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Abstract. The high complexity and dynamics of urban transportation make the spa-
tial and temporal dependence of traffic volume difficult to be captured effectively, which
make the accurate prediction of traffic flow a major challenge. This paper analyzes
the temporal-spatial features of traffic volume from different perspectives, by combining
the historical temporal correlation and road network spatial correlation in traffic volume
data, develops a hybrid model named PG-LSTM for short-term traffic volume forecasting
which integrates Pearson correlation analysis (PCC) for spatial feature selection, graph
convolutional networks (GCN) for spatial dependency modeling, and LSTM for temporal
dependency modeling. The PCC method is used to identify road segments in the network
that have strong correlations to the traffic volume of the target segment. Considering the
road networks’ graph-like properties, GCN is employed to capture spatial dependencies in
the traffic volume of road segments. By integrating LSTM with GCN, the proposed PG-
LSTM model synergistically integrates GCN’s spatial modeling capability with LSTM’s
temporal dynamics learning capability, and enables precise traffic volume forecasting for
target road segments. Using the real traffic volume data taken from PeMS system in
California, USA, comparison experiments are conducted to evaluate PG-LSTM against
other four models (CNN-LSTM, LSTM, GRU, BP) across multiple indicators - includ-
ing Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE) and explanatory power metrics (R2). The experimental re-
sults confirm that the proposed PG-LSTM model is significantly better than the other four
comparison models in all four evaluation indicators.

Keywords: GCN Network; Long Short-Term Memory Network; PCC; traffic volume
prediction; temporal-spatial features
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1. Introduction. With the acceleration of urbanization and population growth, road
traffic has become the most critical component of urban transportation systems [1]. To
meet the growing demand for transportation, many cities are actively developing and ex-
panding their road networks, including constructing new roads, upgrading existing ones,
and adding traffic infrastructure. As transportation networks evolve and traffic demand
increases, traffic flow prediction has become increasingly important. Precise traffic flow
forecasting can assist traffic management agencies in optimizing signal timing, dynam-
ically adjusting route guidance, and disseminating real-time traffic information. These
measures enhance operational efficiency, mitigate congestion, lower emissions, and ulti-
mately promote the sustainable development of urban mobility systems. Improvements
in transportation modernization and the rapid development of big data, artificial intel-
ligence, connected vehicle technology and intelligent management technology have made
it a reality to access to traffic flow data timely, reasonable and reliable. To maximize
the effectiveness of existing transportation infrastructure, many cities have established
big data platforms for traffic flow prediction. These platforms analyze traffic flow data to
uncover underlying patterns, extract and process traffic information, and ultimately pro-
vide enhanced travel services for transportation participants [1]. However, the inherent
stochasticity and nonlinear dynamics of traffic flow pose fundamental challenges for pre-
diction accuracy. To address this challenge, researchers worldwide have employed various
advanced techniques for traffic flow modeling and forecasting.

Traffic flow forecasting actually refers to predicting information that can reflect traffic
conditions. It forecasts the traffic state of a roadway at the next time period based on
historical traffic status of the road and applies certain model algorithms. In practical
research, the parameters that can reflect the status of traffic primarily encompass traffic
volume, vehicle speed, and roadway occupancy rate [2], among others. According to
different time horizons of prediction, traffic volume forecasting can be categorized into
short-term forecasting and long-term forecasting. Long-term traffic volume forecasting
typically utilizes data with larger time intervals, usually exceeding one hour, and covers
extended forecasting periods, primarily serving advance planning purposes. In contrast,
short-term traffic flow prediction employs much shorter time intervals, generally within
30 minutes and often in multiples of 5 minutes [3], it mainly provides solutions for instant
traffic control.

Currently, prediction models for short-term traffic volume mainly include models based
on linear theory, nonlinear theory, and intelligent prediction models. Linear theory mod-
els assume that traffic flow data is periodic and that historical traffic flow data follows
certain statistical patterns, which can be utilized to predict future flow data. Linear-
theory-based models predominantly encompass time-series analysis models, the historical
mean model, and the Kalman filtering model. The Kalman filter is a linear filtering
method proposed by Kalman [4]. This type of model simulates traffic operation through
a state space approach and then obtains traffic flow prediction results through recursive
state-space estimation. Nonlinear prediction methods primarily include three types of
models: nonparametric regression methods, wavelet analysis methods, and chaos theory
methods. Z. Liu et al. [5] argued that the reliability of K-NN model results is uncertain
and proposed quantifying the uncertainty in traffic flow point predictions by constructing
prediction intervals associated with point forecasts, thereby extending the K-NN method.
G. K. Shen [6] proposed an enhanced wavelet neural network model refined by the har-
mony search algorithm (HS-WNN) for short-term traffic volume forecasting, effectively
improving its convergence speed. R. Tang et al. [7] conducted a quantitative analysis and
identified the chaotic dynamics in traffic flow fluctuations and demonstrating the data’s
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predictability. Based on these findings, they developed a hybrid GQPSO-WNN prediction
model incorporating phase space reconstruction.

