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ABSTRACT. The swift growth of blockchain (BC) has made decentralized transaction
systems possible, encouraging many industries to adopt this technology due to its more
security. Smart contracts (SC), the foundation of blockchain (BC), are self-operating
agreements that execute based on preset conditions. High-level programming languages
are used to write smart contracts (SC), translating agreement terms into lines of code.
The rise of smart contracts has reshaped decentralized apps by automating transactions
on blockchain networks, but has also exposed systems to security flaws and financial risks.
A notable example is the 2016 DAO attack, which led to the loss of $60 million due to
insecure SC. This research aims to detect vulnerabilities in SC systems by applying ma-
chine learning and deep learning (DL) techniques to BC systems. The proposed approach
relies on a binary classification process using a Random Forest algorithm to determine
whether the SC contains a vulnerability or not. If a node contains a vulnerability, multi-
class classification is used to determine the vulnerability type. A hybrid model is used to
embed words into a 128-bit vector, followed by a bidirectional LSTM supported by an at-
tention layer to direct attention to the most pertinent elements within the input sequence.
Dimensionality is then reduced using one-dimensional convolution and max pooling. The
Random Forest achieved an accuracy of 94.19% (binary classification) and 95.9% (multi-
class classification). This research contributes to improving the accuracy and efficiency
of SC vulnerability detection and provides a proactive and adaptive solution to enhance
the security of BC-based applications.

Keywords: Blockchain; Smart Contracts; Vulnerability Detection; Machine Learn-
ing; Deep Learning
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1. Introduction. Smart contracts (SCs) have gained substantial traction in the research
community, driven by their promise to transform traditional contract execution through
blockchain-based automation. In recent years, blockchain’s decentralized nature has pro-
vided a dependable framework for executing SCs without external intermediaries [1]. SC
refers to a blockchain-based agreement that triggers its execution automatically once cer-
tain criteria are fulfilled. Put simply, SCs resemble ’if-then’ constructs used in software,
and their execution can have direct effects on tangible assets in the real world [2, 3.
SCs offer several key advantages over traditional contracts: (1) minimized transaction
risks, (2) lower administrative and service expenses, and (3) enhanced business process
efficiency [4, 5].

Detecting security vulnerabilities is a very challenging task due to the diversity of con-
tract types, where each programmer has their way of formulating code, defining variables,
defining functions, and choosing their names. This leads to the possibility of multiple
contract types performing the same task, so traditional auditing processes, such as cosine
similarity, face multiple problems in determining whether a contract contains a vulnerabil-
ity or not [6]. Furthermore, the increasing sophistication of SCs, along with the expansion
of decentralized finance (DeF1i), has led to an expansion in the scope, diversity, and con-
tinuous evolution of attacks, necessitating adaptive security measures to mitigate these
threats and deal with emerging vulnerabilities [7]. In response, many researchers have
developed different techniques for discovering vulnerabilities. Some rely on static analy-
sis (examining code without execution), others on dynamic analysis (runtime testing in
a controlled environment), and others on machine learning (ML)-based approaches that
rely on analyzing historical data that includes previously discovered decades that contain
vulnerabilities and the types of these vulnerabilities. Each of these methods has specific
strengths, and its effectiveness depends on the context in which the code is written and
the type of vulnerability being analyzed [8, 9, 10].

Automated tools have been developed to detect vulnerabilities in SCs, examples of
which are Mythril [11], Slither [12], and Oyente [13]. But these tools still face limitations,
such as scalability, high false positive rates, and difficulties in detecting new or complex
vulnerabilities [10].

This paper presents a two-stage hybrid framework, DL-SCVDetect, that combines tra-
ditional machine learning (Random Forest) with deep learning techniques (Bi-LSTM and
Attention) to detect and classify vulnerabilities in Solidity smart contracts. Unlike most
previous work, which focuses on binary classification or single-type vulnerabilities, our
model performs binary and multi-class classification. The key highlights of this paper
are:

e Treating Solidity source code as a natural language sequence and applying symbolic
normalization and tokenization to reduce semantic variation. While most previous
research has dealt with contract bytecode, our paper uses source code, which provides
more accurate semantic information that can be captured using deep learning models
and leveraged in the vulnerability classification process.

e Introducing an attention-enhanced Bi-LSTM model to better capture bidirectional
contextual dependencies in code semantics.

e Combining ConvlD and Global Max Pooling to efficiently reduce features and extract
patterns before classification.

e Address class imbalance using SMOTE to avoid biased models for the majority
classes.

