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Abstract. PM2.5 prediction is a typical time-series problem. Compared with the early
application of single models, current research trends have increasingly focused on multi-
model fusion strategies. Although complex network models have demonstrated promising
performance in air pollution concentration prediction, prediction accuracy still has room
for improvement due to limitations such as insufficient feature dimensions and inade-
quate mining of spatiotemporal correlations. This paper proposes a CNN-ECA-LSTM
hybrid model that integrates spatiotemporal features and attention mechanisms. Conv1D
is used to extract local spatiotemporal correlations from multi-source data, LSTM cap-
tures long-term dependencies of time series, ECA strengthens key feature weights, and
achieves effective integration of spatiotemporal features and suppression of redundant in-
formation. Experimental research shows that the proposed model is significantly better
than LSTM single model and CNN-LSTM hybrid model in predicting PM2.5 concen-
tration, validating the synergistic enhancement of prediction accuracy by spatiotemporal
fusion and attention mechanisms. This research not only provides an innovative solution
for small-region pollution prediction but also offers valuable references for applying deep
learning hybrid models to explore time-series big data in fields such as meteorological
data, stock markets, economic analysis, and transportation.

Keywords: PM2.5 Prediction; Spatiotemporal Fusion; LSTM; CNN-LSTM; CNN-
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1. Introduction. The rapid development of modern technology, industry, and trans-
portation has accelerated the global urbanization process. Concurrently, the sustained
emission of various air pollutants has exacerbated environmental degradation, triggering
global environmental issues such as the greenhouse effect, ozone layer depletion, and pho-
tochemical smog. Among numerous air pollutants, fine particulate matter PM2.5—particles
with a diameter ≤ 2.5 micrometers—has become a critical risk factor for human health
due to its ability to penetrate the human respiratory system and even enter the blood-
stream [1], attracting widespread international attention. The Global Burden of Disease
(GBD) study further confirms that PM2.5 has become the primary environmental risk
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factor, with each 10 µg/m3 increase in concentration associated with a roughly 7% higher
all-cause mortality rate (with regional variations in this proportion) [2].

PM2.5 pollution not only threatens public health but also exerts far-reaching impacts
on the global economy and policy-making. Economically, smoggy weather—with PM2.5
as the primary pollutant—significantly reduces transportation efficiency, leading to is-
sues such as flight delays, railway suspensions, and highway closures [3]. It also compels
industrial enterprises to undergo structural adjustments, increasing costs for pollution
control and operational transformation. Additionally, chain reactions such as rising resi-
dential medical expenses, declining urban commercial attractiveness, and reduced foreign
investment further exacerbate economic losses. In terms of policy, countries have im-
plemented targeted measures: the United States established a strict pollution control
system through the Clean Air Act; France promulgated the Building Energy Efficiency
Regulations to promote low-carbon transitions.

PM2.5 comes from a wide range of sources, such as sandstorms, volcanic ash, particulate
matter from forest fires, and sea salt crystals in nature; however, anthropogenic emissions
play a dominant role, encompassing fossil fuel (coal, petroleum products) and biomass
(crop straw, wood) combustion, industrial dust emissions, road dust, vehicle exhaust, and
kitchen fumes [4]. According to WHO 2023 data, the global annual average PM2.5 con-
centration stands at 32.8 µg/m3, with over 90% of days exceeding recommended limits
in East and South Asia. China’s current Ambient Air Quality Standards set an annual
limit of 35 µg/m3 for PM2.5, which aligns only with the WHO’s first-stage transitional
target; although revisions are moving toward the second-stage target of 25 µg/m3, there
remains a substantial gap from the WHO’s ultimate standard of 5 µg/m3. The 2023
China Ecological and Environmental Status Bulletin reveals that among 339 monitored
cities nationwide, 136 (40.1%) failed to meet air quality standards, of which 105 cities
(77.2% of Excess Cities) had excessive PM2.5 concentrations. These findings highlight
that PM2.5 pollution remains a critical obstacle to improving urban air quality in China.
Accurately predicting the trend of PM2.5 concentration changes has irreplaceable strate-
gic significance for formulating scientific prevention and control strategies, safeguarding
public health, and promoting sustainable urban development. By establishing precise pre-
diction models, policymakers can obtain data-driven support for pollution early warning,
emission reduction planning, and policy optimization, thereby facilitating the coordinated
development of air quality and socioeconomic goals.

