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ABSTRACT. Energy companies need to forecast oil and gas production to increase their
output. Forecasting production rates helps petroleum businesses plan operations, optimise
production, and allocate resources. Researchers have used numerical reservoir simulation
(NRS) and decline curve analysis (DCA) to predict oil and gas output. These algorithms
faced obstacles such a time-consuming and precise static model, many dynamic model pa-
rameters, and unknown correctness. Build and assess machine learning and deep learning
models to anticipate oil and gas output to avoid these challenges. The suggested system
leverages predictive and inferential data analytics to make faster, more accurate decisions.
They mean successfully forecasting future events from past data. This paper presents eight
methodologies, including four machine learning models: decision tree regressor (DTR),
random forest regressor (RFR), k-nearest neighbors (KNN), and extreme gradient boost-
ing (XGBoost). And other four deep learning models: artificial neural networks (ANN),
recurrent neural network (RNN), long short-term memory (LSTM) and 1-D CNN-based
Regressor investigated. The goal is to construct a model that outperforms DCA and NRS
for faster and more accurate oil and gas output insights. The best model choice may
differ based on the distinct characteristics of the data being examined. Hence, conduct-
ing experiments with several models and evaluating their efficacy is crucial to determine
the most appropriate choice. The results indicated a superiority of all models along with
lower error rates in both Mean Squared Error (MSE) and Mean Absolute Error (MAE).
the 1-D CNN model achieved the highest accuracy in R? (Oil) of 0.9951, while the KNN
model performed the best for R? (Gas) with a 0.9988.

Keywords: Deep Learning (DL), Machine Learning (ML), Oil and Gas Production,
Random Forest , 1-D CNN-based Regressor, K-Nearest Neighbors (KNN).
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1. Introduction. Oil is the main fuel and essential for many manufacturing processes.
Oil and its derivatives have substantially affected global energy supplies. This trend is
expected to continue, increasing oil consumption relative to alternative energy sources [1].
Oil production begins with site discovery, continues through extraction, and ends with
product distribution to businesses and the public [2]. Oil and gas must be extracted and
utilized for energy through many procedures. The oil and gas business has three basic
production processes: Upstream industry, Midstream and The downstream.

Prediction is essential for field development planning because it offers production data for
facility capacity design, drilling timetables, and economic assessments. Past active and no
active well production data is in high demand for production estimates [3]. Governments
and organizations need production forecasts to create economic policies [4]. Oil and gas
output forecasts involve complex reservoir numerical simulations and engineering studies
[5]. Precision prediction is a major task for oil reservoir monitoring and improvement.
Traditional petroleum industry methods include numerical reservoir simulation (NRS)
and decline curve analysis (DCA) [6]. Due to field vastness and reservoir complexity,
these models took longer to make judgments [7]. For years, NRS has been used. NRS
models are hard, time-consuming, and need a precise static model and many dynamic
model parameters [8]. DCA predicts oil and gas production traditionally [9]. Fitting the
simulated cumulative production rate yielded DCA model parameters [10].

Based on previous production, DCA predicts well or field production. Predictions may
be used to evaluate the economics of future output and help choices to abandon a well or
field by better using computing resources. Machine and deep learning are changing the
oil industry. Al lets computers analyses and decides. Focusing on ML for forecasting,
sophisticated ML and DL algorithms, and large data collection from various industrial
instruments has a promising future in solving oil and gas sector problems [11]. Machine
Learning and Deep learning has significantly advanced the fields of image analysis and
computer vision in the development of highly accurate and efficient image recognition and
classification models [12]. In recent years, oil and gas researchers have used ML and DL
algorithms for quick evaluation and output forecasts [13]. Predictive and inferential data
analytics in ML and DL enable faster, more accurate decisions. The oil and gas business
is quickly integrating data analytics to enhance decision-making [14].

The general structured of this research can be summerized as: Section 2 provides the
most resent related work on the research filed Oil and Gas Forecasting. Section 3 defines
the dataset employed for the research identifying data type and their features. Section 4
presents the proposed methodology, including the data pre-processing, all of the AI models
involved, the performance metric used. Section 4 presents the experimental results, the
comparisons with baseline models. Section 5 gives a discussion. Section 6 concludes the
paper and refering to the potential directions of future works.

