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Abstract. Steganography is essential for secure data transmission, as it conceals in-
formation within digital media to ensure confidentiality and integrity. However, many
existing techniques face challenges in balancing embedding capacity, imperceptibility, and
computational efficiency. This paper presents RDJAT-Embed, a novel steganography
method based on a modified Difference Expansion (DE) technique that significantly en-
hances payload capacity while preserving high image quality. Unlike conventional DE
methods that use pixel-pair differences, RDJAT-Embed embeds data by calculating the
difference between each pixel and its group average, combined with a five-value grouping
strategy, to minimize distortion and prevent pixel overflow or underflow. The method
achieves an average peak signal-to-noise ratio of 53.683 decibels and a structural simi-
larity index measure of nearly 0.999, outperforming state-of-the-art techniques in terms
of imperceptibility and robustness.

Keywords: data hiding; information hiding; information security; national data se-
curity; network infrastructure; steganography; cyber security

1. Introduction. The rapid development of cloud computing has transformed the inter-
net into a significant platform for sharing multimedia content, including images [1], audio
[2], and video [3]. However, this increased exchange of digital data also raises security con-
cerns [4]. Sensitive information is often exposed to potential threats from malicious actors
seeking to intercept, modify, or destroy it [5, 6]. To address these challenges, steganog-
raphy, the practice of hiding secret data within digital media, has gained considerable
attention from researchers [7, 8]. Unlike cryptography, which protects the content of a
message, steganography conceals the existence of the message itself [9]. It can be applied
to various media types and has historical roots dating back to ancient times when hidden
messages were embedded in physical objects [10].

Among the various forms of steganography, image-based methods have gained promi-
nence due to the widespread use of digital images and their large data storage capacity
[11, 12, 13, 14, 15, 16]. Despite extensive research and application, key challenges remain,
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particularly in achieving a balance between data embedding capacity and image quality
[17, 18]. Increasing the payload may cause visible distortions in the stego image, making
the hidden data more easily detectable [13]. Conversely, reducing the payload to preserve
visual quality limits the amount of information that can be securely embedded [19]. To
overcome these limitations, recent studies have focused on developing adaptive stegano-
graphic techniques that enhance robustness by tailoring the method to the characteristics
of the cover image and communication channel [18]. Nevertheless, there is still a need
for new approaches that can optimize data hiding while minimizing the tradeoff between
payload size and image quality, as highlighted in state-of-the-art reviews [15, 16, 17].

Despite the growing number of advanced image steganography methods, many state-
of-the-art algorithms continue to face fundamental challenges in optimizing the tradeoff
between payload capacity and stego image quality. Techniques such as Difference Expan-
sion (DE) [16], histogram shifting [20], most significant bit prediction (MSB) [21], and
predictive embedding [5] have been widely explored to increase data hiding efficiency.
Some approaches integrate auxiliary techniques, such as segmentation [22], transform do-
main embedding [23], and entropy coding [14], to enhance concealment performance and
reduce perceptual distortion. While these methods have succeeded in improving payload
size and maintaining acceptable visual quality under controlled conditions, they often
struggle with scalability, robustness, and adaptability across diverse image types and em-
bedding scenarios. A common limitation is that increasing the payload typically leads
to visible artifacts or statistical deviations, making the stego image more susceptible to
detection by steganalysis tools [24]. Conversely, methods that prioritize imperceptibility
tend to impose strict limits on payload capacity, reducing the practical usability of the
system. Furthermore, the increased complexity of multi-stage embedding pipelines can
hinder implementation in real-world applications [5].

To address the limitations identified in existing image steganography methods, this
study proposes a novel algorithm, RDJAT-Embed, which is built upon the DE tech-
nique. Unlike traditional DE methods that rely solely on pairwise pixel differences, the
proposed approach embeds secret data by exploiting the difference between each pixel
value and the average of its local pixel group. This group-based difference strategy in-
creases the embedding space while preserving local image structure, thereby reducing the
risk of visual distortion. As a result, RDJAT-Embed achieves a high payload capacity
without compromising imperceptibility. By maintaining a delicate balance between em-
bedding capacity, stego image quality, and resistance to detection, the proposed method
offers a more effective and practical solution for secure data hiding digital images.