2. Literature Review. Current research on PM2.5 concentration prediction methods
primarily focuses on three directions: time series analysis, machine learning, and deep
learning. The application of time series analysis models for PM2.5 prediction can be traced
back to the last century. Given that PM2.5 concentration data are fundamentally time-
series data, traditional time series models often yield favorable results in predicting PM2.5
concentrations. For example, Suresh S et al. [5] developed three single models—ARIMA,
LSTM, and Prophet—for predicting PM2.5 concentrations in Kodungaiyur, India. The
results showed that ARIMAmodel has the best performance. A similar trend was observed
in the study by Wongrin W et al. [6], which compared traditional statistical methods
(ETS, ARIMA, DLM) with deep learning models (RNN, LSTM) for predicting PM2.5
in northern Thailand. Traditional statistical methods, particularly the ARIMA model,
outperformed deep learning models with lower RMSE values. However, single time series
prediction models often appear insufficient in comprehensive research, prompting scholars
to explore integrations with other modeling approaches.

Machine learning algorithms exhibit significant advantages in solving general classifi-
cation and regression problems, ensemble learning algorithms (such as RF, XGBOOST,
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etc.) demonstrate superior performance in handling multidimensional data compared to
traditional time-series models. Minh V T T et al. [7] used meteorological data from the
WRF model to conduct short-term predictions of PM2.5 concentrations within 48 hours,
concluding that among six single-algorithm models developed, the Extremely Randomized
Trees Regressor (ETR) performed best with 74% accuracy. Ma X et al. [8] compared four
machine learning methods (Linear SVR, K-Nearest Neighbors, Lasso, Gradient Boost-
ing) for prediction, showing that Gradient Boosting significantly outperformed the other
three, while the Linear SVR model yielded suboptimal results. Ji Haiyang [9] established
four machine learning models—XGBOOST, RF, GBDT, and Adaboost—and found that
GBDT achieved the best performance. Murugan et al. [10] used the Malaysian air pollu-
tion dataset to predict PM2.5 concentrations using two algorithms—Multilayer Perceptron
(MLP) and Random Forest (RF)—and conducted a comprehensive accuracy comparison,
the results indicate that random forests perform better. Van et al. [11] employed Pear-
son correlation coefficients for feature engineering on an AQI dataset to screen variables,
then compared Decision Tree, Random Forest, and XGBoost algorithms. Their findings
confirmed that XGBoost demonstrated superior prediction performance for AQI values.

With the continuous development of deep learning algorithms, an increasing number
of scholars have turned to these powerful training frameworks. Unlike shallow learn-
ing, deep learning models feature multiple hidden layers, enabling diverse functionalities
through different network architectures. Compared to traditional machine learning, deep
learning’s recurrent network models (e.g., LSTM, GRU) can explicitly model temporal
dependencies in sequential data, making them particularly effective for time-series tasks
like PM2.5 prediction. While single neural network models once outperformed tradi-
tional statistical and machine learning methods, their prediction accuracy is no longer
sufficient for practical needs. Conversely, integrating multiple deep learning models has
shown promise in improving performance. Hu J et al. [12] integrated BiLSTM (Bidirec-
tional LSTM), CNN, and GRU into a hybrid model, which exhibited the lowest RMSE
compared to individual models, indicating strong potential for pollutant concentration
forecasting. Similar to machine learning, optimizing deep learning models with appropri-
ate algorithms can significantly enhance performance. Notable examples include Zhang
Y et al. [13] proposed SSA-LSTM model to tune traditional LSTM parameters, outper-
forming LSTM, BPNN, and BiLSTM in empirical tests. Wang Qianying and Yang Kexin
[14] used a grid search-optimized SVR model to correct LSTM prediction errors, success-
fully improving forecasting accuracy. Xu Yixin [15] and Zhang Yanan et al. [16] applied
wavelet analysis for data preprocessing before building BPNN models, both achieving
satisfactory results. Peng Yuqing [17] introduced attention mechanisms into LSTM and
GRU models, demonstrating substantial performance gains. This trend of developing
PM2.5 prediction models that integrate spatiotemporal features through deep learning
frameworks represents a cutting-edge research direction.