2. Related Works. C. Tan et al. (2021) employed the ML techniques random forest
(RF), back propagation (BP) neural network, support vector regression (SVR), extreme
gradient boosting (XGBoost), light gradient boosting machine (Light GBM), and mul-
tivariable linear regression. Data from 137 wells in the WY shale gas block in Sichuan,
China was used to evaluate and optimise ML algorithms for solutions. Results show
that the XGBoost algorithm’s production prediction model is the most effective, with R?
(0.87). The study’s limitations in fracturing productivity prediction and optimising shale
gas wells include insufficient regional data [15].

G. Hui et al. (2021) use ML to assess Fox Creek, Alberta, shale gas output. The
researchers employed four methods: linear regression, neural networks, XGBoost, and
decision tree regressor (DTR). With the greatest coefficient of determination of 0.809, the
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additional trees technique won. Due to the case study and this research’s constraints, it
is impossible to say that these are the ideal findings after doing tests with the dataset
and examining the outcomes for every strategy [16].

N. M. Ibrahim et al. (2022) attempted to speed up oil and gas output estimates. DTR,
SVR, MLR, XGBoost, PLR, RFR, RNN, and ANN were the eight machine learning
and deep learning experiments in their study. According to Saudi Aramco’s dataset,
RNN, XGBoost, and ANN yielded the greatest results, with R? values of 0.926, 0.9012,
and 0.9627 for oil, gas, and water This study does not address the ethical concerns of
utilising MLL and DL models in the oil and gas business, such as environmental or labour
displacement [17].

Lan Mai-Cao et al. (2022) compared some ML systems for estimating petroleum output.
The ability of four deep neural networks to forecast time-series data has been studied:
multilayer perceptron, CNN, LSTM, and GRU. Four conventional MLL models: RF, SVR,
KNN, and GB. Preprocessed historical data from a well in oil field X, Southern Vietnam
was used to create eight prediction models for future petroleum output. Classical ML
with SVR was shown to be computationally efficient, with high performance metrics and
quick computation time [18].

A. E. Al-Aghbari et al. (2022) used TCN, GRU, RNN, and LSTM models. An ensemble
DL model using TCN and LSTM predicted oil volume in one step. In constrained com-
putational resource settings, the suggested technique lowered computational complexity
and accuracy, making the model viable. And benchmark models outperformed, residual
variance decreased. However, the model is limited to conventional reservoirs [19].

W. Liu et al. (2023) principally uses CNPC’s oil production information. Logistic
regression (LR), decision tree (DT), RF, KNN, XGBoost (XGB), and gradient boosting
decision trees (GBDT) as classification models for reservoir identification and ANN and
XGB as regression models for production forecasts could benefit from regional data. Using
historical data and ensemble methods, XGB outperforms other reservoir identification
models in assessment measures. In accuracy and processing speed, XGB outperforms
ANN in estimating cumulative oil output in single wells using effective thickness. The
ML technique for reservoir identification and production prediction faces data quality,
feature selection, model interpretability, computing resources, overfitting, hyperparameter
tweaking, and generalisation issues [20].

Wang et al. (2023) investigated various major oil production factors utilising daily oil
production data from 62 oil wells over 10 years. Two models were presented utilising
polynomial regression and random forests on these two data sets. The quartic polynomial
regression and random forest models were chosen for their low prediction error. RF
predictions have a lower error margin than polynomial regression [21].

S. Hosseini et al. (2023) presented an LSTM and 1-D convolutional neural network
model for Volve oil field time series production forecasting. The LSTM model outper-
formed the 1-D CNN model. Using data from all wells during training and testing allows
models to be applied to additional wells. This article does not examine model generalis-
ability, which is a shortcoming. The LSTM model yields optimal results with R? values
of 0.97-0.98 [22].