2. Related works. Numerous image steganography techniques have been developed to
achieve an optimal balance between embedding capacity, imperceptibility, and robustness.
This section reviews recent state-of-the-art approaches that aim to enhance data-hiding
performance while minimizing perceptual and statistical distortions in stego images.

In the steganography of digital images, a commonly adopted strategy is the hybridiza-
tion of the least significant bit (LSB) substitution with DE. The method in [25] divides
an image into 3-pixel blocks, where the central pixel undergoes 3-bit LSB substitution,
and the remaining two pixels embed data using an enhanced modulus-based PVD ap-
proach. Such integration improves capacity while maintaining reasonable image quality.
De La Croix et al. [26] extended this idea by applying a modulus function in conjunction
with PVD and LSB techniques, resulting in an irreversible steganographic scheme with
enhanced embedding efficiency. Fibonacci-based methods have also been explored to in-
crease data embedding flexibility [27]. This method proposed an algorithm to conceal two
bits of secret data within three bits of a cover pixel, increasing capacity at a modest cost
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to visual quality. DE-based methods remain a dominant area of exploration due to their
capacity for reversible embedding. The classical DE approach, which conceals data in
the expanded difference between pixel pairs, can lead to pixel overflow or degrade image
fidelity.

Moreover, another notable technique is the multidirectional pixel value differencing with
modulus function (MDPVDMF) method [25, 28, 29], which integrates PVD with a mod-
ulus function to embed data within non-overlapping 2Ö2 blocks of grayscale images. The
method computes directional differences within each block to determine the embedding
capacity and applies the modulus function to adjust pixel values accordingly. To ensure
all stego pixel values remain within the valid intensity range [0, 255], post-embedding
readjustments are performed, effectively mitigating common issues such as the falling-
off boundary problem (FOBP) and the incorrect extraction problem (IEP). Despite its
effectiveness, MDPVDMF has several limitations [29]. Its dependence on directional
embedding and fixed block structures imposes constraints on flexibility, particularly in
images with complex or non-uniform textures. Moreover, the need for post-processing
increases computational complexity and may compromise imperceptibility if not carefully
managed.

Furthermore, to enhance embedding flexibility and capacity, several recent stegano-
graphic algorithms have adopted generalized quantization range widths combined with
multiple-based number conversion techniques [28, 30, 32, 33, 34]. This paradigm elimi-
nates the power-of-two limitations commonly associated with traditional PVD methods,
allowing for more adaptable data partitioning [30, 33]. By converting secret message bits
into variable-length digit streams based on custom quantization intervals, these methods
significantly improve embedding efficiency while maintaining a balance between imper-
ceptibility and robustness.

Building on the limitations observed in prior works, this study proposes a novel image
steganography algorithm, RDJAT-Embed, based on the DE principle. Unlike conventional
DE techniques that rely on the difference between pixel pairs or superpixels, the RDJAT-
Embed embeds secret data by computing the difference between each pixel and the average
value of its local pixel group. This approach eliminates the need for complex mathematical
transformations or fixed structural patterns, thereby increasing adaptability and reducing
computational overhead. Furthermore, the method utilizes all pixel values within the safe
intensity range of 5 to 249 as valid embedding candidates, ensuring that the resulting
stego image remains free from overflow or underflow artifacts. The design also supports
high imperceptibility, as the embedding process can produce stego pixels that are identical
to the original pixels, effectively minimizing visual distortion. In contrast to block-based
methods like MDPVDMF and superpixel-based, the RDJAT-Embed offers a more flexible
and computationally efficient embedding framework.

3. Motivation and contribution.

3.1. Motivation. The growing reliance on digital communication in multimedia envi-
ronments has intensified the demand for secure and efficient data hiding techniques.
Steganography, which conceals secret information within digital media, has emerged as a
promising solution for secure communication. However, traditional steganographic meth-
ods often struggle to maintain a balance between embedding capacity, imperceptibility,
and security. Techniques such as LSB substitution and PVD typically offer limited pay-
load capacity to avoid visual distortion. At the same time, they are prone to statistical
detectability and require computationally expensive operations, undermining their suit-
ability for real-world deployment.
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Moreover, several existing approaches suffer from practical limitations. High embedding
rates may introduce noticeable artifacts, thereby increasing vulnerability to steganalysis
techniques such as RS and SPAM. Some methods, such as the FOBP, face robustness
issues or require multiple stego images for message extraction, making them less reliable
and more challenging to implement in constrained environments. These challenges high-
light the need for a steganographic technique that offers higher capacity, improved visual
quality, and robustness, all while minimizing computational overhead.