With the rapid advancement of big data, artificial intelligence and cloud computing
technologies, researchers have proposed many new methods for processing nonlinear fea-
ture data, such as support vector regression, neural network and modern deep learning
frameworks. These intelligent nonlinear prediction models can achieve more accurate
learning outcomes through adaptive learning capabilities. As an emerging intelligent pre-
diction algorithm, deep learning has attracted extensive attention from scholars world-
wide. Deep learning-driven intelligent prediction models have dominated the field. Y.
Zhang et al. [8] introduced a traffic flow forecasting solution for traffic flow grounded
in Deep Belief Networks (DBN), employing genetic algorithms to identify optimal pa-
rameters across different time periods. Y. Jin et al. [9] developed an improved stacked
autoencoder model using a greedy layer-wise training method, with experimental results
demonstrating that the enhanced model outperforms both SVM and DBN models in terms
of prediction accuracy. R. Soua et al. [10] developed a framework that integrates data
streams (traffic flow, weather conditions) and event data through D-S evidence theory for
traffic volume prediction based on DBN.

In recent years, numerous scholars have demonstrated that Recurrent Neural Networks
(RNN) outperform other models in handling temporal dependencies. R. Madan et al. [11]
employed discrete wavelet transform for data preprocessing, followed by Autoregressive
Integrated Moving Average (ARIMA) models and RNNs. Their experimental results con-
clusively validated RNN’s superior performance in time-series forecasting tasks. Y. Kim
et al. [12] took the RNN model as the basic framework and combined with traffic network
data to create a spatio-temporal graph to acquire the spatiotemporal interaction charac-
teristics of adjacent road sections, and integrating the dynamic evolution law of time series
to realize the accurate prediction of traffic speed of multi-road network. W. Zhang et al.
[13] argued that existing models cannot fully explore the spatiotemporal features of traffic
data, and they developed a CNN-based deep learning framework. Firstly, optimal input
parameters including temporal delays and spatial data volume are determined through
the spatiotemporal feature selection algorithm (STFSA). The captured spatiotemporal
feature data is transformed into a two-dimensional matrix, and then use CNN to learn
the features and construct a prediction model. Comparative analysis of the prediction
results with real traffic data showed that the proposed model had a higher prediction
accuracy. H. Yu et al. [14] proposed a model named SRCN by integrating Deep Con-
volutional Neural Networks (DCNN) and LSTM networks. In this hybrid architecture,
DCNN captures the spatial dependencies, while LSTM learns temporal patterns.

GCN extends convolutional operations to graph-structured data, enabling neural net-
works to learn feature representations of nodes and their neighbors. GCN has become a
popular deep learning model dedicated to processing graph-structured data and is highly
favored in traffic flow prediction. Z. R. Ge et al. [15] proposed a hybrid prediction model
named WAC-GCN by combining wavelet analysis with two-dimensional convolutional
neural network and graph convolutional neural network. This model extracts the spatial
correlation features among nodes by constructing the spatial correlation heat map of the
nodes, and optimizes the model parameters using the control variable method, and its
prediction accuracy is significantly better than that of the benchmark model. H. Zhang
et al. [16] used RetNet as the basic framework to process the long sequence information,
combined with GCN to extract the spatial correlation of nodes to aggregate the features
of traffic intersection nodes, and the constructed hybrid model effectively improves the
robustness and accuracy of traffic volume forecasting.
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To leverage the advantages of various prediction methods and achieve more optimal
forecasting results, multi-model integration has emerged as a research hotspot in the field
of traffic flow prediction in recent years. In real-world road networks, traffic conditions
are complex and dynamic, with traffic flow variations influenced by various exogenous
factors such as holidays and weather conditions, which resulting in strong nonlinearity,
randomness, and periodicity in traffic flow data, as well as obvious temporal and spatial
correlations. To more effectively capture traffic flow’s spatiotemporal characteristics, this
study employs Pearson correlation coefficient analysis to identify road segments with
strong traffic flow correlations to target road segment within the traffic network. By
conceptualizing the traffic network as a graph, we utilize GCN to capture spatial features
of traffic flow, integrates LSTM models with GCN architectures to construct a hybrid
prediction model, enabling accurate traffic flow forecasting for target road segments.

2. Traffic Volume Features Analysis. Traffic flow refers to the stream of vehicles
traveling on roadways, with key macroscopic indicators including traffic volume, density,
speed and so on. This study utilizes real traffic flow data from California highways
provided by the PeMS (Performance Measurement System) website, which records fields
such as date, traffic volume, number of lanes, and average speed. This paper uses traffic
volume as a key indicator to uncover spatio-temporal regularities in flow behavior. Nine
road segments at an intersection in the Oakland area of California (as shown in Fig. 1) from
the PeMS system are used as research objects to reveal traffic volume’s spatiotemporal
characteristics.

Figure 1. Experiment data segment network

2.1. Analysis of Temporal Features. Temporal features analysis plays a core role
in traffic prediction, as it can help people gain a deeper understanding of the changing
patterns and influencing factors of traffic flow [17]. Traffic flow data has periodicity, and
the weekly data changes are similar. Temporal variations of traffic volume, particularly
those occurring at weekly and daily scales, exert substantial influence on traffic flow
patterns, which deserves special attention. In this study, we select the traffic data at a
specific roadway segment from the PeMS system for visualization analysis, showing the
periodicity patterns of traffic flow fluctuation at various timescales (daily/weekly).
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There is a significant difference in the trend of traffic volume changes between weekdays
and weekends. By analyzing the daily traffic volume trends over a week, the patterns
of traffic volume changes between workdays and non-workdays can be revealed. Using
traffic volume data from a highway segment over a week, a two-dimensional line chart
was plotted to display the hourly traffic volume for each day, as shown in Fig. 2. The
horizontal axis represents the 24 hours of the day, while the vertical axis represents the
aggregated traffic volume every hour. The analysis results indicate that there is a distinct
bimodal distribution of traffic volume on weekdays, with prominent surges coinciding with
morning and evening commute periods, whereas weekend traffic remains relatively stable.
This regular variation provides important insights for traffic volume prediction.

