365.9 | 83.485 | 10.980
ISIC_0000004 | 0.64136 0.94263 0.34138 0.98336 3.9736 | 31.193 | 2386.5 | 59.564 | 6.5033
ISIC_0000009 | 0.82017 0.96808 0.04776 0.99484 1.1386 | 9.8793 | 741.75 | 31.467 | 2.8396

4.2. Evaluating classifier performance before and after data balancing. After
representing the effect of data balancing techniques, we will make a comparison of the
performance of the three classifiers (SVM, DT and RF) before and after balancing. The
purpose is to show the effect of the SMOTE technique in balancing data and improving
the results. Table 7 shows Unbalance Vs Balance of the classifiers. Figure 3 and Figure 4
show the chart of performance in two cases.

4.3. Computational Cost and Time Analysis of Classifiers. To evaluate the com-
putational efficiency of the machine learning classifiers used in this study (SVM, Decision
Tree, and Random Forest), the total training time and training time per image were mea-
sured for both the imbalanced dataset (8012 samples) and the balanced dataset (37,478
samples after applying SMOTE). These results reflect the scalability and practicality of
each model when deployed in real-world applications with large datasets. Tables 8 and
9 present a detailed breakdown of the training configurations and time metrics for each
model.
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TABLE 7. Performance Comparison of SVM, DT and RF Classifiers Before
and After Data Balancing.

Classifier | Dataset Type | Precision | Recall | F1-Score | Accuracy
SVM Imbalanced 0.9812 0.9805 0.9808 0.9805
SVM Balanced 0.9823 0.9815 0.9818 0.9815
DT Imbalanced 0.9799 0.9795 0.9797 0.9795
DT Balanced 0.9817 0.9815 0.9816 0.9815
RF Imbalanced 0.9829 0.9825 0.9827 0.9825
RF Balanced 0.9840 0.9835 0.9837 0.9835

SVM DT RF

M precision Mrecall = F1-Score Accuracy

FiGure 3. Comparison between RF, SVM and DT before balancing.

SVM DT RF

W Precision m Recall m F1-Score Accuracy

F1GURE 4. Comparison between RF, SVM and DT after using SMOTE.

TABLE 8. Training Time for Classifiers on the Imbalanced Dataset (8012

samples).
Classifier | Model Configura- | Training Method Saving Total Training Time (s) | Time per Image (s)
tion Method
SVM RBF kernel (default) | Trained on 8012 im- | Joblib 0.1140 0.0000142
balanced images
DT Gini, Same as above — 0.0993 0.0000124

min_samples_split=2,
min_samples_leaf=2,
max_features=0.5

RF 100 trees, Gini, de- | Same as above — 0.0773 0.0000096
fault settings

Moreover, the study conducted by Wu et al. (2023) [32] and published in JIHMSP
introduced a classification framework based on the concatenation of deep features ex-
tracted from several convolutional neural network models, including ResNet-50, VGG-19,
and EfficientNet-V2, using the ISIC2018 dataset. Although their model achieved high
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TABLE 9. Training Time for Classifiers on the Balanced Dataset (37478
samples).

Classifier

Model
tion

Configura-

Training Method

Saving
Method

Total Training Time (s)

Time per Image (s)

SVM

RBF kernel (default)

Trained on 37,478 bal-
anced samples

Joblib

0.1903

0.0000050

DT

Gini,
min_samples_split=2,
min_samples_leaf=2,
max_features=0.5

Same as above

0.1245

0.0000030

RF

100 trees, Gini, de-

fault settings

Same as above

0.0859

0.0000020

Confuosion Matrix of SUM Classifier without balance

Confusion Matrix of DT Classifier without balance

Confusion Matrix of RF Classifier without balance

2]

Confugion Matrix of SVA Classifier with Data Balancing

(b)

Confusion Matrix of DT Classifier with Data Balancing

id)

Confusion Matrix of RF Classifier with Data Balancing

(f)

F1GURE 5. Confusion matrix of SVM, DT and RF classifiers.