3.2. Contributions. To address these challenges, this study presents RDJAT-Embed, a
novel steganographic method based on a modified DE technique. This approach offers a
lightweight, high-performance solution for secure data embedding, particularly suited to
resource-constrained environments. The main contributions of this work are:

1. Enhanced Embedding Capacity: RDJAT-Embed replaces traditional pixel-pair
differences with the difference between each pixel and its group average, enabling
more flexible and efficient data embedding. A five-value grouping strategy optimizes
payload distribution and reduces visual distortion.

2. Improved Imperceptibility and Simplicity: By restricting the embedding to
pixels within the [5, 249] range, the method avoids overflow and underflow while
maintaining high image quality. In many cases, the original pixel values are pre-
served, and the use of a tracing array (TRA) with precomputed group averages
simplifies data extraction, eliminating the need for side-channel information or mul-
tiple images.

3. Robustness and Adaptability: RDJAT-Embed avoids embedding artifacts by
adaptively using local pixel statistics, enhancing resilience to steganalysis. It re-
quires no post-processing or pixel adjustment, reducing the risk of detection. The
flexible grouping framework also allows adaptation to varying capacity and fidelity
requirements.

4. Methodology. RDJAT-Embed enhances the performance of existing methods. Un-
like the ordinary DE methods, this method uses the difference between pixel value and its
group average value to conceal secret data. The technique groups pixels based on their
value and then uses the average of each group to subtract the pixel value. The pixels
of an image are grouped based on their value, with the size of the group corresponding
to five values in an interval of five from zero to 254 (0–4, 5–9, until 249–254). RDJAT-
Embed embeds the data when the differences (d) range between negative and positive
four (−4 ≤ d ≤ 4). All pixels are used to embed data except pixels p(i) less than five
(p(i) < 5) and greater than 249 (p(i) > 249)). To avoid the problems of under/overflow,
RDJAT-Embed only considers, if the difference condition is satisfied, the pixel values
range from five to 249 (5 ≤ p(i) ≤ 249). It is essential to note that the underflow problem
occurs when pixel values become negative, and the overflow issue occurs when pixel values
exceed 255. Moreover, the modulus function is implemented in the proposed extraction
algorithm to get secret data. To demonstrate the proposed scheme, the necessary steps for
embedding and extracting secret data are presented below. Moreover, Figures ?? and ??
are provided to visualize how the proposed scheme works. To shed light on the deep steps
taken in the embedding process, Algorithm 1 presents the pseudocodes of the process,
and the extraction process is detailed in Algorithm 2.

4.1. Embedding the secret data in a cover image. The embedding algorithm consti-
tutes a fundamental component of the proposed steganographic method, as it determines
the systematic procedure through which the secret data is concealed within the cover
image. To initiate the embedding process, the cover image is first transformed into a
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multidimensional array p, enabling structured access to its pixel values. Concurrently,
the secret message is extracted, converted into a binary or numerical format, and stored
in an array b to facilitate efficient embedding. The following steps detail the algorithmic
procedure for embedding the secret data into the cover image, ensuring imperceptibility
and data integrity in the resulting stego image. The following are the detailed steps of
the embedding process. (1) Get the bits of the secret message and store it in an array (b)

Figure 1. Embedding process flowchart

to facilitate its further fetching and use.
(2) Iterate through the image array and sum the count of occurrences of each pixel

value within five intervals. All the sums are saved in a one-dimensional array count(idx).
(3) Count all the occurrences of each pixel value and store it in an array countEach with

the size of one by 255 (maximum value of pixel) and iterate through the array to multiply
it with the pixel value (index). The next step consists of summing up using Equation (1),
where i denotes the pixel value. The pixel index obtained from Equation (2) is then
subtracted by one to ensure the value of the pixel ranges from 0 to 255, and it is used for
the count and sum that define the index for the group of pixels. Variable countEach(idx)
represents the number of occurrences for the pixel value and sum(idx) is the sum of the
results of each group. Iterate through the array p to calculate the average for each group
using Equation (3), considering sum(idx), the group sum of the counts multiplied with
each value at the group index idx, and the average value is rounded up using ceil function.