Figure 2. Two-dimensional line plot of traffic volume on a section of a
highway at different moments of the week

To observe the change tendency of traffic volume at different moments of each day in
the week of this road section more clearly, and reveal the temporal dependency patterns
between traffic flow at different times and days of the week, the two-dimensional line
graph is converted into a three-dimensional image as shown in Fig. 3. From Fig. 3 we can
get a clearer picture of the changing patterns of traffic volume, which reflects the different
traffic demand and behavioral patterns of weekdays and rest days, and provide a basis
for the subsequent traffic volume prediction.

Another focus of temporal feature analysis is intra-day variability, which refers to the
trend of traffic volume over the course of a day. By analyzing the features of time-of-
day traffic volume variation, such as the peaks of traffic volume in the morning and
evening peaks, the temporal distribution pattern of traffic volume during the day can be
understood. The intra-day variation is also related to whether it is a weekday or not.
Fig. 4 shows the traffic flow changes of a certain road section on Mondays of multiple
weeks.

As shown in Fig. 4, on weekdays, the intra-day variation of traffic volume presents a
distinctive feature. Typically, there is a significant increase in traffic volume during the
morning peak hour (7:00–9:00) and the afternoon peak hour (16:00–18:00). These peak
hours are often accompanied by traffic congestion and reduced travel speeds, creating
roadway access challenges. However, compared with weekdays, the intra-day variation of
traffic volume on non-weekdays shows different characteristics. As shown in Fig. 5.
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Figure 3. Three-dimensional line plot of traffic volume on a section of a
highway at different times of the week

Figure 4. Two-dimensional line plot of traffic volume at different times
on Mondays of multiple weeks

The daytime traffic volume on non-weekdays is relatively smooth, with only one peak
hour that lasts for a long time, from 10 a.m. to 4 p.m. This is because people usually
wake up later on rest days, so the peak hour starts relatively late. Because people may
go out for pleasure or other leisure activities, people’s travel times and purposes are
relatively more dispersed and there is no significant concentration of travel demand. By
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Figure 5. Two-dimensional line plot of traffic volume at different times
on Sundays of multiple weeks

observing the above four graphs, it can be concluded that the temporal characterization
of the weekly and intra-day variations are important for traffic volume prediction. The
weekly variation reflects the difference in traffic demand between weekdays and rest days,
while the intra-day variation reveals the trend of traffic volume over the course of a day.
By analyzing these temporal features in depth, it is possible to predict future changes in
traffic flow.

2.2. Analysis of Spatial Features. Spatial features analysis is also a key factor af-
fecting traffic volume prediction [18]. Road network’s spatial analysis helps comprehend
traffic distribution among different regions. Congestion effects spread through the trans-
portation network, causing adjacent sections to influence each other’s traffic conditions
and when the traffic volume of a road section is too high, it may have an overflow effect on
the traffic volume of adjacent road sections. At the same time, traffic volumes in different
regions during the same period of time may also affect each other, and an increase in
traffic volume in one region may cause changes of traffic volume in neighboring regions
due to traffic demand and spatial continuity of the transportation network.

To further understand the spatial distribution characteristics of traffic volume, we select
four adjacent traffic sections 1–4 from the traffic road network (See Fig. 1), obtain their
traffic volume data collected on the same day and plot a line graph. Fig. 6 illustrates the
traffic volume trends on the same day for these four roadway segments.

By observing Fig. 6, it can be found that the traffic volume trends of the four neighbor-
ing road sections are generally similar. Sections 1 and 2 are upstream and downstream
sections in the same direction, and their traffic flow change trends are more similar; sim-
ilarly, sections 3 and 4 are upstream and downstream sections in the same direction, and
their change trends are more similar. This indicates that when the traffic volume of one
roadway section changes, the traffic volume of the adjacent roadway sections will also
change accordingly, showing the influence between adjacent roadway sections.

2.3. Traffic Volume Correlation Analysis. To better illustrate the result of spa-
tiotemporal characteristic analysis of traffic volume, PCC method is adopted to quan-
titatively analyze the above traffic volume data. In statistics, PCC is a commonly used
standard metric for evaluating two variables’ correlation, and its value falls between -1
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Figure 6. Two-dimensional line plot of traffic volume on several adjacent
roads at different moments of a day

and 1, which can indicate the direction of the correlation as well as the strength of the
correlation [19].

Use x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , yn} to represent the time-series data of
traffic volume, and the correlation coefficient between a and b can be calculated as follows:

r(x, y) =
n
∑n

i=1 xiyi + (
∑n

i=1 xi) (
∑n
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n
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2
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In (1), (x, y) is a pair of traffic flow sequences for correlation analysis, xi and yi are
the size of traffic volume at moment i, and n is the length of traffic flow sequence. The
closer r(x, y) is to 1, it signifies that x and y are more correlated; and when r(x, y) is less
than 0.5, it indicates that the correlation between x and y is low; when r(x, y) equals 0,
it signifies that there is no correlation between x and y [20].