3. Methodology. PM2.5 concentration variations are influenced by complex interac-
tions among pollutant source emissions, geographical environment, and meteorological
conditions, exhibiting significant nonlinear and dynamic characteristics. These features
make it difficult for traditional time-series models to effectively capture changing patterns,
limiting their prediction accuracy. With the advancement of deep learning techniques, re-
lated algorithms have gradually become the mainstream approach in PM2.5 concentration
prediction due to their strong feature extraction and nonlinear fitting capabilities. Con-
trasting with early single-model applications, current research trends increasingly focus
on multi-model fusion strategies or enhancing single-model performance through methods
such as parameter optimization and feature engineering.
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Although complex network models have demonstrated promising application results in
the field of air pollution concentration prediction, there is still significant room for im-
provement in the prediction accuracy of PM2.5 concentration due to limitations such as
insufficient feature dimensions and inadequate exploration of spatiotemporal correlations.
In response to this situation, this study fully considers the coupling effects of air pollu-
tants and meteorological factors within the region, deeply integrates the spatiotemporal
evolution laws of pollutant diffusion, and constructs a PM2.5 concentration prediction
model that fuses spatiotemporal correlations, as illustrated in Figure 1.

Figure 1. PM2.5 Concentration Prediction Model Integrating Spatiotem-
poral Correlations

3.1. CNN Feature Processing. CNN has been widely applied in areas such as com-
puter vision and speech recognition, thanks to its outstanding performance in processing
and analyzing data from images, audio, and video [18]. Essentially, CNN utilizes two core
mechanisms—local connectivity and weight sharing—it significantly reduces the number
of model parameters, effectively enhancing training efficiency and generalization ability.
Its network structure is based on convolutional layers, pooling layers, and fully connected
layers [19], and achieves classification, recognition, and segmentation tasks of complex
data through multi-level feature extraction and transformation.

Conv1D is a variant of CNN. Especially suitable for processing one-dimensional tem-
poral data, such as time series signals, text sequences, etc. Its workflow is shown in
Figure 2.

Figure 2. Schematic Diagram of One-Dimensional Convolution (Conv1D)
Processing
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This model employs a Conv1D structure to construct a CNN module for feature ex-
traction. Considering the cross-influence of air pollutant characteristics among adjacent
monitoring stations, during the model construction process, multi-station data are ex-
panded in the single-station dimension to form a two-dimensional data structure that
integrates information from multiple stations. The structural principle is illustrated in
Figure 3.

Figure 3. Structure Diagram of Conv1D

The calculation formulas for the Conv1D network layer are shown in Formula (1)-(2).

c = f(x⊗Wc + bc) (1)

p = max pooling(c) (2)

Here, c represents the output of the convolutional layer, f(x) is the activation function,
and ReLU is chosen. ⊗ denotes the convolution operation, Wc is the weight matrix, bc is
the bias term, p is the output of the pooling layer, and maxpooling(x) is the max-pooling
function [20].

3.2. LSTM for Capturing Long-Term Dependencies. As an improved architecture
of the RNN, LSTM network effectively overcomes the vanishing gradient problem of tradi-
tional RNNs when processing long sequential data, thanks to its unique gating mechanisms
(input gate, forget gate, and output gate) and cell state design. The LSTM network unit
consists of five core components: Cell State, Hidden State, Input Gate, Forget Gate, and
Output Gate. Its neural network architecture is illustrated in Figure 4.

The calculation process of the LSTM network layer is shown in Formula (3)-(8).

ft = σ(Wf · [ht−1, xt] + bf ) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)

C̃t = tanh(Wc · [ht−1, xt] + bc) (5)

Ct = ft · Ct−1 + it · C̃t (6)
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Figure 4. Structure Diagram of the LSTM Neural Network

ot = σ(Wo · [ht−1, xt] + bo) (7)

ht = ot · tanh(Ct) (8)

Here, σ represents the Sigmoid activation function, and tanh represents the hyperbolic
tangent activation function. W and b denote the weight matrix and bias vector, respec-
tively. Through these iterative calculations, the LSTM network achieves deep feature
extraction and effective memory of time-series data [21].

