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ABSTRACT. This study explores named entity recognition (NER) and suggests a Chinese
NER model based on lexical knowledge enhancement, integrating external lexicon knowl-
edge into the Chinese BERT pre-training model to improve model performance. First,
using external lexicon matching, the input sequence is converted into a character-word
pair sequence. Subsequently, by devising an attention mechanism-based deep interac-
tion module for characters and words, the fusion of character vectors and matched word
vectors takes place among the underlying Transformers of the BERT model. Finally,
the globally optimal prediction result is obtained through the sequence decoding layer.
In contrast to models operating at a single character level, the present model incor-
porates entity-level Chinese word granularity information during training, achieving a
thorough integration of both character and word granularity information, this signifi-
cantly improves the model’s accuracy of Chinese entity boundary division and results in
superior performance on the task of Chinese NER. The Micro-F1 scores of this model on
the Note4, MSRA, Weibo, and Resume datasets reached 92.04%, 95.70%, 70.35%, and
96.07%, respectively.

Keywords: Named entity recognition; Knowledge enhancement; BERT; Attention
mechanism; Chinese word granularity

1. Introduction. As the internet increasingly permeates our lives, generating massive
volumes of information, the majority of this data is available in natural language format
[1]. In automating the processing and analysis of such data to extract critical informa-
tion, Named Entity Recognition (NER) technology has emerged and gained widespread
attention. Based on its characteristics, it can be categorized into three types: rule-based

matching methods, machine learning-based methods, and deep learning-based methods.
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Rule-based matching methods involve using predefined rules by experts to extract en-
tities from text. The construction of these rules requires reference to linguistic knowledge
such as grammar and morphology, as well as domain knowledge including domain-specific
abbreviations, specialized vocabulary, and special grammar, etc. [2]. Appelt et al. [3]
created the first named entity recognition system based on rules in 1995. That same year,
researchers like Morgan et al. [4] further integrated linguistic features and rules into the
systems, enhancing recognition reliability.

Machine learning-based methods involve using machine learning models to determine
sequences and label them, then apply labeling rules to label and extract named entities
from text [5]. Machine learning-based models include linear classification models like
Support Vector Machines [6], HMM models [7], and linear-chain CRF [8, 9], etc. Most of
these entity recognition models were proposed for English corpora and are not suitable for
Chinese. Some models have been improved for Chinese characteristics with poor effect, for
instance, multi-layer conditional random fields [10] and stacked Markov models [11], etc.
Although machine learning methods reduce the heavy workload associated with manually
designing numerous rules, they still require complex feature engineering.

Researchers are concentrating more and more on deep learning-based techniques to
accomplish autonomous feature learning [12, 13]. Three benefits can be summed up
regarding the use of deep learning-based techniques for NER tasks: (1) to reduce the
dependence on feature engineering; (2) non-linear information can be extracted through
non-linear activation functions; (3) the training method of deep learning NER models are
based on gradient descent [14], which make it possible to design more complex models.
The first deep learning NER model was proposed by Collobert in 2012 [15], which performs
convolution operations on the length of a fixed window size on a sequence [16] and uses
max-pooling to extract features, mapping the results through the ReLU [17] activation
function to the labeling space. In 2018, researchers at Google, including Devlin et al. [18],
brought forth the Transformer-based BERT language model [19], and subsequently, NER,
models fine-tuned from BERT have achieved excellent performance.