Because of the cyclical nature of traffic volume, we selected traffic volume data for
a certain road segment from the PeMS dataset for one week (August 8–14, 2022) and
conducted correlation analysis on the traffic volume of each day within the week. Figure 7
illustrates the correlation settlement results.

From Figure 7, it can be found that weekday traffic volumes on the same roadway show
a strong correlation, with correlation coefficients above 0.94. The correlation between non-
weekday traffic volumes on the same roadway is also strong, and the correlation coefficient
is 0.94. The difference is that the correlation between traffic flow data between workdays
and non-workdays is relatively weak, with correlation coefficients generally below 0.9.
This quantitatively illustrates the pattern of traffic flow changes shown earlier through
the visualization of line plots.

The Pearson correlation coefficient method is also applicable to traffic network analysis,
which can effectively quantify the correlation between traffic volume in different road
sections, thus revealing the spatial dependence characteristics of traffic volume. Here, we
calculate the correlation between the traffic volume of the 9 road segments marked in
Figure 1. The following Figure 8 shows the analysis results.

By observing Figure 8, we can find that the traffic volume correlation between adjacent
road segments 1 and 2, which have upstream and downstream relationships, is very strong,
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Figure 7. Correlation analysis of one week’s traffic flow on a road segment

Figure 8. Correlation analysis of traffic flow between road segments

with a correlation coefficient of 0.98. And similarly, the correlation between adjacent road
segments 3 and 4 is very strong, with a correlation coefficient of 0.99. The correlation
between adjacent road segments 8 and 9 is also very strong, with a correlation coefficient
of 0.98. Road segments 3 and 6, although they are non-adjacent, also have a strong
correlation between their traffic volume, with a correlation coefficient of 0.98.

3. Traffic Volume Prediction Model Building on LSTM. The prediction of traffic
volume belongs to the time series prediction problem. RNNs show significant advantages
in dealing with time series problems, and LSTM is an improved recurrent neural network,
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which not only inherits the advantages of the RNN in time series prediction, but also
solves the problem of long-term dependence of RNN [21].

3.1. LSTM Model Structure. LSTM is an enhanced version of the traditional RNN,
in the LSTM network structure, the neurons of the RNN are replaced with a special
cell structure in the hidden layer part. The cell structure adopts gating mechanism
containing three important parts: input gate, output gate, and forgetting gate, to create a
controllable memory neuron [22]. The following Figure 9 displays the cell unit’s structure
of LSTM.

Figure 9. Basic unit structure of LSTM

In the LSTM structure, the current neuron has three inputs at current time step t: xt is
external input at the current moment, ht−1 is the hidden state output by the LSTM cell at
the previous time step, carrying the historical sequence information, and Ct−1 is the state
of the memory cell at the previous moment. The gate structure subtly filters information
through a neural layer of sigmoid function and a point-by-point multiplication operation.
A probability value between 0 and 1 is generated by the sigmoid layer, indicating the
degree of information passage, where 0 means “no information is allowed to pass” and 1
means “all information passes”. The gate structure learns what information to keep or
forget during the training process.

3.1.1. Forget Gate. The forget gate is designed to determine the degree of loss of mem-
orized information, and Figure 10 shows its structure. The forget gate takes the current
time step input xt and the previous hidden state ht−1 as its inputs, and learns according
to (2). The output of this layer ft is a number between 0 and 1, the value of ft determines
how much of the previous cell state Ct−1 is forgotten. 1 means that the previous memory
cell status information is completely retained, and 0 means that the previous memory cell
status information is completely discarded.

ft = σ(Wfxt + Ufht−1 + bf ) (2)

In (2), Wf and Uf are the weight matrices mapping the input of the hidden layer at
the current moment and the output state of the previous unit to the forget gate; bf is the
threshold offset of forgetting gate, which is the “hidden switch” that regulates long-term
memory capacity. σ is the gate activation function, which can be chosen as sigmoid.
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Figure 10. Structure of forgetting gate

3.1.2. Input Gate. The input gate’s role is like a filter, it regulates how much of the
current input xt should be stored into the cell state Ct. Figure 11 shows the structure of
input gate.

Figure 11. Structure of input gate

The amount of new input information injected is jointly regulated by the input gate in
concert with the hyperbolic tangent function tanh. A new state output vector C̃t can be
obtained by operating the last output with the current new input information through
the activation function, and the output it of the input gate indicates the rate of adding
new information to the current network. it and C̃t are computed as (3) and (4).

it = σ(Wixi + Uiht−1 + bi) (3)

C̃t = tanh(WCxi + UCht−1 + bC) (4)

In (3) and (4), Wi and Ui denote the weight matrices and their values are generated
by learning through model training, which map xt and ht−1 to the input gate. WC and
UC denote the weight matrices that map xt and ht−1 to the candidate cell state C̃t. bi is
the threshold offset of input gate, it is adaptively adjusted during training and is used to
regulate the acceptance of new information, bc is the threshold offset of candidate memory
cell and is used to adjust the distribution of candidate values. σ is the gate activation
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function. Ct is the memory cell state at the current moment, it consists of two parts:
previous cell state Ct−1 multiplied with the forget gate ft by elements, and the candidate
state C̃t multiplied with it by elements. The memory cell state Ct at time step t is gotten
by adding the two products. The calculation equation is shown in (5).

