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ABSTRACT. In the field of education, retrieving student information from classrooms is ex-
tremely important. While textual data such as dates and class schedules are commonly used
for information retrieval tasks, the use of camera footage in classrooms is also widespread.
However, image retrieval, particularly using sketches, is a new and complex technology. In this
paper, we develop a sketch-based image retrieval system to extract information from classroom
cameras. The final results allow for precise retrieval previously unattainable, enabling users
to make increasingly detailed queries and incorporate attributes such as color and contextual
hints from the sketches. To achieve this, we introduce a new framework that effectively inte-
grates sketch images using pre-trained CLIP models, eliminating the need for detailed sketch
descriptions. Lastly, our system extends to include sketch-based image retrieval applications,
domain attribute transformation, and detailed image generation, offering solutions for various
real-world scenarios.
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1. Introduction. Information retrieval in classrooms within the education sector is quite com-
mon for some classes equipped with cameras. However, retrieval using sketch images is still
novel as it heavily depends on resources and technological platforms [1, 2]. Nonetheless, trans-
forming from sketch images to specific images has become a focal task. The more detailed the
sketch captures information, the better the retrieval accuracy, and vice versa. Research in the
field of sketch-based image retrieval is quite abstract and faces many challenges.

In this paper, we pose research questions on how a sketch image can be used to retrieve
related images in the field of education, particularly concerning classroom issues. The output
of this deep learning model will be images that are related or closely related to the sketch. From
there, certain assessments about the quality of education, teaching, and student performance
can be made. This problem serves as a contextual suggestion for a specific sketch image, such
as finding a student using a phone from a sketch of a person using a phone.

Although sketch-based image retrieval has been studied before, it mainly focuses on a single
scene, object, or category available in the dataset, rather than combining multiple scenes and
objects. Combining multiple scenes and objects for image retrieval at different levels and with

increasing detail will enhance retrieval accuracy. Indeed, for sketch-based image retrieval, the
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higher the detail in the sketch, the more accurate the retrieval. Therefore, building a model that
can retrieve images based on sketches to capture multiple scenes and objects is quite challeng-
ing.

The main challenge we aim to address is solving the problem of combining detailed features,
specifically researching how sketches can supplement features to build detailed characteristics.
Our goal is to maintain the semantics of scenes and objects. To address this challenge, we lever-
age popular backbones to create composite semantics to reconstruct image features, supporting
the recognition of similarity between sketch and real images through scene and object features.

Our contributions are three folds and are summarized as follows:

e Novel methodology: We introduce a deep learning model capable of searching based on
sketch images to support the retrieval of similar images in classrooms, named SIRE. To
address these challenges, our work introduces a novel methodology with several key con-
tributions to the SBIR field: (1) Local Sketch Retrieval: Our model is specifically designed
to interpret basic, low-detail sketches, reducing the need for elaborate user input; (2) Com-
plex Scene Understanding: Unlike methods focusing on single objects, our approach han-
dles retrieval in complex scenes with multiple, potentially overlapping objects, tailored
for the classroom environment; and (3) Hybrid Loss Function: We introduce a combined
loss function (Liotq; = Liripiet + Lyec) that simultaneously learns shape similarity and
reconstructs fine-grained visual details, leading to more robust retrieval performance.

e New dataset: We also introduce the dataset we collected in classrooms at Thuyloi Uni-
versity, named MLIC-Edu.

e Analysis and evaluation: We evaluate the proposed model against recent similar models.
Additionally, we assess it on popular datasets to evaluate the proposed model.

The remainder of this paper is structured as follows. Section 2 discusses relevant previous
studies. Section 3 presents our method. The experimental evaluation is shown in Section 4.
Finally, some concluding remarks and a brief discussion are provided in Section 5.

2. Related works. In this section, we will survey some notable works on foundational image
retrieval techniques, sketch-based image retrieval techniques, followed by a brief introduction
to modern works in the field of image retrieval.