3. Dataset Descriptions. The initial and most vital phase of research technique is
data collection. The dataset comprises production information from wells in New York
State, USA, spanning the years 1967 to 1999 [23]. The dataset was acquired from the
open access source (https://catalog.data.gov/dataset/oil-and-gas-summary-production-
data-1967-1999). The dataset has 30.1K rows and 20 columns, including production
year, operator, producing formation, county, and production date entered, and active oil
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TABLE 1. Feature and their data type

Feature Data Type
Production Year int64
Production Date Entered object
Operator object
County object
Town object
Field object
Producing Formation object
Active Oil Wells int64
Disposal Wells int64
Active Gas Wells int64
Taxable Gas (Mcf) int64
Inactive Gas Wells int64
Inactive Oil Wells int64
Self-use Well object
Water Produced (bbl) int64
Injection Wells int64
Purchaser Codes object
Location object
Gas Produced (Mcf) int64
Oil Produced (bbl) int64

wells, among others. Table (1) presents all data attributes and their classifications within
the dataset.

4. The Proposed Models. The proposed model framework consists of a series of stages.
Figure (1) presents an Illustration of the proposed oil and gas production forecasting
models.

4.1. The Pre-processing Stage. The pre-processing is an essential stage sine the per-
formance of any ML and DL models are highly affected with the quality of the input data,
much features extracted mean much accuracy in performance metrics, in many case the
data in the data set need more enhancement and improvements during the training or
testing, in the presented approach This stage contains three major steps:

4.1.1. Data Cleaning. The main mission of this step to ensure the dataset is clean from
any mistakes and free of false and misleading information. It’s a procedure for checking
that the dataset does not contain any inaccurate information and is employed to handle
the noise in the data before starting with ML and DL models. There are two steps
including;:

1. Detect and locate any absent or incomplete data points within the dataset.

2. Determine appropriate action for missing values, filling them with other appropriate

values.

Table 2 identifies the number of unclean data in all dataset features, then selects the
unique data to clean it. and, ensure the dataset has been cleaned and there are no errors.

4.1.2. Data Processing. In this step, each well location feature has been assigned an index.
This index will split into two individual sets, X and Y. After a series of experiments, this
process helps to achieve high-accuracy results with ML and DL models.
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FiGure 1. Oil and Gas production forecasting models Architecture.

4.1.3. Data Normalizing. Data normalization is a technique that enhances the accuracy
of MLL and DL by adjusting feature values in the dataset to a standard scale. This
process also simplifies data analysis and modeling. One common normalization method
is L2 scaling, also known as least squares, which converts numerical values into a range
between 0 and 1. The data that need normalization have become normalized, like, the
features X, Y, active oil well, production year, operator, country, town, and field. Other
data that do not require normalization, like injection wells, water produced, and taxable
gas, remain unchanged. Figure (2) and figure(3) illustrates the effects of normalization on
the first part of the data, showcasing features such as X, Y, active oil well, and production
year.

4.1.4. Splitting Dataset. The dataset is categorized into three subsets:

1. The training set is the largest set in the dataset (80%) and is used to train presented
models and modify the weights by observing and learning the correct output.
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TABLE 2. Data Cleaning (DC): (a) the number of unique data before clean-
ing and (b) the number of unique data after cleaning.

Features before DC unique data No. Features after DC unique data No.
Index 0 Index 0
Production Year 0 Production Year 0
Production Date Entered 0 Production Date Entered 0
Operator 0 Operator 0
County 31 County 0
Town 657 Town 0
Field 1281 Field 0
Producing Formation 660 Producing Formation 0
Active oil wells 0 Active oil wells 0
Inactive oil wells 0 Inactive oil wells 0
Active Gas wells 0 Active Gas wells 0
Inactive Gas wells 0 Inactive Gas wells 0
Injection wells 0 Injection wells 0
Disposal wells 0 Disposal wells 0
Self - use well 619 Self - use well 0
Oil Produced, bbl 0 Oil Produced, bbl 0
Gas produced, Mcf 0 Gas produced, Mcf 0
Water produced, bbl 0 Water produced, bbl 0
Taxable Gas, Mcf 0 Taxable Gas, Mcf 0
Purchaser Codes 11798 Purchaser Codes 0
Location 0 Location 0

dtype: int64 dtype: int64
X Y Production Year Active Oil Wells
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FIiGURE 2. Dataset before normalizing.

2. The validation set (10%). This component is employed to evaluate the model by
modifying the hyper-parameters and assessing the model’s performance throughout
the training process.