sum(idx) = sum(idx) + (i− 1)× countEach(i) (1)
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idx = ⌊p(i)/5⌋+ 1 (2)

avgArr(i) = ⌈sum(idx)/count(idx)⌉ (3)

Algorithm 1 Embedding steps

Notations:
Notation 1: Cover image → CI

Notation 2: Cover image array of pixels → p
Notation 3: Average array for each cover image pixel → avgArr
Notation 4: Difference between cover pixel with average → d

Notation 5: Secret data array → b
Notation 6: Stego image array → p′

Notation 7: Stego image → STI
Notation 8: Tracing array → TRA
Inputs: Cover image, Secret data

Outputs: Stego image, Average array, Tracing array

1: Start
2: Load the cover image CI
3: Load the secret data b
4: Reshape CI into one-dimensional array p
5: Initiate tracing array with length of p and set all to zero
6: Calculate count group of occurrences for each pixel value
7: Calculate sum group count multiplied by each pixel value
8: for i = 0 to length(p) do
9: if 5 ≤ p(i) ≤ 249 then

10: Calculate average
avgArr(i) = ⌈ sum

count
⌉

11: Create stego pixel

p′(i) = p(i) + (p(i)− avgArr(i)) + b(h)

12: Set TRA(i) = 1
13: else
14: Create stego pixel with the value of original pixel

p′(i) = p(i)

15: end if
16: end for
17: Construct STI by reshaping p′ into original-dimensional image
18: End the script

(4) Using a tracing array (TRA) Using a tracing array (TRA), we assign a value in the
TRA variable as a key location for the embedded secret data. If the pixel is embedded with
secret data, then bit one is used to identify the pixel containing secret data. Otherwise,
the bit is zero. Computing the difference between the pixels and the average values using
the relation in Equation (4), with d as the difference, p(i) is the cover image pixel value at
index i, and avgArr(i) is the group average for the pixel at index i. The data concealment
follows the relation in Equation (5) with b(h), the secret data at index h, and d′ is a new
difference.
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d = p(i)− avgArr(i) (4)

d′ = d+ b(h) (5)

(5) The pixels of the stego image are computed using Equation (6). For the pixel value
falling within the range of 5 to 249, the data are concealed. Then, the pixel value becomes
a sum of the cover pixel and the difference d′ at the same index p′(i). Otherwise, the stego
pixel is identical to the original pixel at the same index.

p′(i) =

{
p(i) + d′, 5 ≤ p(i) ≤ 249

p(i), p(i) < 5 and p(i) > 249
(6)

(6) Give the tracing array, TRA(i), value using Equation (7). Variable TRA(i) repre-
sents the tracing array at the index of i. If the pixel value p(i) falls within the range and
is used to conceal secret data, then the TRA value at the same index as the pixel (i) is
set to one. Otherwise, the TRA is unchanged (remains zero). Construct the stego image
by reshaping the stego pixels array to its original dimensions.

TRA(i) =

{
1, 5 ≤ p(i) ≤ 249

0, p(i) < 5 and p(i) > 249
(7)

4.2. Practical example of embedding the secret data in a cover image. To shed
light on the proposed embedding process, the following scenarios demonstrate the steps
taken from the secret bits and cover image to the final stego image.

(1) Scenario 1: For p(i) = 10, avgArr(i) = 9, and b = 1

d = 10− 9 (8)

d′ = 1 + 1 (9)

TRA(i) = 1 (10)

p′(i) = 10 + 2 (11)

p′(i) = 13 (12)

(2) Scenario 2: p(i) = 0, avgArr(i) = 4, and b = 1

d = 0− 4 (13)

d = −4 (14)

d′ = −4 + 1 (15)

d′ = −3 (16)

p′(i) = 0 + (−3) (17)

p′(i) = −3 (18)

TRA(i) = 0 (19)

(3) Scenario 3: p(i) = 254, avgArr(i) = 250, and b = 1
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d = 254− 250 (20)

d = 6 (21)

d′ = 6 + 1 (22)

d′ = 7 (23)

p′(i) = 254 + 7 (24)

p′(i) = 261 (25)