These contributions collectively result in a more adaptive, accurate, and generalizable
approach for smart contract vulnerability detection.
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2. Literature Reviews. The paper [14] presents an approach to detect vulnerabilities
in Solidity-based SC using an MLP-ANN model. The authors leverage Opcode and Con-
trol Flow Graph (CFG) features extracted from SC to train the proposed model. The
authors rely on using an imbalanced dataset and then balancing it through a fault injec-
tion method. Although fault injection is good for dataset balancing, relying on artificial
vulnerability injection may lead to gaps in capturing real-world vulnerability patterns.
The paper used techniques such as 3D vectors and TFIDF to generate feature embed-
dings. This limitation can affect the robustness of the model in real-time scenarios. The
validity of the research can be enhanced by relying on sampling techniques to balance the
dataset, which is based on creating synthetic samples based on the analysis of existing
samples. The research compares the proposed model with existing static and dynamic
analysis tools, and no comparison was made with other ML or DL models, so includ-
ing models such as transformer-based architectures could provide better performance.
Considering more powerful feature extraction methods, such as BERT and RoBERTa,
could capture complex relationships and patterns within SC code more accurately and
effectively, providing richer feature sets for vulnerability detection.

The research [15] presented a tool called SliSE, designed to detect reentry vulnerabilities
in SC. Program slicing is used to examine the I-PDG of a SC, generating warnings about
potential vulnerabilities. SISE reached an F1 score of 78.65%. The paper does not discuss
how the proposed tool handles large or complex contracts. The symbolic execution can
be very expensive in terms of resources and may have scaling issues, especially as the
contract size increases. Also, the applicability of SIiSE is limited to this single type of
vulnerability, which reduces the generalizability of the model.

The research [16] presented the DA-GNN model for detecting vulnerabilities in SC.
Traditional SC vulnerability detection methods rely heavily on predefined rules, which
limit their accuracy and adaptability. DA-GNN seeks to address these limitations by
implementing a dual attention mechanism within the graph attention network to enhance
the extraction of relevant features for vulnerability detection. The model doesn’t address
other vulnerabilities or new vulnerabilities that may arise with the continuous develop-
ment of attack mechanisms and techniques. Graph neural networks are computationally
expensive and require high resources, especially when working on large and complex SC.

The research [17] presented a model called BiGAS, which is a model for detecting
reentry vulnerabilities in SC. The authors replace the SoftMax classifier with an SVM
classifier. The model is designed to detect reentry, which limits its applicability across a
wider range of vulnerabilities that also pose risks to the security of SC.

The study [18] presents the HAM model that improves the detection accuracy of five
types of vulnerabilities. The proposed approach for detecting vulnerabilities in SC is
based on the HAM model. The approach consists of three main phases:

e Code Fragments Extraction: In this phase, the source code of SC is analyzed to
extract code fragments that are likely to contain vulnerabilities.

e Training Phase: The model utilizes both single-head and multi-head attention en-
coders to capture different aspects of the code’s semantic and contextual information.

e Finally, the model employs a fully connected network to classify the code fragments
as vulnerable or not.

This paper did not take into account the balance of the data set and was limited to 5 types
of vulnerabilities without taking into account other types of vulnerabilities or emerging
vulnerabilities.
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The study [19] introduces ASSBert. It uses a semi-supervised bi-encoder representation
from a transformer (BERT) network for SC vulnerability classification. This approach en-
sures optimal performance with minimal labeled data and a large pool of unlabeled data.
Within this framework, active learning identifies highly uncertain code samples from un-
labelled Solidity (sol) files, which are then manually labeled and added to the training set.
Meanwhile, semi-supervised learning continuously selects a set of high-confidence unla-
belled code samples, assigns pseudo-labels to them, and incorporates them into the train-
ing dataset. Experimental results indicate that ASSBert outperforms baseline methods
while relying on minimal labeled data and extensive unlabeled data. Table 77 summarizes
the previous literature reviews.