Ct = ft ◦ Ct−1 + it ◦ C̃t (5)

3.1.3. Output Gate. The output gate determines how much information is needed for
the next learning step of the network, and Figure 12 shows the output gate structure.
First the ratio of the information output in the cell state ot is determined by the sigmoid
function, as shown in (6). Then the cell state Ct is scaled using the tanh function, and
the result is then multiplied element by element with ot to obtain the output ht of the
current layer, as shown in (7).

Figure 12. Structure of output gate

ot = σ(Woxi + Uoht−1 + bo) (6)

ht = ot ◦ tanh(Ct) (7)

In the above equations, Wo, and Uo represent the weight matrices that need to be
learned through model training for mapping xt and ht−1 to output gate ot. ht denotes the
current hidden state generated by filtering the squashed cell state tanh(Ct) through the
output gate ot.

3.2. Data Preprocessing. Data used in this study were extracted from nine road seg-
ments at an intersection in the Oakland region of California, USA, in the PeMS system for
two months (July–August 2022) of traffic volume data. Data are aggregated at 5-minute
intervals, generating a time series of 288 values per day for each roadway segment.

Traffic data collection is a complex process, due to the detection equipment reasons,
bad weather, other road conditions, it is inevitable to produce data loss and anomalies and
other problems. Whether the data is accurate and effective will directly affect the model’s
forecasting accuracy. To predict traffic volume more effectively and obtain more accurate
prediction results, data preprocessing is necessary for building a short-term traffic volume
prediction model using LSTM.

Traffic volume is a time series data that is aggregated at certain time intervals, and
there will be a fixed amount of data in a day. Therefore, we can determine whether
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there is missing data in a certain time segment by judging the number of data per day
or querying the null value. In this paper, the isnull() function in Python is used to
identify whether there is missing data in the sequence, and if there is missing data, we
need to use certain methods to repair it.

Outliers are those data that have very large deviations from other data, such as traffic
flow that deviates seriously from road capacity, negative traffic flow, etc. The treatment
of outliers in this paper is to first remove them from the dataset and then insert values
within the normal variation range at the deleted position.

Considering the computational complexity, this paper adopts the historical mean method
for the repair of missing data and anomalous data, the calculation method is shown in
(8).

x̄t =
xt−1 + xt−2 + xt−3 + · · ·+ xt−n

n
(8)

In (8), x̄t denotes the calculated average value according to traffic volume data of the
previous n moments, n denotes the previous n moments of time t.

Traffic volume has a large amount of variation at different times of the day, so data
normalization should be performed before initiating the model training process, with the
purpose of unifying the data scale and eliminating the impact of the magnitude difference
between the traffic flow feature data on the convergence speed and prediction accuracy
of the model [21]. In this paper, the traffic volume data is normalized using the Z-score
method, which normalizes the data to zero mean unit variance, and the calculation formula
is shown below:

x =
X − µ

σ
(9)

In (9), X denotes the traffic volume eigenvalue; µ is the mean value of the eigenvalue
of the dataset, σ is the standard deviation of the eigenvalue.

3.3. Traffic Volume Prediction Process Based on LSTM. The forecasting of traffic
volume is a time series forecasting task, in the traffic volume prediction using LSTM
model, xt denotes the real value of the traffic volume time series input to the model
at time moment t, xt+1 denotes the predicted value at time moment (t + 1). During the
model training process, the objective function is optimized according to the batch gradient
descent algorithm, the objective function is set to MSE. When the training error reaches
the minimum or the number of training times reaches a set number of epoch, the training
process is stopped to obtain the current prediction value. The following is a description
of the specific process of predicting traffic volume using the LSTM model:

• Step 1: Determine the sample length n of the input traffic volume as well as the
length of the output data. Use (x1, x2, x3, . . . , xn) to represent the input traffic
volume time series.

• Step 2: Initialize the key parameters for the LSTM model: number of hidden layers,
input layer nodes count, hidden layer nodes count and output layer nodes count, etc.

• Step 3: Preprocess the dataset and divide it into training set and prediction set using
80/20 rule.

• Step 4: Train the LSTM network on temporally-ordered data segments generated
through sliding window sampling from training set, optimize the objective function
and adjust the weights using the batch gradient descent algorithm.

• Step 5: Set different hyperparameters for model training experiments, calculate the
predicted values under different hyperparameters, and judge the optimal parameters
through evaluation indexes.
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• Step 6: After determining each parameter, input the prediction set to the trained
model to realize traffic volume forecasting and analyze the results.

3.4. Experiment and Performance Evaluation. In this study, we select road section
3 in Figure 1 as the target section, and extract the traffic volume data of it as the ex-
periment data. Because of the cyclical nature of traffic flow data changes, which changes
similarly every week, and the traffic flow trends on weekdays and non-weekdays are signif-
icantly different, we train the model and predict using the traffic volumes of weekday and
non-weekday separately. For weekday traffic volume prediction, the traffic volume data
of weekdays within one month from August 1 to 31, 2022 is selected as the experiment
dataset. For traffic flow prediction on non-weekdays, traffic flow data on non-weekdays
within two months from July 1 to August 31, 2022 is selected as the experiment dataset
to expand the sample size.