4.3. Hidden secret data and original cover image restoration. The extraction
process of the hidden secret data and the cover image used in concealment from the stego
image is performed using the tracing array and the average array defined throughout
the embedding process. Following Figure 2 and Algorithm 2, the steps involved in the
extraction process are given below. Reshaping the stego image to a one-dimensional array

Figure 2. Extraction process flowchart

(stego array) and through the stego array, using the TRA, iterate, and if the TRA(i) value
is one, compute the difference between the stego pixel and the average array at the same
index using Equation (26) considering p′(i), the stego pixel at the index of i, avgArr(i),
the average group for the pixel at the index of i, and d′′, the difference between them.

d′′ = p′(i)− avgArr(i) (26)

(1) To extract the secret bits, apply the modulus function of the d′′ with two using
Equation (27). Note that s(h) is the extracted secret bits at the index h. The d′′ is
equivalent to 2d added with the secret bit, proofed using Equations (28)–(31). Therefore,
the d′′ value depends on the secret bit that has been embedded.
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b(h) = d′′ mod 2 (27)

p′(i) = p(i) + (p(i)− avgArr(i)) + b(h) (28)

d′′ + avg(i) = p(i) + p(i)− avgArr(i) + b(h) (29)

d′′ = 2(p(i)− avgArr(i)) + b(h) (30)

d′′ = 2d+ b(h) (31)

(2) To extract the original cover image used for the embedding process, Equation (32)
is used in combination with the TRA. If TRA(i) = 1, the original pixel is extracted by
applying Equation (33). Otherwise, the original pixel is the same as the stego pixel. Note
that p(i) denotes the original pixel value at the index i, avgArr(i) denotes the average
value at the index i, b(h) is secret data at the index h, and the tracing array value at the
index i denoted with TRA(i). The final step is to reconstruct the image by reshaping the
pixel array to its original dimensions.

2p(i) = p′(i) + avgArr(i)− b(h) (32)

p(i) =


p′(i) + avgArr(i)− b(h)

2
, TRA(i) = 1

p′(i), TRA(i) = 0
(33)

4.4. Practical example of the data and cover extraction process. In this sub-
section, we provide detailed scenarios that may occur during the data and cover the
extraction process. The d

′′
variable denotes the difference between the stego pixel value

and its average, while the b(h) represents the secret bit at index h.
(1) Scenario 1: p

′
(i) = 20, avgArr(i) = 21, and the TRA(i) = 1.

For this scenario, since the pixel value falls within the range that may have been used to
embed the secret data and the TRA(i) value indicates that the data has been embedded,
we can use Equations (34)–(36). The final secret data is obtained with Equation (36).
The recovery of the cover image’s pixels consists of gathering all pixels obtained using
Equations (37)–(39).

d
′′
= 20− 21 (34)

b(h) = −1 mod 2 (35)

b(h) = 1 (36)

p(i) =
20 + 21− 1

2
(37)

p(i) =
40

2
(38)

p(i) = 20 (39)

(2) Scenario 2: p
′
(i) = 2 or 255, avgArr(i) = 1 or 254, and TRA(i) = 0.

For this scenario, where TRA(i) = 0, based on the embedding conditions, the original
cover image’s pixel value is obtained by taking the actual pixel in the stego image, as the
embedding process has not altered it previously.

5. Experimental results and analyses.
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Algorithm 2 Extracting steps

Notations:
Notation 1: Stego image → STI

Notation 2: Difference between stego pixel with average → d′′

Notation 3: Average group array → avgArr
Notation 4: Recovered secret bit → s
Notation 5: Tracing array → TRA

Input 1: Stego Image
Input 2: Average array

Input 3: TRA
Output 1: Original cover image

Output 2: Secret data

1: Start
2: Load the stego image
3: Load the average array
4: Load the tracing array
5: Reshape STI to one dimensional array p′

6: Iterate stego image and average array while i = 0; i ≤ length(p′)
7: if TRA(i) value is one then
8: Compute the difference (d′′) by

d′′ = p′(i)− avgArr(i)

9: Extract the secret bits at index h by

s(h) = d′′ mod 2

10: Recover the cover image pixel by

p(i) =
p′(i) + avgArr(i)− s(h)

2
11: else
12: Set original pixel value to stego pixel value:

p(i) = p′(i)