classification performance, it lacked a segmentation phase and did not utilize any hand-
crafted feature extraction methods. This contrasts with our approach, which integrated a
hybrid segmentation strategy and statistical texture features (GLCM and LBP), resulting
in enhanced interpretability and robustness. The position of the current study in relation
to previous research efforts is summarized in Table 11, which includes the most significant
machine learning-based works in skin disease classification.
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TABLE 10. Comparison between this study and previous study.
Classifier | Study Dataset Type | Precision | Recall | F1-Score | Accuracy | Log Loss
SVM Ahammed et al. (2023) | Imbalanced 0.3371 | 0.2457 | 0.2457 0.7100 0.2900
Balanced 0.9771 |0.9757 | 0.9743 0.9700 0.0300
This Study Imbalanced 0.9812 | 0.9805 | 0.9808 0.9805 0.0195
Balanced 0.9823 |0.9815| 0.9818 0.9815 0.0185
DT Ahammed et al. (2023) | Imbalanced 0.2214 | 0.2429 | 0.2386 0.5700 0.4300
Balanced 0.9514 | 0.9514 | 0.9471 0.9500 0.0500
This Study Imbalanced 0.9799 [0.9795| 0.9797 0.9795 0.0205
Balanced 0.9817 |0.9815| 0.9816 0.9815 0.0185
KNN Ahammed et al. (2023) | Imbalanced 0.2300 |0.2171 | 0.2271 0.5500 0.4500
Balanced 0.9571 |0.9557 | 0.9514 0.9500 0.0500
RF This Study Imbalanced 0.9829 |0.9825 | 0.9827 0.9825 0.0175
Balanced 0.9840 |0.9835 | 0.9837 0.9835 0.0165
TABLE 11. Summary comparison with previous works.
Study / Model | Dataset | Classifier(s) Features Used | Segmentation | Accuracy | Fl-score | Notes
Method
Ozkan et al. | Other SVM, KNN, | ABCD - 89.5%, - Lower  results
(2017) DT 82%, 90% across all classi-
fiers
Janney et al. |ISIC SVM GLCM + Color | Manual 1% - Weak results due
(2018) + ABCD to manual seg-
mentation
Albawi et al. | ISIC SVM, KNN | 2D-DWT + | Region Growing | 91.13%, - Decent  perfor-
(2019) GLCM 87.46% mance, lower
than this study
Ubale et al. | Other KNN HSV + LAB - 91.80% - No segmentation
(2019) used
Sinthura et al. | Other SVM GLCM Otsu’s Method | 89% - Traditional
(2020) pipeline
Aishwarya et al. | ISIC-2019 | SVM, KNN, | GLCM + Statis- | Automatic 95%, 94%, Moderate  per-
(2023) DT tical GrabCut 93% formance across
models
Wu et al. (2025) | ISIC2018 | ResNet-50, | CNN-based None 89.80% 92.23% Best perfor-
VGG-19, Deep Features mance by
EfficientNet- feature concate-
V2, CF nation
This Work (Our | HAM10000 SVM, DT, | GLCM + LBP | Hybrid (ground | 97%, 95%, | Up to | Best results
Study) RF truth + Otsu) 95% 0.9837 with RF after
SMOTE balanc-
ing

5. Conclusions. This research presented an intelligent system for the detection and
classification of skin diseases based on texture feature extraction and machine learning
techniques. By utilizing a hybrid approach that combines Gray-Level Co-occurrence Ma-
trix (GLCM) and Local Binary Pattern (LBP) feature extraction, the system was able to
capture both global and local texture patterns from dermoscopic images. The extracted
features were then classified using three machine learning models: Support Vector Ma-
chine (SVM), Decision Tree (DT), and Random Forest (RF). The study demonstrated
that the Random Forest classifier achieved the highest accuracy among the three mod-
els, particularly after applying the SMOTE technique to balance the dataset. The use
of LBP alongside GLCM significantly enhanced classification performance by introduc-
ing fine-grained texture representations. Furthermore, the analysis of training time and
computational cost confirmed the efficiency of the proposed models in terms of speed
and resource usage. The results were further validated through performance metrics,
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FiGURE 6. ROC curves of SVM, DT and RF classifiers before and after
data balancing.

confusion matrices, and ROC curves, all of which indicated notable improvements after
data balancing. A comparative analysis with previous studies revealed that the proposed
method achieved superior or comparable results while maintaining low computational
cost. Despite some limitations related to dataset diversity and manual segmentation ef-
fort, the proposed approach offers a promising, efficient, and interpretable framework for
automatic skin disease diagnosis.

Several suggestions are made for further research in light of the study’s limitations and
findings:

e Dataset Expansion: To increase the model’s generalizability, it is advised to in-
clude more dermoscopic datasets with a wider range of skin tones and lesion types.

e Automated Segmentation: To speed up and improve the segmentation process,
future research can make use of deep learning-based segmentation networks (such as
U-Net and Deep Lab) in place of manual mask generation.

e Enhanced Feature Extraction: By capturing high-level semantic information,
deep feature extraction with pretrained convolutional neural networks (CNNs) may
enhance classification performance even more.



1084 W. J. Al-Shamari and A. H. Al-Sudani

[1]
2]

e Explainable AT (XAI): In order to interpret the model’s decisions, which is es-
sential in medical applications, future research could incorporate explainability tools
like Grad-CAM or LIME.

e Clinical Validation: The system’s usability and dependability can be evaluated
through practical diagnostic workflow deployment and real-world validation with
clinical experts.

e Multimodal Integration: Using multimodal learning techniques, combining der-
moscopic images with patient metadata (such as age and lesion history) may improve
diagnostic accuracy.
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