Finally, inspired by hybrid quantum-classical approaches in other domains, such as the
Hybrid Quantum Neural Network Classifier for spine image classification [20], our work
demonstrates a similar fusion of advanced architectures (Bidirectional LSTM and Random

Forest) to address the distinct challenges of smart contract vulnerability detection.

TABLE 1. Summary of literature reviews

Ref Year | Detection Vulnerabilities | Key Strengths Gaps
Method Covered
[14] 2024 | Multi-Layer Per- | Opcode Fea- | Standardized pre- | Synthetic errors
ceptron (MLP) | tures, CFG- | processing, balanced | may introduce
Based Detection | dataset with synthetic | bias
errors
[15] 2024 | Program Slicing | Reentrancy Vul- | Uses program slicing | Limited to reen-
+ [-PDG Analy- | nerabilities for inter-contract | trancy, scaling
sis analysis issues for large
contracts
[16] 2024 | Graph Neu- | SC Vulnerabili- | Improved feature ex- | High computa-
ral Networks | ties traction for contract | tional demand
(GNNs) + Dual analysis
Attention
[17] 2024 | Bi-GRU + SVM | Reentrancy Vul- | Improved classifica- | Limited to reen-
nerabilities tion accuracy trancy
[18] 2023 | Hybrid Atten- | 5 SC Vulnerabil- | Captures both single | No dataset bal-
tion + Neural | ities and multi-head atten- | ancing, limited
Network tion to 5 vulnerabili-
ties
[19] 2023 | Bert 19 SC Vulnera- | Minimal labeled data | No dataset bal-
bilities and extensive unla- | ancing may in-
beled data troduce bias

3. Methodology. The proposed methodology addresses the problem of analyzing Solid-
ity code as a Natural Language Processing (NLP) problem, and the working mechanism
will be explained in detail in the subsequent sections. Figure 1 illustrates the proposed
methodology’s overall design, outlining the key components and processes involved in the
approach.
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FIGURE 1. The proposed methodology’s overall design

3.1. Data Collection. The dataset contains 2,217 Ethereum SC, covering four types of
vulnerabilities, categorized as follows:

e Timestamp Dependency: 540 samples
e Reentrancy: 737 samples

e Integer Overflow: 630 samples

e Dangerous Delegatecall: 310 samples

These vulnerable contracts were sourced from Kaggle repositories. The dataset only
contains vulnerabilities within SC. Therefore, valid SC were manually collected from
Etherscan, a platform for creating and analyzing Ethereum contracts. Etherscan was
created and launched in 2015 and is one of the oldest and longest-running independent
projects created for Ethereum to provide fair access to BC data [21]. Approximately 366
valid SC written in Solidity were collected.

The final dataset is stored in a structured CSV file where each row contains:

e A smart contract source code written in the Solidity programming language.
e A corresponding label representing the vulnerability type (or Normal for non-vulnerable
samples).

3.2. Data Preprocessing. Preprocessing Solidity code before feeding it into a DL model
involves converting the raw source code into a format that the model can understand and
process effectively. To illustrate the changes that occur to the code after each prepro-
cessing operation, a simple Solidity code is used and the changes after preprocessing
operations are shown. The following are the preprocessing steps that will be performed:

3.2.1. Code Cleaning. In the cleaning phase, unnecessary characters, symbols, and spe-
cial characters are removed, and punctuation marks, any non-text elements, and special
characters are isolated. The following explains the operations performed in this phase:

e Remove comments (either single-line or multi-line).

e Remove special characters and punctuation.

e Remove extra white spaces and empty lines, and convert to lowercase.

e In code, most function identifiers and variables are usually given arbitrary names,
where each programmer chooses the appropriate names for themselves. Therefore,
these names are meaningless and have nothing to do with security vulnerabilities, and
can affect the accuracy of classification performance because the model will consider
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each of them as a new word, but rather they represent only a name. Therefore,
perform a normalization process for the program code by assigning user-defined
variables and functions to symbolic names (for example, “VAR1”, “FUNC1”) one
by one.