3.3. ECA Focuses on Key Features. Although the LSTM layer has a powerful ability
to model long-term dependencies, in practical applications, its model performance is often
significantly constrained by other components. During the PM2.5 prediction process, if
there are information deficiencies or representational biases in the local features extracted
by the Conv1D layer, even with the excellent temporal modeling capabilities of the LSTM
layer, it is difficult to learn accurate long-term dependencies. In addition, the influencing
factors of PM2.5 concentration are dynamically changing. For example, under different
weather conditions, the influence weights of environmental features such as wind speed
and humidity on PM2.5 diffusion vary significantly.

To address the above-mentioned issues, introducing an attention mechanism into the
model architecture can effectively improve the prediction accuracy. By dynamically ad-
justing the feature weights, the attention mechanism enables the model to automatically
focus on the key influencing factors of the current prediction task and enhance the rep-
resentation ability of important features. Among them, the Efficient Channel Attention
(ECA) mechanism demonstrates significant advantages with its unique design, and its
structural schematic diagram is shown in Figure 5.

The ECA mechanism uses one-dimensional convolution to directly capture the depen-
dencies between channels, innovatively eliminating the complex dimensionality reduction
and increase processes in traditional attention mechanisms. This mechanism adaptively
selects the size of the one-dimensional convolution kernel to achieve local cross-channel
interactions without dimensionality reduction. It can accurately learn the importance
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Figure 5. Structure Diagram of ECA (Efficient Channel Attention)

weights of each channel and dynamically adjust the feature response intensity accord-
ingly. This design can reduce the number of parameters, lower computational complexity,
and enhance the ability to focus on key features while maintaining model performance
[22].

Specifically, the ECA module first adaptively calculates the kernel size k of the one-
dimensional convolution based on the number of channels, as illustrated in Formula (9).

k = ⌊C/γ + b⌋ (9)

Here, C denotes the number of channels in the input features, γ and b are hyperparam-
eters. Taking the absolute value and rounding down to the nearest odd number ensures
that the kernel size is an odd number. After obtaining the kernel size k, the ECA module
applies one-dimensional convolution to the input features to learn the importance of each
channel relative to the others. The calculation formula is shown in Formula (10).

y = Conv1Dk(x) (10)

Here, x is the input features, and y is the output features.

4. Experiments and Results Analysis.

4.1. Data Sources and Correlation Analysis of the Experiments. The air pollu-
tant concentration data used in this experiment cover indicators such as PM2.5, PM10,
SO2, NO2, O3, and CO. All these data are sourced from the National Urban Air Qual-
ity Real-time Release Platform of the China National Environmental Monitoring Centre.
The meteorological data (Air Temperature, Dew Point Temperature, Pressure, Wind
Direction, Wind Speed, Sky Conditions) come from the public dataset of the National
Centers for Environmental Information (NCDC). The study period is from 2019/1/1 to
2022/12/31, and the data are hourly records from 10 monitoring stations in Hefei ur-
ban area, Anhui Province, China [21]. Among them, the GaoXinQu monitoring station
is selected as the target prediction station, and the other 9 adjacent stations are deter-
mined by the fixed adjacent radius method. The search radius for PM2.5 is set to 30 km,
specifically including MingZhuGuangChang, SanLiJie, HuPoShanZhuan, DongPuShuiKu,
ChangJiangZhongRoad, LuYangQu, YaoHaiQu, BaoHeQu, and BinHuXinQu. The de-
tailed distribution of each monitoring station is shown in Table 1.

Previous studies have shown that PM2.5 concentration is not only closely related to the
concentrations of air pollutants such as PM10 and CO but is also significantly influenced
by meteorological factors such as wind speed and humidity, as well as geographical loca-
tion. Considering that the formation of PM2.5 concentration is the result of the combined
action of multiple factors, in order to apply experimental data to the prediction model
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Table 1. Details of Monitoring Stations in Hefei City