However, earlier models were mostly character-level, and for Chinese tasks, obtaining
word granularity information is also crucial. Adding lexicon information to character-
based models is one way to get word granularity information. In order for LSTM [20]
to encode Chinese letters and words and choose the most pertinent characters and words
from sentences, Zhang et al. [21] developed a lattice structure. Experimental results
showed its performance was better than character-based models, however, the complex
lattice structure limited its application in the industrial field. In order to import lexicon
information, Ma et al. [22] presented a solution that avoids complex structures by merging
the word lexicon into character representations with just minor alterations needed to the
character representation layer. Subsequently, Li et al. [23] transformed the lattice struc-
ture into a shallow Flat-Lattice Transformer structure to integrate character and word
information, further improving model performance. There have also been explorations us-
ing lexicons to guide model pre-training; Baidu’s ERNIE model [24] integrates knowledge
into BERT’s pre-training process using entity-level full word masking; Jia et al. [25] fur-
ther pre-trained BERT for NER tasks using professional domain Chinese datasets; Diao et
al. [26] designed a multi-layer N-gram encoder to enhance the Chinese BERT model. Xiao
et al. [27] proposed the Multi-View Transformer (MVT) method, which significantly im-
proves the performance of Chinese named entity recognition by constructing the visibility
matrix of multiple viewpoints and the viewpoint-aware attention mechanism to efficiently
capture the different interaction information between character and word. Zhang et al.
28] proposed the MGBERT-Pointer model, which combines the multi-granularity BERT
adapter with the efficient global pointer network, to effectively enhance the processing
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capability of complex semantics and fuzzy boundaries and nested structures in Chinese
named entity recognition. Liu et al. [29] propose the Sequential Lexicon Enhanced BERT
(SLEBERT) method, which effectively reduces the problem of noisy words and vocabu-
lary conflicts by constructing a sequential lexicon and introducing the positional encoding
and adaptive attention mechanism.

Although many studies have attempted to combine word granularity information with
pre-trained models, most of the existing methods only superficially superimpose word
vectors in the input or output phase of the model, failing to effectively integrate word
granularity features into the internal structure of the model, resulting in the failure to
fully utilize the potential of word granularity information. To address this problem,
this paper proposes a Chinese named entity recognition method based on lexicon knowl-
edge enhancement. The method firstly transforms the original input into a sequence of
character-word pairs through external lexicon matching; subsequently, a character-word
interaction module based on the attention mechanism is introduced between the underly-
ing Transformer layers of the BERT model to realize the in-depth interaction and fusion
of the character-level representations with the word-level representations, so as to fine-
tune the injection of entity-level Chinese word-granularity knowledge into the internal
structure of the model, which significantly enhances the modeling capability of the entity
boundary and the semantic information.

2. Materials and Method.

2.1. Overall Model Design. This paper proposes a Chinese named entity recognition
model based on external lexicon knowledge enhancement, which consists of two parts:
the lexicon enhancement BERT model and the decoding layer, and its overall structure
is shown in Figure 1.
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F1GURE 1. Overall structure of the model proposed in this paper

Currently, the more common approach to fusing BERT models with word granular-
ity information is to perform character-word fusion at the Embedding level. Specifically,
such approaches first use BERT to model character sequences to capture the dependencies
between characters, and then fuse the character features output from BERT with lexical
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features, which are finally input into the neural network annotation model. Although such
methods can introduce lexical features to a certain extent, they fail to take full advantage
of the internal sequence modeling of BERT because the interaction of character-word
features only occurs in the shallow network at the end of BERT. In contrast, the lexi-
cal knowledge enhancement-based approach proposed in this paper directly incorporates
Chinese lexical features in the Transformer layer inside BERT, thus more fully combining
character granularity and word granularity information, as shown in Figure 2.
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FiGure 2. BERT model design based on lexicon knowledge enhancement

Specifically, the design of the model in this paper is improved in the following two
aspects:

e [t utilizes an external Chinese lexicon to transform the input features into character-
word pair sequences.

o [t designs a gate mechanism-based multi-granularity interaction module for charac-
ters and words to thoroughly integrate Chinese character features with word features.

2.2. Character-word Pair Sequence. In English, English words are the smallest unit
of granularity in text and also the minimum unit bearing semantic meaning. However, in
Chinese, Chinese characters are the smallest unit of granularity, but semantic information
is often contained within both characters and words. If the model input granularity unit
is based on Chinese characters, the model only learns character-level features, resulting
in a language model thus trained that lacks word granularity information.