Original Code Remove Comments

string public myString;

function fooQ public (

function bar(uint26 x) public returns (uint256) (

myString = "Hello, world!"; mySiring = “Hello, world!";
Remove Special Remove extra whitespace and
Mhcsanbnren hlank lines. and convert to

pragma solidity 080

contract testcontract

uint256 public mynumber

— address public myaddress
bool public mybool

string public mystring

function foo public
function bar uint256 x public returns ui
constructor

mynumber 123

myNamber 123 myaddress msgsender
myAddress msgsender

st mybool true

myString Hetlo world mystring hello world

Change functions and variables
names

pragma solidity 080

contract testcontract
uint256 public varl

address public var2

bool public var3

string public vard

function funcl public

function func2 uint256 x public returns ui
constructor

varl 123

var2 msgsender

var3 true

var4 hello world

F1GURE 2. Code cleaning processes

3.2.2. Tokenization. Tokenization is the act of dividing a string or text into smaller units
known as tokens, which can range from words to phrases or symbols, depending on the
task. Each token is assigned to a number. Figure 3 shows the Solidity code after tok-
enization.

3.2.3. Padding. Padding is the practice of appending special characters, often zeros, to
sequences so that they all have the same length. The goal of this process is to meet
the requirement that many ML models expect input sequences of uniform size. Padding
ensures consistency by making sure all sequences are of equal length.
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Figure 2 Output |
Token pragma solidity 080 contract testcontract
Code ®) ) (10) (11) 1)
Token uint256 public varl Address public
Code @ () @) 1) ()
Token varl bool public vard string
Code 0) (14) ) ) (15)
oken public vard function funcl public
m—). ) ) ) 1 )
o Token function func2uint256 X public returns
Code (U] (17) (18) (1)) (19)
Token uint256 constructor varl 123 var2
Code (V)] (20) (L)) (21) )
Token msgsender vard true vard hello world
Code ®) ®) 23) ) (24) (25)

FI1cUurE 3. Tokenization process

3.3. Model Design. This research will employ two models. The first uses a random
forest algorithm to detect whether a contract is healthy or vulnerable. If the contract is
healthy, no action will be taken. However, if the contract is vulnerable, DL techniques will
be utilized to classify 4 vulnerabilities kinds described in Section 1.3. Figure 4 illustrates
the layered structure of the proposed model.

e Input layer: Input sequences of 128 length are the expected input for the model.

e Embedding layer: Every token is embedded into a vector of 128 elements through
this layer.

e Bidirectional Long Short-Term Memory (Bi-LSTM) layer: By bidirectionally pro-
cessing these sequences (both forwards and backwards), this layer generates a set of
256-dimensional vectors.

e Attention layer: It calculates attention scores based on the BI-LSTM outputs, high-
lighting key parts of the input sequence to enhance prediction accuracy.

e Convolutional layer (ConvlD): This component decreases the dimensions of the data,
on its input. In our model, the output after the Conv1D layer is (None, 126, 64),
indicating that the sequence length has been reduced from 128 to 126, and the
number of features has been reduced to 64.

e Global-Max-Pooling-1D: Apply max-pooling to reduce the dimensionality of the data
and capture the most influential feature in the feature maps individually.

3.3.1. Embedding Layer. This layer transforms each word into a fixed-size dense vector
composed of real-valued numbers. This transformation helps represent words more effec-
tively while reducing dimensionality [22]. Essentially, it functions as a search table, where
words serve as keys and their corresponding vectors act as values. Word embeddings
are particularly useful in natural language processing (NLP) tasks where they capture
contextual relationships, so the words with similar meanings have closely related vector
representations.

3.3.2. Bidirectional LSTM. Before explaining the bidirectional LSTM architecture, it is
important to first understand the unidirectional LSTM architecture. LSTM belongs to
the recurrent neural networks (RNNs) family and is distinguished by memory cells that
can preserve information for extended durations [23]. An internal state is maintained by

the cell, allowing it to be modified according to both current inputs and previous outputs.
An LSTM cell has three gates [24]:

e Forget gate: It detects what past info is no longer relevant and should be removed.
Upon receiving input data, this gate identifies valuable information to retain and dis-
cards irrelevant data, enhancing the performance and training speed of the recurrent
neural network. Its functioning depends on two inputs: the output of the previous
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Preprocessed Input (Code
after cleaning, tokenization
and padding)

Embedding Layer
(Each input token is
embedded into a vector
of 128 elements)

Bi-LSTM Layer
(Generate a set of 256-
dimensional vectors)

Apply attention
mechanism to calculate
attention scores based on
the Bi-LSTM outputs

Apply convolution
process (Conv1D) to
decrease the data
dimensions

Apply max-pooling to
reduce the
dimensionality of the
data and capture the
most influential feature

Convert input features
to a 128-dimensional
representation using

dense layer

Use the SoftMax
activation function to
transform the inputs of
the previous layer into
probability of each class.