3.4.1. Model Evaluation Indicators. We used four common evaluation indicators in this
paper to assess the performance of the LSTM-based prediction method, they are MAE,
RMSE, MAPE and R2. Their calculation formulas are shown in (10)–(13).

RMSE =

√√√√ 1

N

N∑
i=1

(yi − pi)2 (10)

MAE =
1

N

N∑
i=1

|yi − pi| (11)

MAPE =
1

N

N∑
i=1

|pi − yi|
yi

× 100 (12)

R2 = 1−
∑N

i=1(pi − yi)
2∑N

i=1(ȳi − yi)2
(13)

In the above three equations, pi denotes the predicted value of traffic volume at time i,
yi is the observed value of traffic volume, N is the total number of prediction instances,
and ȳi denotes the mean of the observed values.

A strong inverse relationship exists between prediction accuracy and error metrics
(RMSE, MAPE and MAE). Higher prediction accuracy is indicated by decreasing RMSE,
MAPE and MAE metrics. The greater the R2, the more effectively the model explains
traffic volume fluctuations [24].

3.4.2. Optimal Parameter Determination and Prediction Performance Analysis. In the
LSTM model prediction process, multiple parameters are involved, and whether the pa-
rameters are appropriate will to some extent affect the prediction results. These pa-
rameters are divided into two categories: one category refers to the parameters that the
model continuously adjusts based on the objective function during training, such as weight
parameters, and the other refers to the parameters that need to be manually set and ad-
justed, including the input nodes count, hidden layer nodes count, activation functions,
the amount of data processed per batch, learning rates, etc. These parameters are called
hyperparameters. There is no fixed method for setting hyperparameters, and most studies
use trial and error methods combined with previous research experience to adjust settings
based on different data characteristics.
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In this experiment, the activation function utilized is sigmoid, and the loss function
is MSE. According to several comparison experiments, the model parameters set in this
paper are shown in Table 1.

Table 1. Key parameter settings for the LSTM-based prediction model

Parameters For Weekday For Weekend
Learning rate 0.005 0.0064
Batch size 64 64
Epoch 200 220
Input nodes count 28 20
Hidden layer count 2 2
Hidden nodes count 128 130
Output nodes count 1 1

To validate the effectiveness of the LSTM-based forecasting model, the trained model
is employed to forecast traffic volume for both a weekday (August 15, 2022) and a non-
weekday (August 28, 2022). Figure 13 presents the forecasting results for weekdays.

Figure 13. Prediction result for weekday

As shown in Figure 13, the LSTM model for weekday traffic volume forecasting capture
the general trend of observed traffic volumes, though some discrepancies persist when
compared to actual values. The value of RMSE is 10.2951, MAE is 8.0382, MAPE is
6.9778 and R2 is 0.9323.

Figure 14 displays the predicted results for non-weekdays, indicating that the LSTM-
based prediction model for non-weekdays predicts a similar trend in traffic volume to
the actual traffic volume, but there are still some differences compared to the true traffic
volume data. The value of RMSE is 10.0373, MAE is 8.2372, MAPE is 6.6849 and R2 is
0.9369.

4. PG-LSTM Hybrid Prediction Model Integrating Spatial and Temporal Fea-
tures. As indicated by the preceding feature analysis of traffic volume, it is known that
the traffic volume of the current road section in the road network is affected by its own
historical data and the surrounding road sections. In order to realize more accurate traffic
volume prediction, the model needs to capture two types of features: the historical time
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Figure 14. Prediction result for non-weekday

series pattern of the target road section itself, and network-wide spatial dependencies with
neighboring road sections.

4.1. Modeling of Spatial Feature Analysis. Based on Pearson correlation modeling,
the strength of traffic volume correlations between different road segments is assessed,
which provides a basis for the extraction of traffic volume spatial features. According to
the analysis of the spatial correlation of 9 road segments shown in Figure 8, target road
segments 1, 3, 4, 6, 8 and 9 with high correlation over 0.90 are selected for spatial feature
modeling.

4.2. Spatial Feature Modeling. Accurate capture of spatial correlations in traffic net-
works is a critical issue in spatial features modeling. CNN has developed earlier and can
handle local network structures well. It is mainly used in Euclidean space and has sig-
nificant advantages in image recognition processing. However, road networks only have
graphical forms, not real images, so CNN models cannot reflect the structural character-
istics of road networks, let alone effectively extract their spatial dependencies. In recent
years, GCN breaks the limitation that CNN only deals with grid-structured data, and
successfully extends CNN to the graph domain space, which shows obvious advantages
in modeling complex graph structures, and has already achieved success in the fields of
social network analysis, knowledge graph, and recommender system. In this study, we
utilize GCN to capture and represent the spatial features of traffic volume across multiple
selected road segments.

The road network can be described as an unweighted and undirected graph structure,
and represented by graph G = (V,E). Taking each road segment as a vertex v, the
vertex set can be expressed as V = {v1, v2, . . . vN}, here N denotes the count of vertices.
E denotes the edge set which captures and represents all direct linkage relationships
between the graph nodes. The graph’s connectivity structure is represented as adjacency
matrix A, which only contains elements 0 and 1. If there is no connection between two
roads, it is represented as 0, and if there is a connection, it is represented as 1.