3. The testing set (10%) is an independent component of the dataset estimates the
model’s performance on new fresh data.

4.2. Machine Learning Models.

4.2.1. Decision Tree Regressor (DTR). Both oil and gas production uses the same pa-
rameters. Table (3) shows DTR parameter values tested for predictive accuracy. These
parameters are critical to model performance. Many tests were run using manually set
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TABLE 3. Illustrates DTR parameters for Oil and Gas outputs

Parameters value
Max_depth 500
Random _state 33

TABLE 4. Illustrates RFR parameters for Oil and Gas outputs.

Parameters value
n_estimators 50
Max_depth 15
Random_state 33

parameters, making parameter selection difficult in this area [24]. Maximum DTR depth
is governed by max_depth. A larger number allows for a more sophisticated tree structure
with more levels and better outcomes. In this scenario, 500 means the decision tree may
go 500 levels deep. The random state option, which generates random numbers, assures
repeatability by fixing the random state. a maximum depth of 500 was selected after
conducting grid search optimization combined with cross-validation. This value provided
the best trade-off between model accuracy and overfitting, as deeper trees beyond this
point did not yield significant improvement in R?.

4.2.2. Random Forest Regressor (RFR). Multiple sub-datasets are used to bootstrap Ran-
dom Forest Regression predictions. After that, decision trees are generated for each
dataset subset [25]. Each sub-decision tree’s predictions are combined to create the ran-
dom forest model’s final forecast. Table (4) shows that this model uses generalized error
estimates, parameters, and multidimensional data.

1. The n_estimators parameter determines the quantity of trees within the random
forest ensemble. Typically, a higher value can improve performance.

2. The max_depth parameter, similar to the counterpart in the decision tree regressor,
controls the maximum depth of each decision tree within the forest, established here
at 15.

3. The random_state parameter, ensuring result reproducibility by fixing the seed for
random number generation, remains constant at 33.

4.2.3. K -Nearest Neighbors (KNN). KNN uses a Euclidean distance metric to find fresh
data’s k nearest neighbors. It then determines the target variable mean (or weighted
mean) of these neighboring data points [26]. The mean is used to estimate the new
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TABLE 5. Illustrates XGBoost parameters for Oil and Gas outputs

Parameters value

n_estimator 30
Seed 300

TABLE 6. ANN layers and activation function.

Number of hidden layers Units of nodes Activation function

First hidden layer 64 Tanh
Second hidden layer 128 Tanh
Third layer (output) 1 ReLU

data. The same data collection and KNN model are used in oil and gas production. For
oil and gas production, the parameters are (n_neighbors = 13, weights = uniform, and
algorithm = auto). The prediction neighbor count is determined by n_neighbors. While
K symbolises represents the quantity of n_neighbors.

4.2.4. Extreme Gradient Boosting (XGBoost). Prior to implementing XGBoost, it is es-
sential to optimise parameters to guarantee optimal model performance. Numerous tests
were initially performed with parameters selected manually [27]. Table (5) presents
the chosen parameters necessary for optimising oil and gas output. The parameter
n_estimators, akin to its equivalent in the random forest regressor, specifies the quan-
tity of trees employed in the boosting procedure. The value is established at 30. The seed
parameter establishes the seed for random number generation, thereby ensuring result
reproducibility. The value is set to 300 in this scenario.

4.3. Deep Learning Models.

4.3.1. Artificial Neural Network (ANN) Model. The ANN model comprises two layers
and an output layer. The ideal configuration of hidden layers and neurones for the ANN
model was established via extensive testing [28]. Table (6) presents the hidden levels of
the ANN, the number of nodes in each layer, and the activation function utilized for each
layer. It is essential to define specific fundamental parameters, including the optimizer
(adam), loss function (MSE), and metrics (MSE). The model is trained using the training
data. Optimal settings must be determined to improve the model’s efficacy utilising a
batch size of 128 and 40 epochs.

4.3.2. Recurrent Neural Network (RNN) Model. The RNN model comprises a configura-
tion of five layers. The RNN has four hidden layers and a single output layer [29]. Table
(7) presents the RNN hidden layers together with the corresponding units for each layer.
To get knowledge, it is essential to define foundational parameters for the development
of this model. The fundamental parameters employed are optimiser = "adam”, loss =
"MSE”, and metrics = "MSE”. The model uses a batch size of 128 and a total of 40
epochs.