FIGURE 4. The layered structure of the proposed model

node and the current input. Once the matrix’s weights and biases are established,
each neuron is passed through the sigmoid activation function. Information is re-
tained based on the gate’s output values: a value of 0 prompts the forget gate to
discard the data, while a value of 1 indicates important information to be kept.

e Input gate: This mechanism identifies the relevant new data that should be retained
and included in the present state. This gate handles the incoming data, and the
number of neurons it involves depends on how much data is provided. Using the
tanh function, input values are constrained to the range [-1, 1], modifying the data
before feeding it into the subsequent layer.

e Output gate: It produces the output according to the current state. The data of
interest is passed through this cell from the previous one, where a matrix of values
is created using the tanh function within the [-1, 1] range, and the sigmoid function
generates the final output values.

Based on the above, bidirectional LSTM has two LSTMs, one that processes data se-
quentially (start-to-end) and another that processes data in reverse order. This approach
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both preceding and following words in the sentence.

3.3.3. Attention Layer. It allows DL models to prioritize critical input elements, leading
to more accurate predictions and making computations more efficient. By prioritizing key
information, it highlights important features to boost the model’s overall effectiveness.
Three fundamental components make up this layer architecture: (1) the encoder, (2) the
attention module, and (3) the decoder [25]. Figure 6 presents the attention mechanism’s

structure:

By utilizing RNNs, the encoder processes the input sequence in a series of iterations.
At each step, the encoder produces a hidden state that incorporates both the previous
hidden state and the current input symbol, so to produce the full input sequence, the
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FIGURE 6. The attention mechanism’s structure
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combination of these hidden states is captured [26]. The attention module contains: a
feed-forward network, SoftMax, and a context vector, which is fed to the decoder with
the current hidden state to predict the next symbol in the output sequence [26]. In this
way, this process is repeated until the entire output sequence is generated [26].

3.3.4. Convolution Layer (ConviD). In DL, the ConvlD layer is designed to operate on
sequential convolutional operations along a single axis. In a ConvlD layer, the con-
volutional filter (or kernel) moves across the input sequence, carrying out element-wise
multiplications with the values inside its receptive field [27]. The weighted values are
summed to produce a single output, and this is done iteratively across all positions in the
sequence to generate a transformed output sequence. Filters are composed of parameters
that can be learned and fine-tuned during training to detect relevant patterns in the input
data. Figure 7 illustrates an example of a ConvlD operation [27].

[

‘ Apply Filter to Input ‘ @

RO

FIGURE 7. An example of a ConvlD operation

Each filter in the conv-layer performs the operation illustrated in Figure 7. This pro-
duces several outputs, commonly known as feature maps. Increasing the number of filters
enhances the model’s ability to extract diverse features, allowing it to identify patterns
within the input data more effectively.

3.3.5. Global Max Pooling Layer. This layer serves to reduce feature maps by compressing
each set of input samples of a specified size into a single sample. This size is a tiny win-
dow. The optimal window size is 1x2 when using a one-dimensional convolutional layer.
Increasing the window size beyond this may result in the loss of important information
[28]. The outcome of applying the described method to Figure 7’s output is illustrated in
Figure 8.

Max (18]24)

Max (6,12) Max (30,22)

F1GURE 8. Max Pooling process
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3.3.6. Dense Layer. In this layer, every neuron is connected to all neurons in the preceding
layer, which is why it is referred to as “fully connected.” As a result, inputs to each
neuron come from all neurons in the earlier layer. The connections between neurons have
associated weight parameters, which are learned during the training process. This layer
computes the sum of input values multiplied by their corresponding weights, which are
refined through learning [29].