In the GCN framework, we define the road network’s traffic volume data as node
attributes X ∈ RN×P , where P denotes the dimension of feature vectors corresponding to
the length of historical observations. The traffic state at time interval t is represented by
Xt ∈ RN×t. The traffic volume forecasting task integrating spatiotemporal features can
thus be formulated as:
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[Xt+1, · · · , Xt+T ] = f(G : (Xt−n, · · · , Xt−1, Xt)) (14)

In (14), n denotes the count of time points in the input sequence i.e. length of the
input sequence, T specifies the count of future time points to be predicted i.e. length of
the output sequence, and f denotes the mapping function to be learned through model
training.

Given adjacency matrix A and node feature matrix X, the GCN initially normalizes the
graph structure, then applies learnable parameter matrices to linearly transform the ag-
gregated neighborhood features. Coupled with nonlinear activation functions, it achieves
hierarchical feature propagation, thereby capturing both local and global spatial depen-
dencies in traffic networks, ultimately extracting spatial-aware features for prediction
tasks [25], which can be expressed as the following equation.

H(L+1) = σ(D̃−1/2ÂD̃−1/2H(L)θ(L)) (15)

The matrix Â = A + IN is obtained by adding the identity matrix IN to A, and
D̃ denotes the corresponding degree matrix, D̃ii =

∑
j Âij. The degree matrix D̃ is a

diagonal matrix where each diagonal entry D̃ii corresponds to the degree of vertex i, and
the degree of the vertex represents the number of sections connected to the vertex. H(L)

denotes the node feature matrix of layer L, initially H(0) is E. θ(L) comprises the model
parameters of layer L, which is centered on a series of optimizable weight matrices. σ
denotes the activation function. This study employs a single-layer GCN to model spatial
correlations in traffic volume patterns, as formulated by the following equation:

f(X,A) = σ(ÃXW0) (16)

Ã = D̃−1/2ÂD̃−1/2 (17)

In the above formulas, Ã represents the pre-processing process, which aims to balance
the influence of node degree and avoid nodes with high degree dominating feature propa-
gation. W0 ∈ RP×H denotes the learnable projection matrix transforming input features
X to hidden state. P is dimension of input feature vectors. H is the number of nodes in
the hidden layer [26]. The activation function σ throughout this study is the ReLU func-
tion. The output f(X,A) ∈ RN×H represents the traffic flow features of each node (road
segment) in the road network after aggregating the spatial neighborhood information,
which will be fed into the LSTM module for the next prediction.

4.3. The PG-LSTM Prediction Model.

4.3.1. Overall Structure of PG-LSTM Model. The PG-LSTM model is structurally di-
vided into three modules: a Pearson correlation coefficient calculator, a graph convolu-
tional network (GCN) layer, a long short-term memory (LSTM) module. Firstly, the
Pearson correlation coefficient method is utilized to screen out the road segments with
high spatial correlation to target road segment as the basis for constructing the network
topology. Then, using traffic volume feature matrices and adjacency matrices of selected
road segments as inputs, the GCN is employed to extract topological relationships within
the road network to learn spatially-correlated feature representations. Finally, the traffic
volume time series that integrates spatial features are used as input for the LSTM mod-
ule to capture the temporal features and obtain the final prediction results. The specific
calculation formula is as following (18)–(23).
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it = σ(Wi[f(A,Xt), ht−1]) +Wiht−1 + bi (18)

C̃t = σ(Wc[f(A,Xt), ht−1]) +Wcht−1 + bc (19)

FT =
∑

(WF [F (A,XT ), HT−1]) +WFHT−1 +BF (20)

ot = σ(Wo[f(A,Xt), ht−1]) +Woht−1 + xtbo (21)

Ct = ft ◦ Ct−1 + it ◦ C̃t (22)

ht = ot ◦ tanh(Ct) (23)

Where w is the weight that needs to be adjusted for optimization during the training
process and b is the bias term. The final predictions are generated by propagating the
features through a fully connected output layer. The structure of the PG-LSTM model
is shown in Figure 15.

4.3.2. Prediction Process Based on PG-LSTM Model. The working mechanism of the
PG-LSTM model encompasses the following critical steps:

Step 1: First, calculate the Pearson correlation coefficients between roadway segments
according to the traffic volume time series, and select the most highly correlated road
segments with target road segment based on certain correlation coefficient thresholds, the
threshold in this study is 0.90.

Step 2: Preprocess the data to form a weekday dataset and a non-weekday dataset,
and then divide each dataset into two parts, one for model training and one for model
testing.

Step 3: Train the model on the training set. Employ a GCN consisting of a single
convolutional layer and pooling layer to extract topological relationships within the road
network and learn spatially relevant feature representations. The input consists of the
standardized traffic volume dataset and the adjacency matrix, and the output is the traffic
volume features fused with spatial features.

Step 4: The output of the GCN is fed into the LSTM module to capture the temporal
dependencies in traffic volume. The output of LSTM module represents a forecast of the
traffic volume for the subsequent time interval.

Step 5: The model’s final output data must be denormalized to restore the original
scale and obtain the final prediction results.

4.3.3. Experiment and Performance Evaluation. This paper uses RMSE, MAE, MAPE
and R2 as evaluation indicators for the forecast results generated by the PG-LSTM model.