To integrate Chinese word granularity information, the model input is modified by ex-
panding the original Chinese sequence into a sequence represented in the form of character-
word pairs. Specifically, an external Chinese lexicon Dict is used to traverse a sentence
sequence containing n Chinese characters, s. = {cy,¢o,¢3, - , ¢, }, matching it with the
lexicon to form a set of character-word pairs. Taking the phrase “ F¥#TiEK VI as an
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example, six different words can be segmented: “ FW#” . “LE#H” , “HRK”, “K
L7, “KYLEE” and “YLEE” . Subsequently, these are assigned to the corresponding
sets for each character contained within the words. As shown in Figure 3, where <PAD>
represents a padding token used to standardize the length of inconsistent character-word
pairs. Finally, each character is paired with its assigned word set, transforming the rep-
resentation of a Chinese sequence input into a sequence of character-word pairs, that
is, Sew = {(c1,ws1), (co,wsa), -+, (cn, ws,)} where ¢; indicates the i-th character in the
sequence and ws; represents the set of words matched with character ¢;.
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FiGure 3. Example of character-word pairs

2.3. Consistency Loss. To improve the model’s capacity to represent the semantics of
characters and words, the BERT character vectors and Chinese word vectors must be
effectively fused. But the character vectors and word vectors are from distinct models;
the word vectors are from other open-source models, and the character vectors are from
the BERT pre-trained model. Therefore, the character vectors and word vectors pos-
sess completely different semantics, and directly adaptive fusion of them will limit the
effectiveness of the model.

To address this issue, this paper models the original character and word vectors ob-
tained through the Transformer to achieve mapping of the original vectors and improve
information interaction between them. Considering that both character vectors and word
vectors are derived from the same Chinese sentence and possess similar semantic infor-
mation, a consistency loss function Lg, is designed, with the specific formula as follows:

Lsim = COSine(Echara Eword) (1)

In Equation (1), Cosine(-) represents the cosine distance between vectors, Ecna, is the
representation of the Chinese character vector after passing through the Transformer
layer, and FEyoq is the representation of the Chinese word vector after passing through
the Transformer layer. After the word and character vectors that have gone through the
Transformer are averaged, respectively, their similarity is shown by the cosine distance
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F1GURE 4. Character-word deep interaction module

between the two vectors. Losses are inversely correlated with similarity: higher similarity
= smaller loss.

2.4. Character-word Interaction Module. To fully integrate Chinese word granular-
ity information, the word information is deeply integrated with the BERT model itself.
Inspired by the principle of gating mechanism, this paper designs a novel character-word
deep interaction module, as shown in Figure 4. It can directly inject lexicon information
into the internal of the BERT model, achieving a thorough fusion of both character and
word granularity information in Chinese.

This module receives two parts of input: a character-level vector representation and its
matching set of word vectors. For the ¢-th position in the character-word sequence, the
input can be represented as (h§, z¥). Here, h{ represents the character vector at the i-th
position in the sequence, specifically the output vector from the previous Transformer
layer in BERT. z* = {4, z%, ...,z } denotes a set of pre-trained Chinese word vectors,
where m represents the size of the corresponding word set for the current character, and

w

x is the word vector for the first corresponding word of the current character. The j-th
word in z} is represented as shown in (2):

w

Tij = € wi (2)

Where e” represents the pre-trained word vector lookup table, and w;; indicates the j-th
word in z}”. To align the character and word vector representations of different dimensions,
a non-linear transformation is also required for the corresponding word vectors, as shown
in (3). Wi is a d. xd, matrix, and the result of multiplying it with the word vector
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is processed through a tanh activation function. d, and d. represent the dimensions of
the word vector and character vector, respectively, where the dimension of the character
vector is also the hidden layer dimension of BERT. W5 is a d.xd. matrix used to transform
the dimensions of character vectors and word vectors to make them consistent, and b;
and by are bias parameters.

'U,Lj = W2 (tanh(Wﬂ:Z + bl)) -+ b2 (3)

The set dimension for the word vector set of all matching words corresponding to the
i-th letter is m X d., where m is the size of the matching word set. This word vector
set is represented as X; = (z,...,z¥ ). The word vector for the i-th character’s j-th
matched word is represented by z;7. The character-level vector corresponding to the i-th
character is concatenated with the word vector information of the associated word set
and transmitted through a gating network, taking into account that the current character
has different focuses on each matched word. Following character-word gating fusion, the
gating network’s output is weighted to produce a representation that is concatenated with
both the original word vector representation and the character vector representation.
Finally, a fully connected layer is used to obtain the final representation vector after
character-word fusion. The gating network weight calculation formula for each word
vector in the matching word set and the current character vector is shown in (4), where
Waeate is the fully linked layer’s weight matrix in the gating network. After obtaining
the weights, a weighted sum can be performed as shown in (5), that is, calculating the
weighted sum of the word and character vectors using the gating network weights.