4. Results and Discussions.

4.1. Handling dataset imbalance. The dataset used contains 2,217 vulnerable SC
and 366 healthy SC, making the dataset unbalanced. Imbalanced datasets are a major

challenge in the field of artificial intelligence in general. This may result in various issues
[30], such as:

e Biased models: In this scenario, the model exhibits a bias toward the majority
class, meaning it gives more weight to the dominant class while struggling to learn
patterns from the minority classes. As a result, this imbalance leads to suboptimal
model performance.

e Unreliable performance metrics (such as accuracy) can be misleading when dealing
with imbalanced data. While they may yield high scores, these results do not accu-
rately reflect the model’s effectiveness. This is because the model tends to correctly
predict the majority class more often, overshadowing its poor performance on the
minority class.

e Overfitting: This means that the model may primarily learn the majority class
patterns and features, leading to weak generalization and poor performance in the
minority class.

Figure 9 shows the count of samples per class.

The Number Of Samples The Ratio Of Samples

&,

<,
%

Count
(oao

FIGURE 9. The count of samples per class

We employed the Synthetic Minority Oversampling Technique (SMOTE) to handle the
imbalance in our dataset, generating synthetic samples for the minority class [31]. By
creating artificial examples, SMOTE helps balance the dataset, enhancing the model’s
ability to learn from the minority class and improving overall performance on imbalanced
data [31]. Figure 10 shows the number of samples for each class after applying SMOTE.

4.2. The results of the Random Forest Algorithm (Binary Classification). We
employed the hold-out method to split the dataset into training and testing sets. Specif-
ically, 70% of the data was allocated for training, while the remaining 30% was reserved
for testing. Since the test data remains unseen by the model during training, it allows for
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F1GURE 10. The number of samples for each class after applying SMOTE

an objective evaluation of the model’s performance and provides valuable insights into its
generalization ability to new, real-world data. Figure 11 presents the confusion matrix
results for the Random Forest algorithm, obtained by applying the model to the test
dataset.

Confusion Matrix

600

400
- 300
- ~200

-100

Abnormal Normal
Predicted

F1cURE 11. The confusion matrix results for the Random Forest algorithm

The confusion matrix provides a quick overview of the Random Forest algorithm’s
performance in predicting whether a SC is healthy or vulnerable. The elements on the
main diagonal of the confusion matrix represent the correct predictions for each class. For
example, the element in the top left (660) indicates that the model predicted 660 contracts
as vulnerable, when in fact they are vulnerable. The element in the bottom right (70)
indicates that the model predicted 70 contracts as unvulnerable, when in fact they are
healthy. Elements outside the main diagonal represent misclassification. For example,
the element in the bottom left (40) indicates that the model predicted 40 contracts as
vulnerable, when in fact they are healthy, so the classification is incorrect. The element in
the top right (5) indicates that the model predicted 5 contracts as unvulnerable, when in
fact they are vulnerable, so the classification is incorrect. Table 2 shows the performance
metrics for each class resulting from the Random Forest algorithm.

It can be seen from Table 2 that:

e The precision value for the Normal class is 0.93, meaning that of all samples predicted
as Normal, 93% were Normal.
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TABLE 2. The performance metrics for each class resulting from the Ran-
dom Forest algorithm

Accuracy F1_Score Recall Precision
Normal 0.9419 0.76 0.64 0.93
Abnormal 0.97 0.99 0.94

e The Normal class has a recall of 0.64, which means that of all samples predicted as
Normal, the model correctly predicted 64% of them.

e The F1_Score of 0.76 indicates that the model has a moderate balance between
precision and recall for the Normal class.

e The precision value for the Abnormal class is 0.94, meaning that of all samples
predicted as Abnormal, 94% were actually Abnormal.

e The Abnormal class has a recall of 0.99, which means that of all samples predicted
as Abnormal, the model correctly predicted 99% of them.

e The F1_Score value of 0.97 indicates that the model has an excellent balance between
precision and recall for the Abnormal class.

e An Accuracy value of 0.9419 indicates that the model correctly predicted 94.19% of
the total number of samples in the test set.

4.3. Training Configuration and Hyperparameters of the proposed model. The
proposed deep learning model was implemented using TensorFlow 2.12 and the Keras
framework. All experiments were conducted on a system equipped with an Intel Core
i5-13420H processor, 16 GB RAM, and an NVIDIA RTX 3050 GPU. The training details
are summarized as follows:

e Batch size: 32.

e Epochs: 10.

e Optimizer: Adam.

e Initial learning rate: 0.0001.

e Loss function: Categorical Crossentropy (for multi-class classification).

e Evaluation metrics: Accuracy, Precision, Recall, and F1-Score.

e Early stopping: Applied with a patience of 3 epochs on validation loss to prevent
overfitting.

e Validation split: 20% of the training data was used as the validation set.

e Random seed: Fixed to ensure reproducibility across runs.

e Training and validation performance were monitored using learning curves for both
accuracy and loss.

e All hyperparameters were tuned experimentally using grid search to maximize gen-
eralization on unseen test data.