2.1. Image retrieval techniques. Image retrieval methods are quite popular in determining
the location of objects for similarity matching [3, 4], and are applied in problems such as object
detection [5, 6], object recognition [7, 8], and object segmentation [9, 10]. Image retrieval
can be performed through single-frame [11] or multi-frame methods [12] to locate objects over
time and space. In practice, image retrieval can be achieved through global features [13] or local
features [14] based on machine learning models, such as image retrieval models from dictionary
learning [15] or image retrieval methods from feature synthesis [16]. Alsmadi [17] introduces
an image representation method to partition into clusters that support image retrieval. Yang
[18] enhances image retrieval accuracy by ranking and minimizing global average precision.
Recently, Guan et al. [19] utilized a CNN backbone to aggregate positional features to speed up
image retrieval. Xinfeng [20] has emerged with a method combining Transformer to aggregate
features and build a dictionary to support image retrieval tasks.

2.2. Sketch-based image retrieval techniques. Image retrieval based on sketch images orig-
inates from identifying various levels of image retrieval [21, 22], progressing to scenes [23, 24]
and objects within the images [25, 26]. Previous deep learning methods [27, 28] often train
based on the correlation distances in the embedding space of features [27] related to sketch
images. Subsequently, Sangkloy [29] retrieves images from a similar image database with the
query being a sketch. Bhunia [25] has developed a deep ranking framework to perform early
retrieval from sketches, generalizing the catalog features of sketches, and extracting specific
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features related to scenes and objects from the sketches. Extended research based on sketch
images [10] has demonstrated effectiveness and enhanced the ability to query images. Most
studies on image retrieval from sketches involve constructing mappings from regular images to
sketches, which presents a significant challenge in building datasets.

2.3. Discussion. Most research on image retrieval focuses primarily on retrieving images through
a detailed image or a sketch that contains quite detailed information. However, in reality, im-
ages with detailed information are relatively rare. Therefore, in this study, we aim to develop a
model that can understand scenes and objects to facilitate image retrieval from sketches in the
field of education. We focus on analyzing classroom objects such as whether students are using
phones, whether they are paying attention, whether they are leaving their seats, etc. Addressing
these challenges is one of the difficult tasks, and our proposed model makes an effort to retrieve
images from basic sketches (local sketches).

3. Material and methods.
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FIGURE 1. Our SIRE framework consists of two main phases: Training and Testing

3.1. SIRE framework. Combining structural understanding cues from sketch images and data
images creates an effective query for image retrieval. Several studies [30, 31] use features ex-
tracted from sketches to generate distinct feature encoders and apply methods like feature mix-
ing or summation to form unique query sets. The main objectives here are: (i) to describe the
sketch image accurately; (ii) to map the sketch to real images to aid image retrieval. However,
mapping sketches to real images is a challenging task requiring advanced image mapping tech-
niques [32]. We leverage the concept of CLIP for this image mapping task to utilize the image
space for encoding sketches, thus addressing the issue of image retrieval. Specifically, we bring
sketches into a feature space closer to the real-world images being searched, facilitating image
retrieval and reducing search time.

For each feature pair (s, 1), each layer is visually described with the semantic image of self-
attention and cross-attention units, along with position encoders. Each classifier has a confi-
dence level, c, to determine when to cease the image retrieval inference process. If there are few
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points with high confidence, the inference process continues until mismatched points are elim-
inated during training, allowing the model to predict confidently. Once confidence is achieved,
the feature pairs (s, i) between sketches and real images are mapped into a near-similar space for
each pair, ensuring the two images almost align within the same feature space. Our proposed
architecture is illustrated in Figure 1.

3.2. Extract Feature. Traditional image retrieval methods typically use an image to query
within a set of existing images [6]. In contrast, we convert a sketch into query tokens to learn
from two sets of images: one set with high correlation to the sketch and another with low
correlation to the sketch. This approach allows us to build two image sets that support the
efficient retrieval of sketch images from a larger dataset.

Specifically, for an image P, we create its latent representation feature p as p = V' (P). How-
ever, for a sketch, we represent its equivalent feature as sp, where sp denotes the equivalent
feature of the query sketch. We construct a feature extraction network from computer vision
transformations using a three-layer MLP [33] with ReLU activation functions [34]. During
training, we continuously extract features from three inputs: the sketch, the set of images highly
correlated with the sketch as the positive feature (p™), and the set of images with low correlation
to the sketch as the negative feature (p~). After processing these three inputs, we integrate them
using a triplet loss function [35] to build continuous suggestion vectors for the image retrieval
process. The triplet loss function aims to minimize the distance between a randomly chosen
positive feature (p™) and the sketch feature. We leverage the compositional feature proper-
ties of zero-shot learning [36] to aggregate feature encoders, so even when the sketch provides
minimal information, the training process still has sufficient data to support learning.