g; = Sigmoid(Wgate [ A, 1" ]) (4)

Z gzx + 1_gz)h6) (5>

Finally, by concatenating the word-granularity information z;” obtained through weighted
sum in its gating form with the original character vector and word vector, the represen-
tation vector after character-word fusion can be obtained as shown in (6):

2.5. Lexicon-Enhanced BERT Model. Methods of some current researches that in-
corporate word-granularity information mostly perform interaction and fusion of charac-
ters and words at the embedding layer outside the model. However, this method cannot
fully integrate character and word information.

The model adopted in this paper is a mode of character-word interaction within the
model, adding the operation of word vector and character vector interaction after the first
Transformer layer inside BERT. This approach better injects external lexicon knowledge
into the model, allowing the information of both granularities to be fully integrated with
the training of different layers of the model. The approach of integrating word information
at the embedding layer outside the model is depicted in the left half of Figure 5, whereas
the method used in this research is displayed in the right half.

Given a Chinese sentence sequence s. = {cy, g, ¢3, -+ , ¢, } containing n characters, the
corresponding character-word pair sequence S, = {(¢1,ws1), (c2, wss), -, (Cp, ws,)} is
first constructed according to the above method. Then, the sequence {cy,¢a, -+ ,¢,} is

sent to the pre-processing embedding layer of the BERT model input. Token vector, sen-
tence pair vector, and position vector are added, and the result is the input representation
E ={ej,eq, -+ ,e,}. The vector E is then entered into the BERT model’s Transformer
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F1GURE 5. Comparison between external and internal model fusion

encoding layer. The Transformer encoder serves as the foundation for the BERT model’s
structure, with each Transformer layer’s function illustrated in (7) and (8):

G= LayerNorm(H(L_l) + MHAttn(H(L_l))) (7)

H* = LayerNorm(G + FFN(G)) (8)

Among them, the output of the L-th layer of the BERT model is represented by H* =
{h, hL, ... b}, LayerNorm is layer normalization processing, MHAttn is the multi-head
attention mechanism, and FFN is a two-layer feedforward fully connected network with
ReLU as the activation function.

To inject word-granularity information between the k-th and (k4 1)-th Transformer
layers inside the model, the model first obtains the output H¢ = {h$, hS, ..., h¢} after
k consecutive Transformer layers. Then, each character-word pair (h§,z¥) is processed
using the character-word deep interaction module, denoted here as LA. As shown in
(9). Following this, the fusion vector containing both character and word granularities is
computed based on the attention mechanism.

hi = LA(hf, 27) (9)
There are a total of L Transformer layers in the structure of the Chinese BERT model. Af-
ter integrating the information of both character and word granularities, H = {hy, ho, ..., hy,}

is fed into the next Transformer layer for continued learning. Finally, the output H from
the model’s final layer, the L-th Transformer layer, this semantic vector can be combined
with softmax layer or Conditional Random Field decoding to obtain the predicted result
of the sequence.

2.6. Sequence Decoding Layer. CRF is the named entity recognition model’s top-
level module. It accomplishes sequence decoding by calculating the probability values of
potential sequences and choosing the path with the highest probability for output. The
score of potential labels at each point in the sequence is the deep model’s output. For
instance, following a deep model’s encoding of the input sequence s. = {¢y, ¢, ..., ¢}, an
output set reflecting the scores corresponding to the relevant candidate labels is obtained.
The conditional random field layer receives this output after that for decoding. Figure 6
depicts the process of CRF decoding.