4.4. The proposed model results. During model training, a learning curve tracks
the development of a chosen metric, plotting progress on the x-axis and error or perfor-
mance on the y-axis. By tracking performance over time, the learning curve helps monitor
progress and reveals any underlying issues during training. One of the most standard met-
rics plotted is the loss function curve, showing the progression of model error throughout
training. As loss values decline, the model tends to perform more accurately. The ac-
curacy curve is another common learning curve, reflecting the model’s performance over
time. Rising values suggest the model is learning effectively and becoming more accu-
rate. Figure 12 presents the curves for accuracy and loss during both the training and
validation stages.
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Figure 12 shows that both the training and validation metrics show an upward trend,
demonstrating that the model is effectively learning from the data and performing well
on both known (training) and unseen (validation) examples. The decreasing loss and
increasing accuracy in both datasets indicate successful convergence and improved gen-
eralization. Additionally, the model avoids overfitting, a common issue where a model
excels on training data but struggles with new data. The proposed model achieved an
accuracy of 99% on the training set and 96% on the validation set, confirming its strong
performance. The confusion-matrix, obtained by applying the proposed model to the test

data, is shown in Figure 13.

Confusion Matrix

B O -

restamp_Dependency - o 2

F1GURE 13. The results of the confusion matrix obtained from applying

the proposed model to the test data

Based on the confusion matrix results, we note that:

e The proposed model correctly classified 36 samples containing a Dangerous Delegate-
call vulnerability and did not misclassify any samples containing this vulnerability.
The model classified four samples as containing a Dangerous Delegatecall vulnera-
bility, but they contained a Reentrancy vulnerability.

e Regarding the samples containing an Integer Overflow vulnerability, we note that the
model correctly classified 124 samples, while the model incorrectly classified three
samples as containing an Integer Overflow vulnerability, when they actually con-
tained a Reentrancy vulnerability. The model also incorrectly classified two samples
as containing an Integer Overflow vulnerability when they contained a Timestamp

Dependency vulnerability.
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e For samples containing a Reentrancy vulnerability, we note that the model correctly

classified 233 samples, while incorrectly classifying 4 samples as containing a Reen-
trancy vulnerability when they contained an Overflow Integer vulnerability. The
model also incorrectly classified 3 samples as containing a Reentrancy vulnerability
when they contained a Timestamp Dependency vulnerability.

For samples containing a Dependency Timestamp vulnerability, we note that the
model correctly classified 123 samples, while incorrectly classifying 1 sample as con-
taining a Dependency Timestamp vulnerability when it contained an Overflow In-
teger vulnerability. The model also incorrectly classified 5 samples as containing a
Timestamp Dependency vulnerability when they contained a Reentrancy vulnera-
bility.

Table 3 shows the performance metrics for each class resulting from applying the pro-
posal.

TABLE 3. The performance metrics for each class resulting from applying
the proposal

Accuracy F1_Score Recall Precision

Dangerous Delegatecall 0.959 0.95 1.00 0.90
Integer Overflow 0.96 0.96 0.96
Reentrancy 0.96 0.95 0.97
Timestamp Dependency 0.96 0.96 0.95

It can be seen from Table 3 that:

e An overall accuracy of 95.9% indicates that the model correctly predicts the types

of vulnerabilities in SC approximately 96% of the time.

For the Dangerous Delegatecall vulnerability, a Precision value of 0.90 indicates
that, of all samples predicted to contain a Dangerous Delegatecall vulnerability, 90%
contained this vulnerability. A Recall value of 1 indicates that, of all samples that
were Dangerous Delegatecall, the model correctly predicted them all 100% of the
time. The high F1 score (0.95) implies that the model excels in balancing precision
with recall.

For the Integer Overflow vulnerability, a Precision value of 0.96 indicates that, of all
samples predicted to contain an Integer Overflow vulnerability, 96% contained this
vulnerability. A Recall value of 0.96 indicates that the model correctly predicted
96% of samples that were Integer Overflow category. The F1_score (0.96) shows that
the model is very good at balancing precision with recall.