3.3. Working Space. The model for feature extraction and integration into the workspace con-
sists of four main modules, show in Figure 2. Module 1 calculates features that are designed
to preserve structure, preventing the generation of non-informative features. Module 2, a self-
attention module [37], identifies the most informative regions to facilitate local information
matching. Module 3 is a cross-attention model that learns correlated features. Finally, Mod-
ule 4 enables the linking of feature pairs to support the measurement and retrieval of matching
feature pairs within the workspace.
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Working
Transformer Transformer Space
Block Block
T Compare
Feature Feature Feature
Attention Attention Attention
Feature Feature Feature
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FIGURE 2. Network overview
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Our method primarily relies on describing a sketch and pairing it with two support feature sets
during the training process. During model usage, the user provides a sketch image to infer the
desired visual information. The sketch is combined with two support feature sets to accurately
retrieve images in the educational domain. For this purpose, we construct a workspace that
includes embedded feature vectors to represent the discrepancy between the sketch and the
target image, expressed as DeltaF = |p* — e, and concatenate it with DeltaW. DeltaW is a
token that stores the difference between the sketch and the actual image.

The support feature set [38] functions similarly to constructing fixed handcrafted features to
enhance generalization on unseen images, which can improve performance on the seen training
sets. Although these support feature sets will be continuously trained to replace handcrafted
features, to generalize image retrieval in education based on sketches, we create a common
workspace to embed both the features and these support sets. This also allows generalization
beyond the training capability on seen sets. Specifically, at each training step, we randomly
select a support feature set D and set the embedding step PD = Embedding(di) to generate a
fixed representation. Then, we represent the sketch with the embedding representation.

3.4. Loss function. To further improve the connection between modules, we consider the CLIP
visual encoder [40] to transform the input image I into features pr = V' (I) for each patch. To
build region-based connection sets, we create high-correlation computation functions A be-
tween the global sketch features sTL, defined as A = (pr - sT'L), where A is normalized with
the softmax function across the patches. Each value a; represents the combination of the global
sketch retrieval and the image features to be retrieved for each patch. We then sum the weighted
embeddings across all patches to obtain a regional image feature for retrieval: ps = > _(a; X p;),
where i ranges from 1 to T. We construct correlated feature embeddings (p™ and p~) to support
the triplet loss function Ltriplet with a margin ¢ > 0 as follows:

Ltriplet = maz(0, ¢ + 0(sTL, pI) — 0(sTL, p,)) (1)

For sketch images, the triplet loss function typically focuses on matching detailed shapes
[35], while neglecting finer details such as color or texture. To create a workspace for compo-
sitional image retrieval, we develop structural features within the visual domain. We design an
objective function to reconstruct the sketch into a real-life image, requiring a Unet decoder [41]
to achieve realistic image reconstruction using the pixel-level L2 reconstruction loss function.
The reconstruction loss Lrec is thus formulated for real-life image reconstruction as follows:

Lrec = ||P* — G(STL)H2 ()

Finally, the overall loss function becomes:

Ltotal = Ltriplet 4+ Lrec 3)

4. Experiments. In this section, we provide a detailed description of the implementation of
the proposed model for image retrieval in education and the evaluation metrics used on three
datasets: QMULShoeV?2 [39], SketchyCOCO [32] and our dataset, MLIC-Edu. We also com-
pare our model with state-of-the-art methods through both quantitative and qualitative summary
studies to analyze the superiority of the proposed model. Additionally, we discuss the experi-
ments conducted to assess the effectiveness of each module within the proposed model.