13: end if
14: Build the original cover image
15: End the script

5.1. Experimental environment and dataset. The experimentation of the proposed
RDJAT-Embed was conducted on an Intel Core i5 processor operating at 2.3 GHz and
16 GB of RAM. The software used as the implementation platform is MATLAB R2024b
due to its robustness in running the implementation program. The RDJAT-Embed is
implemented as a steganography method using cover images from the SIPI image dataset
[35] in Figure 3. These images have an exact resolution of 512 Ö 512. It is important
to note that all experiments were conducted using grayscale images. This choice was
motivated by the simplicity and efficiency of grayscale data, which resides in a single plane,
making it computationally lighter and easier to analyze. Additionally, grayscale images
provide a suitable baseline to evaluate the core performance of the proposed method with
optimal memory and time usage. While the method is generalizable to RGB images,
such an extension would require handling multiple channels and potential inter-channel
dependencies, which increases complexity and computational load. The secret bits used
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for embedding experiments are extracted from the Lorem Ipsum story [36]. The use of
Lorem Ipsum is motivated by the need for a uniform distribution of bits, like that of
existing benchmark steganographic algorithms.

Figure 3. Sample test cover images

5.2. Evaluation metrics. To comprehensively assess the performance of the RDJAT-
Embed, four standard evaluation metrics are employed: Peak Signal-to-Noise Ratio (PSNR),
Mean Squared Error (MSE), and Structural Similarity Index Measure (SSIM). These met-
rics collectively evaluate both the visual quality and embedding efficiency of the stego-
images. The PSNR is a widely used metric for quantifying the distortion introduced
during data compression or data embedding. As defined in Equation (40), PSNR mea-
sures the ratio between the maximum possible signal power and the power of the noise
introduced by the embedding process, expressed in decibels (dB). Higher PSNR values
correspond to better visual quality and minimal distortion. MSE, defined in Equation
(41), calculates the average of the squared differences between the pixel intensities of
the original cover image and the corresponding stego image. Lower MSE values indicate
reduced distortion due to embedding. SSIM, computed using Equation (42), evaluates
the perceptual quality of the stego image by measuring structural similarity in terms of
luminance, contrast, and structural components. SSIM values range from 0 to 1, where
values closer to 1 indicate higher structural fidelity between the cover and stego images.
It is crucial to indicate that the cover image is denoted as p, the stego image as p′, and
the mean pixel intensities as µp and µp′ , with the variance intensities represented by σp

and σp′ , and the covariance by σpp′ .

PSNR = 10× log10

(
2552

MSE

)
(40)

MSE =
1

h× w

h∑
i=1

w∑
j=1

(
p(i,j) − p′(i,j)

)2
(41)

SSIM(p, p′) =
(2µpµp′ + C1)(2σpp′ + C1)

(µ2
p + µ2

p′ + C1)(σ2
p + σ2

p′ + C1)
(42)
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5.3. Results.

5.3.1. Obtained results. The results presented in Table 1 provide a detailed assessment of
the PSNR in dB achieved by the proposed RDJAT-Embed method across ten standard
grayscale images and eleven payload levels ranging from 1 kb to 100 kb. The obtained
results, as reported in the table, demonstrate the scientific robustness and practical effec-
tiveness of the RDJAT-Embed in preserving stego image quality during data embedding.
At low payloads, all images achieve PSNR values above 68 dB, which is relatively high,
indicating negligible distortion and near-lossless embedding. As the payload increases, the
PSNR values gradually decrease, as expected, due to the increased amount of embedded
data. However, the RDJAT-Embed consistently maintains PSNR values above 48 dB,
even at the highest tested payload (100 kb), far surpassing the standard acceptability
threshold of 30 dB. Notably, for Baboon and Pepper images, which are traditionally chal-
lenging for data hiding due to their textural variability, the PSNR values remain above 48
dB at 100 kb, indicating that RDJAT-Embed is resilient to image complexity and provides
adaptive embedding that minimizes distortion. For the Aerial image, the highest PSNR
value, ranging between 68.851 and 48.460 dB, is yielded, showing a promising record for
the quality of the stego image.