For the Reentrancy vulnerability, a Precision value of 0.97 indicates that 97% of all
samples which predicted as Reentrancy it was containing this vulnerability. A Recall
value of 0.95 indicates that the model correctly predicted 95% of all samples that
were Reentrancy category.

For the Timestamp Dependency vulnerability, a Precision value of 0.95 indicates
that, of all samples predicted as Timestamp Dependency, 95% of these contain this
vulnerability. A Recall value of 0.96 indicates that, of all samples that were actually
Reentrancy, the model correctly predicted 96%.

Therefore, it can be said that the proposed model shows exceptional performance in
identifying all types of SC vulnerabilities. The high Recall values, especially for Dangerous
Delegatecall, indicate that the model does not miss any cases containing this vulnerability,
but the Precision value is slightly lower than others; therefore, improving this value would
reduce false positives, which makes the model more accurate.
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4.5. Computational cost and model efficiency. The proposed model architecture
contains 12,703,428 trainable parameters (48.5 MB). The model architecture was chosen to
balance contextual feature learning and model performance while maintaining acceptable
complexity.

Training Details:

e Training time per epoch: ~66 seconds on an NVIDIA RTX 3050 GPU

e Total training time: ~11 minutes (for 10 epochs)

To evaluate the efficiency of our proposed model, we implemented a lightweight Multi-
Layer Perceptron (MLP) model with ~112K trainable parameters. The comparison is
summarized in Table 4:

TABLE 4. Complexity comparison

Model Parameters Accuracy Training Time Notes
DL-SCVDetect 12.7TM 95.9% ~11 minutes High accuracy
MLP 112K 87.4% ~4 mins Lightweight but lower accuracy

While the MLP model is computationally cheaper, it underperforms in classification
accuracy. Our model’s added computational cost is justified by its superior performance
and generalizability.

5. Conclusions and Future Works. In this study, a deep learning approach was ap-
plied to detect vulnerabilities in SCs. The proposed approach involves using a Random
Forest algorithm for binary classification to detect whether nodes contain vulnerabilities,
achieving an accuracy of up to 94%. The Random Forest model follows a deep learning
model based on multi-class classification to determine the type of vulnerability present.
An embedding layer is used to transform the input sequences into fixed-size vectors. A
Bi-LSTM layer is then used to concatenate the forward and backward sequences after
each step. An attention layer is then added to help the model focus on the important
parts of the input sequence. A ConvlD convolution layer is then added, applying a one-
dimensional convolution to the output of the attention layer using 64 filters and a kernel
size of 3 to capture local patterns in the data. A 1D Max pooling layer is then added to
reduce the feature map. This is followed by two dense layers, the second of which pro-
duces predictions for four categories of vulnerabilities using a SoftMax activation function,
whose output produces four probability values that determine the probability of belonging
to each category.

The presented model demonstrates an overall accuracy of 95.9. The future efforts should
focus on improving the accuracy of the Dangerous Delegate call through additional train-
ing data or feature engineering. Also, regular monitoring and validation of the model’s
performance on diverse datasets is recommended to ensure the model’s robustness and
reliability in different scenarios.

Although the proposed DL-SCVDetect framework shows promising results, several lim-
itations should be addressed in future work:

e While the dataset covers four common types of vulnerabilities, it may not fully
capture the diversity and complexity of smart contract code found in practical ap-
plications. Future work should consider larger and more diverse datasets to better
generalize to different types of contracts.

e Although the model performs well on pre-defined vulnerabilities, it may struggle to
detect new or emerging vulnerabilities that were not represented in the training set.
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Future work should focus on developing the model to become more adaptive to new
vulnerabilities through continuous learning.

e The deep learning model requires more computational resources, especially for large-

[1]

[11]

[12]

scale contract analysis. The training time for the model could be a limiting factor
when deployed in real-time systems. Efforts to optimize the model’s architecture or
utilize more efficient methods (e.g., transfer learning or pruning) would be benefi-
cial for scalability. Furthermore, techniques like pruning, knowledge distillation, or
quantization could be explored in future work to compress the proposed model for
real-time use cases without significantly compromising accuracy.
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