STATION CODE STATION NAME CTRY LONGITUDE LATITUDE SORT
1279 GaoXinQu HeFei 117.1318 31.8403 Target station
1270 MingZhuGuangChang HeFei 117.1959 31.7848 Adjacent station
1271 SanLiJie HeFei 117.3072 31.8764 Adjacent station
1272 HuPoShanZhuan HeFei 117.2588 31.8707 Adjacent station
1273 DongPuShuiKu HeFei 117.1604 31.9052 Adjacent station
1274 ChangJiangZhongRoad HeFei 117.2500 31.8571 Adjacent station
1275 LuYangQu HeFei 117.2660 31.9436 Adjacent station
1276 YaoHaiQu HeFei 117.3360 31.8586 Adjacent station
1277 BaoHeQu HeFei 117.3027 31.7964 Adjacent station
1278 BinHuXinQu HeFei 117.2776 31.7385 Adjacent station

more scientifically, need to explore the correlation between PM2.5 and various influencing
factors.

This paper conducts a correlation study on six air pollutant data, namely PM2.5, PM10,
SO2, NO2, O3, and CO, as well as six meteorological data, including Air Temperature,
Dew Point Temperature, Pressure, Wind Direction, Wind Speed, and Sky Conditions,
using the Pearson correlation coefficient analysis method. The Pearson correlation coeffi-
cient is commonly used before regression analysis. It can quantify the linear relationship
between two quantitative variables, including determining whether there is an association
between variables, the direction of the association, and the degree of correlation [23]. The
formula is (11).

ρx,y =
cov(X, Y )

σxσy

=
E((X − µx)(Y − µy))

σxσy

(11)

Here, cov represents the covariance, σx and σy are the standard deviations, and E is
the mathematical expectation.

Figure 6 analyzes the correlation between PM2.5 and various air pollutants. The co-
efficients between PM2.5 and PM10, NO2, CO, and SO2 are greater than 0, indicating
a positive correlation. This means that the PM2.5 concentration increases with the in-
crease of other air pollutants. Among them, the correlation coefficients of PM2.5 with
CO, PM10, and NO2, which rank in the top three, reach 0.67, 0.64, and 0.48 respectively,
indicating a strong correlation. However, the correlation coefficient between PM2.5 and
O3 is -0.26, showing a negative correlation, which means that the PM2.5 concentration
tends to decrease as the O3 concentration increases.

This paper also includes meteorological data in the scope of research. The correlation
analysis mainly focuses on the relationships between PM2.5 and Air Temperature, Dew
Point Temperature, Pressure, Wind Direction, Wind Speed, and Sky Conditions, as il-
lustrated in Figure 7. According to the data, there is also a certain degree of correlation
between PM2.5 and meteorological data. However, the absolute values of the correla-
tion coefficients do not exceed 0.4, indicating that the overall correlation between PM2.5
and meteorological data is relatively low. From the analysis results, the correlations be-
tween PM2.5 and Pressure, Sky Conditions are positive, which means that an increase
in Pressure and Sky Conditions will lead to an increase in PM2.5 concentration. On the
contrary, the correlations between PM2.5 and Air Temperature, Dew Point Temperature,
Wind Speed are negative, indicating that as Air Temperature, Dew Point Temperature,
and Wind Speed increase, the PM2.5 concentration will decrease. Therefore, this pa-
per incorporates the meteorological data of the target station into the training of the
prediction model.
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Figure 6. Correlation Coefficient Matrix Diagram of PM2.5 and Other
Air Pollutants

4.2. Experimental Data Preprocessing. The air pollutant and meteorological data
from the 10 monitoring stations in the experimental study are updated in real-time with
an hourly time granularity. Based on the results of Pearson correlation coefficient analysis,
to comprehensively capture the combined influence of multiple factors on the variation of
PM2.5, the air pollutant data and meteorological data of the target station, the GaoXinQu
monitoring station, are first integrated and concatenated. This operation fully considers
the interactions among different air pollutants and meteorological factors to construct
a multi-dimensional feature vector. Meanwhile, to depict spatiotemporal distribution
characteristics of PM2.5 pollutants, the study further precisely matches and concatenates
the PM2.5 concentration data from the other 9 adjacent stations (within a 30-km radius)
according to timestamps. Eventually, an original dataset with an hourly unit is formed,
as illustrated in Figure 8.

The descriptions of features for air pollutant data and meteorological data [24] are
presented in Table 2.