4.3.3. Long Short-Term Memory (LSTM). Four layers make up the LSTM model. Three
concealed and one output layers make up the four layers [30]. The next LSTM layer
receives the output of the first. Second layer output becomes third layer input, while
third layer output becomes fourth layer input. The final LSTM layer forecasts oil and
gas output. Many trials determined the optimal number of hidden layers and neurones
for the LSTM model. Verifying accuracy after each change showed that the four hidden
layers worked well. Table (8) lists the LSTM model’s hidden layer nodes and activation
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TABLE 7. The constituents of the hidden and output layers for the RNN model.

Number of hidden layers Units of nodes Activation function

First hidden layer 32 Tanh
Second hidden layer 16 Tanh
Third hidden layer 8 Tanh
Forth hidden layer 4 Tanh
Fifth layer (output) 1 ReLU

TABLE 8. The constituents of the hidden and output layers for the LSTM model.

Number of hidden layers Units of nodes Activation function

First hidden layer 46 ReLU
Second hidden layer 46 ReLU
Third hidden layer 32 ReLLU
Forth hidden layer 1 ReLLU

functions. Train the model with training data. Using batch size 128 and epoch 20, find
model parameters that improve performance.

4.3.4. 1-D CNN-based Regressor. Convolutional Neural Networks (CNNs) are recognised
for their resilience and have established themselves as the standard in several computer
vision applications [31]. A distinctive characteristic that enhances the efficiency of CNNs
in supervised learning is the spatial-local connection, which enables layers to communicate
parameters [32]. Feature extraction in CNNs is predominantly dependent on convolution
(Conv) layers, which execute convolution operations on the input data or feature map(s)
utilising predefined kernels. The hyperparameters, including the quantity of hidden layers,
kernel size (K), number of filters (F), subsampling factor, and activation function type
employed in each layer, dictate the architecture of the 1-D CNN model. This convolution
procedure will produce a volume of learnt feature maps. Given that the input consists of
one-dimensional sequential data, the input convolutional layer processes a one-dimensional
input sequence, x(n) € R® A convolution between the kernel, w(n), and the input
produces a feature map, z(n) [33].

5. Experimental Result.

5.1. Hardware and Software Requirements. Processor: 11th Gen Intel(R) Core(TM)
i5-1135G7 @ 2.40GHz 2.42 GHz, System Type: 64-bit operating system, x64-based proces-
sor. RAM: 12.0 GB (11.8 GB usable).Operating System: Windows 10 Home. Our study
used the Python programming languages Anaconda Jupyter and Collaboration Online
(https://colab.research.google.com) as our Python environments.

e NumPy: A package that enables array manipulation in Python.

e Tensor flow and Keras: These libraries make writing code for Deep Learning models
easier.

e Scikit-learn (Sklearn): used for partitioning and fitting datasets into numerous ma-
chine learning models.

e Pandas: This library is employed for importing and partitioning datasets.

5.2. Evaluation Metrics. The evaluation metrics used to measure how well a model
predicts continuous values, we utilized:
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e Mean Squared Error (MSE) for large errors especially bad and should be penalized

more.
n

1
MSE = — i — Ui)° 1
PSS (1)
Where: n: Number of data points, y;: Actual value at index ¢, y;: Predicted value at
index 4, (y; — ;)% Squared error for each prediction,
e Mean Absolute Error (MAE) to easyly interpret an error metric with less affection
from the outliers.

1 n
MAE = — = 0 9
n;lly Uil (2)

Where: n : Number of data points, y; : Actual value at index i, y; : Predicted value at
index i, |y; — 9;| : Absolute error for each prediction.

e R-squared / Coefficient of Determination (R?) to understand the models performance
for dataset variety.

RS ¥ T N o
> e (Vi —9)?
Where: y; : Actual value at index ¢, y; : Predicted value at index i, ¥ : Mean of all
actual values, (y; —9;)? : Squared error for each prediction (model error), (y; —7)* : Total
variance in the data.