The PG-LSTM model’s performance is influenced by some hyperparameters, such as
the learning rate, training iterations (epochs), batch size, hidden unit quantity and so
on. The setting of some parameters refer to the method of LSTM prediction model in
the previous section. The length of the history sequence of node traffic volume features
and the hidden node quantity are very important parameters in the PG-LSTM model,
and different lengths of the history sequence and hidden node quantity will significantly
influence the prediction accuracy. This study employs comparative experiments method
to select more appropriate parameter values, and after several experiments, the model
parameters were selected finally as shown in Table 2.
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Figure 15. Overall Structure of PG-LSTM model

Table 2. Key parameter settings for the PG-LSTM model

Parameters For Weekday For Weekend
Learning rate 0.001 0.0012
Batch size 64 32
Epoch 300 240
Sequence length 16 12
Hidden nodes count for GCN 32 32
Input nodes count for LSTM 32 32
Hidden nodes count for LSTM 128 130
Loss function MSE MSE

To assess the predictive capability of the PG-LSTM prediction model, we utilized the
trained model to predict traffic volume on both a weekday (August 15, 2022) and non-
weekday (August 28, 2022) scenario. Figure 16 displays the predicted results for weekdays,
Figure 17 displays the predicted results for non-weekdays.

From Figure 16 and Figure 17, it can be seen that the prediction results of the PG-
LSTM model are better fitted to the actual trend of the traffic volume.

In order to further analyze the forecasting performance of the PG-LSTM model, four
other models (CNN-LSTM, LSTM, BP and GRU) are used to forecast the traffic flow on
the same road section. The weekday traffic forecasting results are visualized in Figure 18,
while those for the non-weekday are presented in Figure 19.
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Figure 16. Prediction result of PG-LSTM model for weekday traffic vol-
ume

Figure 17. Prediction result of PG-LSTM model for non-weekday traffic
volume

Figure 18. Prediction result of PG-LSTM and reference models for week-
day traffic volume

Table 3 and Table 4 comparatively present the traffic volume prediction performance
of the proposed PG-LSTM hybrid model against other methods (CNN-LSTM, LSTM,
GRU, and BP) for weekday and weekend scenarios, respectively.

Table 3. The evaluation results of distinct models for weekday traffic
volume forecasting

Models RMSE MAE MAPE R2
PG-LSTM 7.6102 6.4025 4.7042 0.9768
CNN-LSTM 8.9203 7.0415 5.8725 0.9584
LSTM 10.2951 8.0382 6.9778 0.9323
GRU 10.1128 8.1046 7.1269 0.9306
BP 14.2064 11.4218 10.1802 0.8976

The comparative analysis of prediction performance demonstrates that the proposed
PG-LSTM model achieves significantly lower prediction errors than the CNN-LSTM and
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Figure 19. Prediction result of PG-LSTM and reference models for non-
weekday traffic volume

Table 4. The performance evaluation results of different models for traffic
volume forecasting on non-weekdays

Models RMSE MAE MAPE R2
PG-LSTM 7.0235 6.2061 4.5485 0.9773
CNN-LSTM 8.2027 7.2303 5.4778 0.9602
LSTM 10.0373 8.2372 6.6849 0.9369
GRU 10.4103 8.2014 6.7598 0.9251
BP 14.8106 11.1038 9.9781 0.8901

other baseline models. This indicates that the PG-LSTM hybrid model, by effectively
extracting and integrating spatial-temporal features of traffic volume, can predict short-
term traffic volume data with greater accuracy. With the R² value exceeding 0.97, the
model exhibits strong explanatory power for traffic volume dynamics.

5. Conclusion. The study utilizes actual traffic volume records collected from an inter-
section in the Oakland area of California, USA, in the PeMS system. Firstly, it analyzes
the temporal and spatial features of the traffic volume. The temporal feature analysis
reveals that the traffic volume data changes show periodicity. The traffic volume change
trends on weekdays within a week are similar, and the intra-day change trends of the same
weekday in different weeks are basically the same. The intra-day traffic volume changes
on non-weekdays present different characteristics from those on weekdays. Spatial fea-
ture analysis indicates that traffic volumes among different sections of the transportation
network have mutual influences, especially the traffic volume changes between adjacent
sections are closely related. The calculation of Pearson correlation coefficient quantita-
tively proves the above conclusion. Then the LSTM-based traffic forecasting model is
constructed to perform traffic volume forecasting for individual road sections, and the
experiments show that the LSTM can effectively capture the temporal features of the
traffic volume. In order to further improve the accuracy of traffic volume prediction,
spatial correlations in traffic data must be accounted for predictive modeling. To ad-
dress this, we propose an integrated traffic volume prediction model named PG-LSTM
by combining PCC, GCN and LSTM: Firstly, the traffic volume correlation coefficients
between different road sections in the traffic network are calculated, and highly correlated
road sections are selected based on their correlation coefficients with the target segment.
Then by formulating the traffic network as a graph structure with road segments as nodal
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elements, we subsequently develop a GCN framework to extract spatial dependencies in
traffic volume. Finally, propagates the GCN-generated traffic features integrating spatial
dependencies into the LSTM module, so as to effectively combine spatial and tempo-
ral patterns for traffic prediction. Experimental comparisons with CNN-LSTM, LSTM,
GRU, and BP models demonstrate that PG-LSTM achieves significant advantages over
all evaluation metrics (RMSE, MAE, MAPE and R²). The results confirm PG-LSTM’s
enhanced capability in jointly modeling spatiotemporal traffic volume patterns.
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