In the integrated original dataset, due to the hourly time granularity of data collection,
some missing values inevitably exist. To address this issue, a hierarchical processing
strategy is implemented during the data preprocessing stage. First, data records with 10
consecutive missing time steps are deleted. For the remaining missing values, forward-
filling and backward-filling methods are preferentially used for imputation. If the missing
values at the front and back prevent the application of this strategy, the mean imputation
method is employed for processing. After the above processing, a total of 35,064 time-
series data records from January 1, 2019, to December 31, 2022, are finally obtained, and
all data are arranged in strict chronological order. The temporal variation trends of key
indicators such as PM2.5, PM10, SO2, Dew Point Temperature, and Air Temperature
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Figure 7. Correlation Coefficient Matrix Diagram of PM2.5 and Meteo-
rological Data

Table 2. Feature Description of the Original Dataset

Feature Description Unit
PM2.5 PM2.5 Pollution µg/m3

PM10 PM10 Pollution µg/m3

SO2 Sulfur Dioxide µg/m3

NO2 Nitrogen Dioxide µg/m3

O3 Ozone µg/m3

CO Carbon Monoxide µg/m3

air Temp Air Temperature ◦C
dew Temp Dew Point Temperature ◦C
pressure Sea Level Pressure kPa
wind dir Wind Direction 16 Direction

wind speed Wind Speed m/s
sky con Sky Conditions /

are shown in Figure 9. To ensure the effectiveness of model training and evaluation, the
experimental dataset is divided into a training set, a validation set, and a test set at a
ratio of 7:1:2. The specific division is shown in Table 3.

4.3. Experimental Design. This paper proposes a PM2.5 concentration prediction
method based on a deep learning hybrid model for spatio-temporal fusion. This method
deeply explores the spatio-temporal characteristics and interactive influences of air pol-
lutants and meteorological factors. It organically integrates the advantages of CNN in
local feature extraction, the long-term dependence modeling ability of LSTM, and in-
troduces the ECA mechanism to enhance the response to key features, constructing a
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Figure 8. Partial View of the Original Dataset

Table 3. Dataset Partitioning Details

Data Category Data Number Percentage
Train Data 24304 69.31%
Validation Data 4000 11.41%
Test Data 6760 19.28%
Total 35064 100%

multi-dimensional feature representation system to solve the problem of accurate pre-
diction of PM2.5 pollution concentration in small areas. At the data input level, the
model is based on the air pollutant data and meteorological data of the target station,
systematically analyzing the impact of the combined action of multiple factors on the
change of PM2.5 concentration. Meanwhile, considering the spatio-temporal propaga-
tion characteristics of air pollutants, it dynamically couples the temporal and spatial
dimensions, comprehensively taking into account the dual influencing factors of time and
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Figure 9. Temporal Trend Diagram of Experimental Data Features (Par-
tial)

space in feature extraction. To reduce the computational complexity of the model, and
prevent the risk of overfitting, the experiment only uses the PM2.5 data of the other 9
adjacent stations as input. By mining the spatial correlation between the target station
and adjacent stations and the diffusion characteristics of pollutants, and integrating the
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spatio-temporal information of multiple stations, the model’s ability to capture the re-
gional pollution propagation patterns is enhanced, thus achieving accurate prediction of
PM2.5 in small areas. The model adopts a rolling prediction mechanism, using the PM2.5
data of the past 24 hours combined with other feature variables to predict the PM2.5 of
the next hour. In subsequent iterations, the predicted values are combined with historical
data to continuously generate future time-series prediction results. The network structure
of the model and the optimal training parameters are shown in Table 4 and Table 5.

Table 4. Model Network Structure and Optimal Training Parameters

Layer Type Kernel Size Kernel Number Nodes Activation Function
Conv1 2 64 - ReLU
Conv2 2 128 - ReLU
LSTM1 - - 256 -
Attention - - 256 Sigmoid
FC - - 1 -

Table 5. Model Training Parameter Settings

Parameter item Parameter value
Num of CNN layers 2
Num of LSTM hidden layers 1
Num of hidden layer nodes 256
Num of Attention Layers 1
Learning rate 0.0001
Batch-size 128
Epochs 100
Loss function MSE
Optimizer Adam