5.3. The Result and Discussion. The result of MLL models with different parameters
in oil and gas production forecasting output, as shown in Table (9). The mentioned
parameters are essential in influencing ML models’ performance. For testing all ML
supervised regression models (DTR, RFR, KNN, and XGBoost).

TABLE 9. Machine learning models parameters.

Model Parameter Value

Max_depth 500
DTR Random _state 33
n_estimators 50
RFR Max_depth 15
Random _state 33
KNN n_neighbors 13
n_estimators 30

XGBoost seed 300

The result of ML model’s performance using the evaluation matrix MSE, R?, and MAE,
see table (10).

According to the results, the KNN model performs best with low MAE and MSE values
and R? values close to one, indicating a good correlation between actual and predicted
values. The ML models (RFR, DTR, KNN, and XGBoost) closely match anticipated and
actual oil output Figure (4). Effective oil production forecasting models have lower MAE,
MSE, and higher R? values that match projected and actual values.

The result of DL models performance using the evaluation metrics (MSE, R?, and MAE)
presented in table (12), performance values for the employed DL models for predicting oil
and gas. In all model the values were superior and quite promising, a comparison between
the DL and ML models demonstrated in table (13) based on the value of R?, a graphical
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TABLE 10. Evaluation Metrics for ML models Performance.

Model Output MAE MSE  R?
Oil 0.0014 0.0002 0.9936

RFR Gas 0.0017 0.0002 0.9982
DTR Oil 0.0017 0.0003 0.9893
Gas 0.0016 0.0003 0.9972

Oil 0.0015 0.0002 0.9937

KNN Gas 0.0012 0.0001 0.9988
XCGBoost Oil 0.0020 0.0002 0.9921

Gas 0.0027 0.0004 0.9969

1.0000
—a— Oil (R2)
~8— Gas (R?)
0.9975
0.9950
0.9925

0.9900

R? Value

0.9875}

0.9850

09825}

0.9800 —prR DTR KNN XGBoost

R? Values for Qil and Gas Across ML Models
FIGURE 5. The R? curve for Oil and Gas across ML models.

chart in figure (7) show the comparison in R? value across all the models. For extend the
performance generalization, several of most recent studies compared with the proposed
models refereeing to the dataset used and the values of R? listed in table (14).

5.4. limitation. Although deep learning models like ANN, RNN, LSTM, and 1-D CNN
achieved high predictive accuracy, they present interpretability challenges, which can
limit user trust and hinder decision-making in operational settings. In contrast, models
such as DTR and KNN offer clear reasoning paths, making them more suitable when
explainability is essential. Additionally, deploying these models in real-world oil and
gas fields involves challenges such as sensor data inconsistency, missing values, changing
production dynamics, and the necessity for periodic retraining to adapt to new operational
conditions. While this dataset is well-documented and valuable for benchmarking, it may
not reflect modern advancements in extraction technologies, sensor systems, or reservoir
management practices. Consequently, future research should involve recent or real-time
production data to enhance model applicability in contemporary oil and gas fields.

6. Conclusion and Future Work. ML and DL models for petroleum oil and gas pro-
duction were described in this research. The study emphasizes forecasting oil and gas
production for informed decision-making, reserve estimation, production optimisation,
market dynamics, trend prediction, project commercial viability analysis, and recovery
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FIGURE 6. Deep Learning Predicted oil and gas produce VS. actual produce.
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TABLE 11. The constituents of the hidden and output layers for the DL models.

Model Layer Type Number of Nodes (Units) Activation Function
First Hidden Layer 64 Tanh
ANN Second Hidden Layer 128 Tanh
Third Layer (Output) 1 ReLU
First Hidden Layer 32 Tanh
Second Hidden Layer 16 Tanh
RNN Third Hidden Layer 8 Tanh
Fourth Hidden Layer 4 Tanh
Output Layer 1 ReLU
First Hidden Layer 64 ReLLU
LSTM Second Hidden Layer 64 ReLU
Third Hidden Layer 32 ReLLU
Output Layer 1 ReLU
Input Layer (32, 5, 12) None
ConvlD (L1) 64 ReLU
ConvlD (L2) 64 ReLU
1-D CNN ConvlD (L3) 64 ReLU
MaxPooling1D (L4) 64 ReLU
Flatten (L5) 64 None
Dense (L6) 1 Linear

TABLE 12. Evaluation Metrics for DL models Performance.