4.1. Dataset. We utilized three datasets related to sketch images: QMULShoeV?2 [39], Sketchy-
COCO [32], and MLIC-Edu (our dataset). The QMULShoeV?2 dataset contains 2,000 sketches
and 6,730 real-world images. The SketchyCOCO dataset consists of 27,683 images, of which
18,869 are real-world images and 5,512 are sketches. The MLIC-Edu dataset includes 10,235
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images, consisting of 400 hand-drawn sketches, 2,367 sketches generated using the Sketchy-
GAN model [32], and 7,468 real-world images collected by classroom cameras at Thuyloi Uni-
versity. Additionally, the MLIC-Edu dataset includes 10 education-related labels: dozing off,
using a phone, turning sideways, turning vertically, fighting, hugging, raising a hand, opening a
book, reading, and taking notes (see Figure 3); each label is assigned nearly equivalent amounts
of data. Real-world image data were collected over a period of 6 months from five different
classrooms at Thuyloi University. All recording activities were approved by the university ad-
ministration and consented to by participating students. Cameras were positioned at various
angles to capture diverse perspectives and lighting conditions. The original resolution of the
captured images was 1920x1080 pixels prior to processing.
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FIGURE 3. Images of sketches for each label in the MLIC-Edu dataset

TABLE 1. Comparison between MLIC-Edu and SketchyCOCO datasets

dent behavior

Feature MLIC-Edu (Ours) SketchyCOCO

Scope Domain-specific: Education, | General-purpose: ~Common
classroom monitoring objects and scenes

Application Fine-grained analysis of stu- | General scene-level image

generation and retrieval

Label Semantics

Describes specific student ac-
tions and states (e.g., ‘raising
a hand’, ’dozing off”)

Describes common objects
(e.g., ’person’, ’car’, ’dog’)
and their arrangement

Image Context

Consistent: Real-world im-
ages from indoor classroom

Diverse: Images from various
indoor and outdoor settings

cameras

As shown in Table 1, while SketchyCOCO is valuable for general scene understanding,
MLIC-Edu provides a focused, context-rich resource essential for developing and evaluating
SBIR systems tailored to the specific challenges of the educational domain.

4.2. Performance metrics and training setup. To extract features from images, we used the
CLIP ViT-L/14 image encoder as the backbone pretrain [40] in all our experiments. The models
were trained with a learning rate of 0.00001. The Unet decoder [41] and the image converter
from sketch to real-life images were trained with learning rates of 0.0001 and 0.001, respec-
tively. We trained the model for 120 epochs using the AdamW optimizer [42] with a batch size
of 256. For data splitting, we allocated 90% of the data for the training set and 10% for the test
set. We used the [25] accuracy metric to evaluate the percentage of sketches matching real-life
images within the top 10 retrieved images.
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TABLE 2. Results for fine-grained object-level composed retrieval.

Methods QMULShoe-V2 | SketchyCOCO | MLIC-Edu
TASK-former [29] 0.441 0.347 0.425
SceneTrilogy [45] 0.462 0.402 0.4467

SketchyS [43] 0.750 0.786 0.7143
Triplet-SN [44] 0.7156 0.735 0.6834
SIRE (ours) 0.7646 0.8053 0.7455

4.3. Experiment setup. We design our extensive empirical study to answer the following three
key research questions (RQs):

e RQI: How is the SIRE model better compared to other deep learning methods with the
same concept?

e RQ2: How does each situation in SIRE contribute to accurate deep learning?

e RQ3: How close is the prediction of the SIRE model to the ground truth?

In RQ1, we showcase the experiments conducted on the three foundational network baselines.
For RQ2, we carried out a total of three distinct scenarios. Furthermore, for RQ3, we used the
SIRE model to make predictions and provided some of the model’s prediction results. The
results will be averaged over experimental runs on three datasets.

4.4. Results and discussion.

4.4.1. Comparison With Four Baselines (RQ1). Table 2 presents the quantitative results com-
pared to methods related to the sketch-based image retrieval problem. In the image retrieval
setup (Table 2), our method significantly outperformed both the baselines and state-of-the-art
methods across all datasets, demonstrating the effectiveness of the proposed approach in sketch-
based image retrieval. This achievement may be attributed to the support of feature sets and the
backbone functions that help identify regions in the sketches. Recent competitors like SketchyS
[43] and Triplet-SN [44] attempted to retrieve sketch images by combining inverse networks
but did not achieve better results. The challenge with sketches lies in representing detailed
information within the sketches and reverse retrieval in real-life images. However, thanks to
the enhanced learning capabilities through advanced features and backbones, our model sur-
passed other methods with an accuracy of 74.55% on the MLIC-Edu educational dataset that
we collected.
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FIGURE 4. Training and loss progress.