In the CNN stage, model captures the local dependencies of adjacent time steps in
the time series or spatially neighboring features, and extracts the underlying correlation
patterns of multi-dimensional input data. Two layers of Conv1D are mainly constructed.
The first layer of Conv1D uses 64 one-dimensional convolutional kernels with a size of
2 to perform preliminary feature abstraction on the input data, capturing basic features
such as impact characteristics of other air pollution data on PM2.5 and the immediate
correlation between meteorological factors and PM2.5. The second layer of Conv1D stacks
128 convolutional kernels with a size of 2. Based on the output of the first layer, it
further extracts high-order composite features, such as the synergistic action patterns of
multi-pollutant concentrations with Dew Point Temperature and Wind Speed, and the
short-term coupling of pollutant concentrations between the target station and adjacent
stations. By increasing the number of convolutional kernels, the feature representation
space is expanded. Activation function of both layers of Conv1D is ReLU. In the LSTM
stage, the model models the long term dependencies of time series and captures long - term
change patterns of PM2.5 concentration, such as daily/weekly periodicity and seasonal
trends. One layer of LSTM with 256 neurons is constructed to receive the feature sequence
output by the two layers of Conv1D. Through the gating mechanism (forget gate, input
gate, output gate), it selectively remembers key historical information and suppresses
irrelevant noise. Next, the ECA is introduced to dynamically adjust the weights of spatio
- temporal features and focus on the key information that contributes significantly to
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PM2.5 prediction. A single - layer Attention is constructed, and the number of neurons is
the same as the output dimension of LSTM (256). By calculating the attention weights
of feature channels or time steps, it enhances the feature responses of meteorological
factors (Pressure, Dew Point Temperature) during high - concentration pollution periods
or strongly correlated pollutants (CO, PM10), suppresses redundant information, and
the activation function is Sigmoid. Finally, the model enters the fully connected layer to
output the prediction results. It maps the high-level abstract features to the predicted
values of PM2.5 concentration, thus completing the regression task. The single-layer fully
connected layer contains one neuron, which directly outputs the predicted value of PM2.5
concentration. This concise design of the output layer can integrate the features extracted
and processed by the previous layers to obtain the final prediction results. Meanwhile, it
avoids the risk of overfitting and the increase in computational complexity that may be
caused by an excessive number of output neurons. The Adam optimizer is used in the
experiment. The learning rate is initialized to 0.0001 and an exponential decay strategy
is adopted. The Mean Square Error (MSE) is used as the loss function to measure the
regression accuracy between the predicted values and the true values. The number of
epochs is set to 100, and the batch size is set to 128.

4.4. Analysis of Experimental Results. In this paper, the Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R - Square,
R²) are used as evaluation indicators to measure the prediction accuracy of the model.
Among them, the smaller the values of MAE and RMSE, the higher the prediction ac-
curacy. The larger the R² value, the better the model fitting effect[21]. The calculation
formulas are shown in Formula (12)-(14).

MAE =
1

n

n∑
i=1

|ŷl − yi| (12)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷl − yi)2 (13)

R2 = 1−
∑n

i=1(yi − ŷl)
2∑n

i=1(ȳl − ŷl)2
(14)

Where n is the total number of samples, yi is the true value, ŷl is the predicted value
of the model, ȳl is the average of the true values.

To verify the prediction performance of the model, a single LSTM model and a CNN-
LSTM hybrid model were introduced as benchmarks in the experiment. In the compara-
tive LSTM model, three layers of LSTM were utilized, with the number of neurons in the
hidden layer of each LSTM set to 32. The remaining parameters were kept consistent with
those of the CNN-ECA-LSTM model. The comparative CNN-LSTM model consisted of
one layer of CNN and one layer of LSTM. The CNN in this model had a kernel size of 2
and 64 kernels, and the other parameters were the same as those of the CNN-ECA-LSTM
model. The experiment employed the air pollutant data and meteorological data of the
target station and adjacent stations over the past 24 hours to predict the PM2.5 concen-
tration value for the next hour. That is, the time step (Timestep) was set to 24, the input
feature dimension was 21, and the output feature dimension was 1. The experimental
results are presented in Table 6. The results show that the constructed CNN-ECA-LSTM
hybrid model performed best in PM2.5 concentration prediction, with a MAE of 4.24,
a RMSE of 7.46, and a R² reaching 0.921, representing significant improvements com-
pared to both the single LSTM model and the CNN-LSTM model without the attention
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mechanism. Specifically, by integrating the local feature extraction ability of CNN and
the long-term dependency capture ability of LSTM, the CNN-LSTM model reduced the
MAE by 29.6% and increased the R² by 10.3% compared to the single LSTM model,
verifying the positive impact of spatio-temporal feature fusion on prediction accuracy.
After further introducing the ECA attention mechanism, the model’s MAE decreased by
20.7% and the R² increased by 15.0% compared to the CNN-LSTM model. This indicates
that the attention mechanism can effectively enhance the weights of key features, sup-
press redundant information, significantly improve the model’s fitting ability to PM2.5
concentration changes and generalization performance, and provide an effective solution
for accurate prediction in small areas.