Model Output MAE MSE  R?
Oil 0.0020 0.0004 0.9545

ANN Gas  0.0060 0.0005 0.9951
N Ol 0.0070 0.0011 0.9804
Gas  0.0040 0.0005 0.9949
O 0.1417 0.0003 0.9667
LSTM s 00084 0.0011 0.9893
b ony Ol 00060 0.0005 0.9951

Gas 0.0070 0.0011 0.9894

TABLE 13. The result of ML VS. DL models.

Model Oil R? Value Gas R? Value

RFR 0.9936 0.9982
DTR 0.9892 0.9972
KNN 0.9937 0.9988
XGBoost 0.9921 0.9969
ANN 0.9545 0.9951
RNN 0.9894 0.9949
LSTM 0.9667 0.9893
1-D CNN 0.9951 0.9894

rate, cost, and operational efficiency. We use machine learning and deep learning to con-
struct a more accurate and efficient production forecasting model than DCA and NRS.
The main idea was to construct a simple and practical ML and DL model for speedy, in-
formed decision-making. Eight production forecasting approaches employing ML and DL
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Comparison of Oil and Gas R? Values for Different Models
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F1GURE 7. Comparing results between ML and DL models.

models were constructed and tested: DTR, KNN, RFR, XGBoost, ANN, RNN, LSTM,
and 1-D CNN. To evaluate the models performance us apply the most popular metrics(
MSE, MAE and R?), these metrics calculate the prediction values for each modles, cover-
ing several cases such as dealing with large errors allwonig easy interret and less affected
by outliers and to understant how well the models explains the variance in dataset. Mod-
els accurately anticipate oil and gas output. Data and model predictions are strongly
correlated in the production. Understanding that the best model depends on the data is
crucial. Therefore, testing different models and assessing their performance is essential to
choose the best one. While this dataset is well-documented and valuable for benchmark-
ing, it may not reflect modern advancements in extraction technologies, sensor systems,
or reservoir management practices. Consequently, future research should involve recent
or real-time production data to enhance model applicability in contemporary oil and gas
fields. Future works will aim to employ more specialized datasets, concentrating on spe-
cific fields or wells and the variables affecting their output. Employing supplementary
models like VGG-19 with the previously utilized approaches.
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TABLE 14. Compares proposed models result with previous studies.

Study Dataset Technique R? (Oil) R? (Gas)
RF 0.72 N/V
BP 0.82 N/V
C. Tan et al. (2021) [15] 137 fractured wells, Sichuan, China XCS}];/ist 8;;1 E?://
Light GBM 0.83 N/V
LR 0.78 N/V
MLR 0.834 0.7684
PLR 0.966 0.9185
SVR 0.9659 0.9185
. . DTR 0.9225 0.9236
N. M. Ibrahim et al. (2022) [17] Saudi Aramco RFR 0.9355 0.9247
XGBoost 0.9561 0.9336
ANN 0.9697 0.9185
RNN 0.9785 0.8787
RF 0.87 N/V
GB 0.85 N/V
KNN 0.91 N/V
. . . SVR 0.96 N/V
L. Mai-Cao et al. (2022) [18] Oilfield X, Southern Vietnam MLP 0.93 N/V
CNN 0.88 N/V
LSTM 0.90 N/V
GRU 0.92 N/V
GA-TCN-LSTM 0.93 N/V
TCN 0.92 N/V
A. E. Al-Aghbari et al. (2022) [19] Volve oil field database LSTM 0.91 N/V
GRU 0.92 N/V
RNN 0.92 N/V
W. Liu, Z. Chen et al. (2023) [20] Actual reservoirs ?{211\31 8;§§ E?X
S. Hosseini et al. (2022) [22] Volve oil field dataset LC?NTll\\I/I 821:832 E?g
RFR 0.9936 0.9982
DTR 0.9892 0.9972
KNN 0.9937 0.9988
XGBoost 0.9921 0.9969
Proposed Models (2025) USA wells, New York State ANN 0.9545 0.9951
RNN 0.9894 0.9949
LSTM 0.9667 0.9893

1-D CNN 0.9951 0.9894
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