Table 1. Obtained PSNR in dB for the proposed RDJAT-Embed

Image 1kb 10kb 20kb 30kb 40kb 50kb 60kb 70kb 80kb 90kb 100kb
Aerial 68.851 58.468 55.521 53.703 52.481 51.484 50.695 50.018 49.438 48.917 48.460
Airplane 68.173 58.768 55.575 53.830 52.640 51.713 50.950 50.260 49.655 49.117 48.636
Baboon 68.311 58.416 55.409 53.602 52.369 51.388 50.596 49.928 49.362 48.850 48.399
Car and APCs 69.184 58.909 55.879 54.078 52.850 51.842 51.066 50.352 49.778 49.245 48.773
Fishing Boat 68.779 58.746 55.686 53.866 52.636 51.642 50.845 50.162 49.599 49.085 48.636
Pepper 68.012 58.342 55.351 53.597 52.380 51.418 50.619 49.929 49.350 48.861 48.433
Stream and bridge 69.443 59.406 56.386 54.639 53.316 52.338 51.522 50.904 50.346 49.815 49.356
Tank 68.773 58.711 55.675 53.956 52.741 51.777 50.978 50.304 49.742 49.244 48.775
Truck 68.900 59.087 56.115 54.367 53.126 52.150 51.331 50.687 50.082 49.561 49.103

Table 2. MSE results from all the test images and payload sizes for the
RDJAT-Embed

Image 1kb 10kb 20kb 30kb 40kb 50kb 60kb 70kb 80kb 90kb 100kb
Aerial 0.008 0.093 0.182 0.277 0.367 0.462 0.554 0.648 0.740 0.835 0.927
Airplane 0.010 0.086 0.180 0.269 0.354 0.438 0.523 0.612 0.704 0.797 0.890
Baboon 0.010 0.094 0.187 0.284 0.377 0.472 0.567 0.661 0.753 0.847 0.940
Car and APCs 0.008 0.084 0.168 0.254 0.337 0.426 0.509 0.600 0.684 0.774 0.863
Fishing Boat 0.009 0.087 0.176 0.267 0.354 0.446 0.535 0.626 0.713 0.803 0.890
Pepper 0.010 0.095 0.190 0.284 0.376 0.469 0.564 0.661 0.755 0.845 0.933
Stream and bridge 0.007 0.075 0.149 0.223 0.303 0.380 0.458 0.528 0.600 0.679 0.754
Tank 0.009 0.087 0.176 0.262 0.346 0.432 0.519 0.606 0.690 0.774 0.862
Truck 0.008 0.080 0.159 0.238 0.317 0.396 0.479 0.555 0.638 0.719 0.799

The MSE results presented in Table 2 provide detailed insight into the distortion per-
formance of the proposed RDJAT-Embed method across various payload sizes and image
types. The MSE values remain consistently low, even as the payload increases from 1
kb to 100 kb, indicating minimal pixel-level distortion. At the highest payload, the MSE
ranges from 0.754 for the Stream and bridge image to 0.940 for Baboon, which demon-
strates the method’s robustness even in the presence of complex textures and structural
variations. Similarly, images such as Tank and Fishing Boat exhibit MSE values of 0.862
and 0.890, respectively, further emphasizing the RDJAT-Embed’s capacity to maintain
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visual quality in diverse scenarios. At the lowest payload of 1 kb, MSE values are neg-
ligible, not exceeding 0.010 across all images, reflecting the excellent reversibility and
imperceptibility of the proposed algorithm.

The average PSNR results obtained using the proposed RDJAT-Embed method, as il-
lustrated in Figure 4, reveal a consistently high level of visual fidelity across ten standard
test images. The PSNR values range from 53.299 dB for Pepper to 54.316 dB for Stream
and Bridge, demonstrating that all cover images maintain superior quality even after em-
bedding. For Baboon and Car and APCs, the achieved values are 53.330 dB and 53.814
dB, respectively, confirming the method’s robustness in handling high-frequency textures
and fine-grained image details. These results indicate that the RDJAT-Embed algorithm
effectively preserves structural information during the embedding process, achieving an
overall average PSNR of approximately 53.76 dB, well above the commonly accepted
threshold for imperceptibility in data hiding applications. Moreover, the scientific signif-
icance of these results lies in the RDJAT-Embed’s ability to maintain high PSNR values
with minimal variation across diverse image content.