Table 6. Comparison of Experimental Results

Model MAE RMSE R2
LSTM 7.6 13.87 0.726
CNN-LSTM 5.35 11.81 0.801
CNN-ECA-LSTM 4.24 7.46 0.921

To observe the long-term prediction performance of the models, this paper selects the
data of the next 500 hours from the same test set to compare the long-term prediction
results, as illustrated in Figures 10-12. It can be found that CNN-ECA-LSTM model
significantly outperforms LSTM model and CNN-LSTM model in the 500-hour long-
term prediction. This indicates that through the dual mechanisms of spatio-temporal
feature fusion and key information enhancement, the CNN-ECA-LSTM model effectively
suppresses the problem of error accumulation in long term prediction and significantly
improves the fitting accuracy for the long term evolution patterns of PM2.5. It also
verifies the synergistic optimization effect of spatio-temporal modeling and the attention
mechanism in long-sequence prediction.

Figure 10. LSTM Model PM2.5 Concentration Prediction - Next 500
hours

5. Conclusion. This paper presents a CNN-ECA-LSTM deep learning hybrid model
integrating spatiotemporal features and attention mechanisms, aiming to enhance the
accuracy of PM2.5 pollution prediction. The model employs Conv1D to extract local
spatiotemporal correlations from multi-source data, utilizes LSTM to capture long-term



PM2.5 Pollution Prediction Method Based on Spatiotemporal Fusion Deep Learning 1027

Figure 11. CNN-LSTM Model PM2.5 Concentration Prediction - Next
500 hours

Figure 12. CNN-ECA-LSTM Model PM2.5 Concentration Prediction -
Next 500 hours

dependencies in time series, and introduces ECA mechanism to reinforce the weights of
key features. This framework enables effective integration of spatiotemporal features and
suppression of redundant information, thereby significantly improving PM2.5 pollution
prediction performance. The experimental dataset comprises hourly air pollutant and
meteorological data from the GaoXinQu monitoring station in Hefei City from 2019 to
2022, with PM2.5 data from nine adjacent stations used as inputs to exploit spatial corre-
lations and pollutant diffusion characteristics between the target station and its neighbors.
The fusion of multi-station spatiotemporal information enhances the model’s capability
to capture regional pollution propagation patterns, enabling precise prediction of PM2.5
concentrations in small-scale areas. Comparative experiments demonstrate that the pro-
posed model significantly outperforms the LSTM single model and the CNN-LSTM hybrid
model in PM2.5 concentration prediction, fully validating the synergistic improvement
of prediction accuracy through spatiotemporal fusion and attention mechanisms. This
achievement not only provides an innovative solution for small-area pollution prediction
but also offers a reusable technical framework and methodological reference for applying
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deep learning hybrid models in big data domains with prominent temporal characteristics,
such as meteorological data, stock markets, economic analysis, and transportation.

However, this study has several limitations. For instance, the model’s hyperparameters
(e.g., convolution kernel size, number of LSTM layers) currently rely primarily on empir-
ical settings rather than data-driven automatic tuning, which may partially restrict the
full realization of model performance. Additionally, due to the complexity of air pollutant
diffusion mechanisms, this research cannot fully and accurately characterize the PM2.5
diffusion process. Future studies may consider incorporating PM2.5 diffusion models to
further enhance the model’s prediction accuracy.
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