Due to early stopping techniques, the training process was halted after 63 epochs. Figure 4
illustrates the model’s training progress over time in terms of accuracy and loss for the proposed
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model. The narrow gap between the curves indicates that overfitting did not occur. Both training
and validation accuracy increased, while training and validation loss decreased as the number
of training iterations increased.

4.4.2. Applicability to Scenarios (RQ2). To evaluate the proposed method and the effectiveness
of combining features and backbones, we conducted five experiments, as presented in Table 3.
First, we separately evaluated the positive features and negative features in block 01. Second,
we assessed the standard backbone encoder against the CLIP ViT-L/14 image encoder in block
02. Finally, we evaluated the standard backbone decoder against the Unet decoder in block 03.
Additionally, we also evaluated the AdamW optimizer in this block 03.

TABLE 3. Five experiments with different inputs and networks

Experiments Block 01 Block 02 Block 03
Scenario 01 Positive feature - -

) Positive feature
Scenario 02 ) - -
+ Negative feature

Scenario 03 Posmv'e feature CLIP ViT-L/14 image encoder | -
+ Negative feature

Scenario 04 POSIUV.C feature CLIP ViT-L/14 image encoder | Unet decoder
+ Negative feature

Positive feature ) ) Unet decoder
+ Negative feature CLIP ViT-L/14 image encoder + AdamW

Scenario 05 (SIRE)

Table 4 also illustrates the effectiveness of combining feature sets with backbones, which can
be roughly understood as multimodal data. In general, the integration of different modalities
leads to improvements over using individual modalities. The accuracy increased from the first
experiment (only positive feature set) to the third experiment (positive feature set + negative
feature set + CLIP ViT-L/14 image encoder), with an average increase of 3% to 6%. Similarly,
in the fourth and fifth experiments, accuracy was significantly enhanced with the addition of
Unet decoder support and the AdamW convergence function. Furthermore, we observed that
selecting the right, sufficiently robust backbone helps the model converge more quickly and
achieve higher results.

4.4.3. Qualitative study (RQ3). The qualitative results are presented in Figure 5. In the setup
for sketch image retrieval in the educational domain, our method significantly outperforms other
approaches and state-of-the-art methods on sketch image datasets (as demonstrated earlier),
highlighting the effectiveness of combining image retrieval with support feature sets and ad-
vanced model backbones. This achievement can be attributed to the fine-tuning of parameters
and loss functions to recognize regions and our generative support feature sets. The biggest
challenge in sketch image retrieval within the educational field is identifying tiny objects, as a

TABLE 4. Experiment results

Methods QMULShoe-V2 | SketchyCOCO | MLIC-Edu
Scenario 01 0.6443 0.6363 0.6032
Scenario 02 0.7074 0.6897 0.6453
Scenario 03 0.7306 0.7386 0.6753
Scenario 04 0.7554 0.7955 0.7338

Scenario 05 (SIRE) 0.7646 0.8053 0.7455
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classroom typically contains many objects, some of which may be obscured by others. How-
ever, thanks to the enhanced interaction capabilities provided by the support feature sets to aid
the inference and retrieval process, our method achieves relatively stable results that assist in
analyzing and evaluating student focus in the classroom.

5. Conclusion. Exploring the detailed representation capabilities of sketch images combined
with their support feature sets marks a significant advancement in the field of image retrieval. By
harmoniously integrating sketch images with real-life feature sets, we introduce a modern and
innovative approach to sketch image retrieval within the educational domain. The introduction
of an improved image retrieval model drives the training of large language models and supports
the annotation of image information. Equally important, we provide an educational dataset for
diverse fields such as detailed image generation based on sketches and educational domain-
based image retrieval. In the near future, we plan to integrate additional data sources such as
text and audio to enhance the efficiency of image retrieval.
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