Figure 4. Average PSNR in dB for all tested cover images

Figure 5. Obtained SSIM results for the RDJAT-Embed

The minimal distortion observed in both smooth and textured regions reflects the
adaptability and precision of the RDJAT-Embed. To highlight the contribution of the
proposed RDJAT-Embed, Figure 5 illustrates the SSIM performance of the proposed
RDJAT-Embed method where all tested images consistently maintain SSIM values above
0.99, indicating relatively excellent structural similarity between the original cover and
the stego images. This confirms that RDJAT-Embed effectively preserves luminance, con-
trast, and structural details even under increasing embedding loads. The RDJAT-Embed
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performs particularly well on Car and APCs, as well as Fishing Boat and Truck, which
sustain the highest SSIM scores across various payloads. Even complex and high-texture
images, such as Baboon and Pepper, retain SSIM values close to 0.995 at the maximum
payload, demonstrating that the method adapts well to diverse visual content without
compromising perceptual quality. The minimal and gradual decline in SSIM further high-
lights RDJAT-Embed’s capability to balance embedding capacity and imperceptibility.

Figure 6 also presents the average SSIM values for all tested cover images under the
RDJAT-Embed method, reinforcing the method’s ability to maintain exceptional struc-
tural fidelity during data embedding. All images consistently achieve SSIM scores of 0.997
or higher, with Baboon, Stream and Bridge, and Tank attaining the highest average SSIM
of 0.999 despite their complex textures and structural variations.

Figure 6. Obtained average SSIM for all cover images under RDJAT-
Embed

Figure 7. Comparison of the PSNR to the state-of-the-art algorithms

5.4. Results comparison. To provide a comprehensive comparison of the proposed
RDJAT-Embed method against a selection of state-of-the-art steganographic techniques,
Figure 7 illustrates the average PSNR values obtained against those reported in existing
methods. The RDJAT-Embed achieves the highest average PSNR of 53.683 dB, indicating
exceptional preservation of visual quality after data embedding. This value surpasses the
threshold of 50 dB, which is widely considered to represent imperceptible visual distortion
to the human eye, thus demonstrating the model’s ability to embed data with minimal
perceptual degradation. In comparison, the methods by Pan et al. [14], and by Ramadhan
et al. [16] record an average PSNR about 49 dB, both reflecting moderate fidelity but still
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lower than RDJAT-Embed. Lee and Chan [11] and Lee and Chan [15] report average
PSNR values around 45.920 dB and 51.240 dB, respectively, with the latter approaching
high fidelity but remaining about 2.440 dB below the proposed method. Meanwhile, Ko-
suru et al. [13] and Kaur and Singh [12] show substantially lower average PSNR values
about 36.880 dB and 32.630 dB, respectively, signifying notable distortion and reduced
imperceptibility. The outperformance of RDJAT-Embed in terms of average PSNR is a
direct result of its robust embedding mechanism, which utilizes residual difference joint
adaptive thresholding to balance capacity and quality. This enables RDJAT-Embed to
maintain image structural integrity and noise resistance even at higher payloads. In addi-
tion to outperforming existing techniques by a margin of up to 21.050 dB, RDJAT-Embed
establishes a new benchmark for fidelity-aware steganography, making it highly applicable
in sensitive domains.

6. Conclusion. This study introduces RDJAT-Embed, a lightweight and effective steganog-
raphy method that enhances data embedding capacity while preserving image quality.
By employing a modified DE technique based on group averages rather than pixel pairs,
RDJAT-Embed achieves high imperceptibility, with an average PSNR of 53.683 dB, a low
MSE, and a near-perfect SSIM. Its five-value pixel grouping strategy prevents overflow
and underflow, maintaining visual fidelity across stego images. Unlike many existing ap-
proaches, RDJAT-Embed requires only a single stego image and a simple tracing array
for data extraction, offering improved computational efficiency and reduced complexity.
The method also demonstrates robustness against common steganalysis attacks, mak-
ing it suitable for secure, real-world applications. Comparative evaluations confirm that
RDJAT-Embed outperforms several state-of-the-art techniques in balancing payload ca-
pacity, imperceptibility, and efficiency.

Despite its strengths, RDJAT-Embed excludes extreme pixel values, which may limit its
performance in grayscale or binary images with dominant dark or bright regions. Future
research can address this limitation by exploring adaptive group sizing to improve pixel
coverage and embedding flexibility.
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