3. Results and Discussion.
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TABLE 1. Data set statistics table
Dataset Type Train Dev Test
Noted Sentence 15.7k 4.3k 4.3k
Character 491.9k 200.5k 208.1k
Sentence  46.4k — 4.4k
MSRA Character 2169.9k 172.6k
Weibo Sentence 1.4k 0.27k  0.27k
! Character 73.8k  14.5k  14.8k
R Sentence 3.8k 0.46k 0.48k
SUME Character 124k 139k 15.1k

925

3.1. Data Sets. In this paper, four Chinese Named Entity Recognition (NER) datasets
are selected for model performance evaluation, namely Note4, MSRA, Weibo and Resume
datasets. Each dataset is divided according to the training set, validation set and test
set, and the experimental results are reported based on the performance of the test set,
and the statistical information of the specific datasets is detailed in Table 1.
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TABLE 2. Experimental parameters

Content Parameter name Value
Maximum length of sequence 128
Input length Batch size 64/32/4
. Lexicon size 8,824,330
Pre-Trained word vector Word Vector Dimension 200
Network layers 12
Hidden layer dimension 768
BERT-based Number of Attention heads 12
Parameter size 110M
Epoch 20
Learning rate le-5
Train Dropout 0.1
Optimizer AdamW
Random Seed 2021

The purpose of the Noted dataset is to identify four named entity types, namely People
(PER), Places (LOC), Animals (ANI) and Plants (PLT), with data from Baidu Encyclo-
pedia and Wikipedia, using the BIO annotation method and balancing the high-frequency
and low-frequency entities by category sampling. The MSRA dataset, which requires the
identification of three different categories of entities—Person (PER), Location (LOC),
and Organization (ORG)—is a frequently used dataset for Chinese named entity recog-
nition tasks. Two thousand Weibo posts that have been filtered from the Chinese social
media site Sina Weibo make up the Weibo dataset. These postings include four dif-
ferent categories of entities: Person (PER), Location (LOC), Organization (ORG), and
Geopolitical Entity (GPE). Resume dataset is derived from resume summaries of over a
thousand senior managers on financial websites, mainly including eight types of entities:
Person (PER), Country (CONT), Education (EDU), Location (LOC), Title (TITLE),
Race (RACE), Organization (ORG), and Profession (PRO).

3.2. Experimental Environment and Parameters. Our experiment’s operating sys-
tem is Linux, which is paired with an Intel Core i7 processor and a GeForce RTX 3090
GPU. As indicated in Table 2. The framework used is Pytorch. The model is built on the
Chinese version of Google’s open-source BERT-Base pre-trained model, which includes 12
Transformer layers. For external word vectors, Tencent Al Lab’s open-source and thor-
oughly pre-trained Chinese word vectors were selected. These word vectors were trained
using a directed skip-gram algorithm on massive amounts of news and web texts, with
a dimension of 200 and a size of 16GB, covering more than eight million Chinese words.
Regarding to the model settings, the character-word deep interaction module designed
in this paper is applied between the first and second Transformer encoder layers of the
BERT model, and both BERT parameters and external word vectors are optimized during
training. In terms of experimental parameters, the maximum length of the Chinese text
sequence is set to 128, the batch size for training on the Note4 Chinese business dataset
is set to 64, the MSRA dataset is set to 32, and the other two datasets are set to 4.

3.3. Evaluation. The precision, recall, and F1 score of the model on the dataset are the
main assessment criteria for this challenge. Compared to a simple average, the F1 score
provides a more thorough assessment of a model’s performance. It is calculated as the
harmonic mean of precision and recall. The formulas for these three indicators are as
follows:
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TP
Precision = TP+—FP X 100% (10)
TP
l=——— x1 11
Reca TP+ N x 100% (11)

2 x Precision x Recall
F1 =

1 12
Precision + Recall x 100% ( )

Specifically, the counting rules for sample results are based on characters; a character
is considered a true positive (TP) if its predicted entity position and category are correct,
and a false positive (FP) if not. When a character is accurately predicted to be 0 and
does not belong to an entity category, it is considered a true negative (TN); when it is
mistakenly classified as an entity, it is considered a false negative (FN). F1 is split into two
calculating approaches for multi-classification tasks: Micro-F1 and Macro-F1. Macro-F1
computes the average over all entity kinds after calculating precision and recall for each
entity type independently. As seen by the following formulas, Micro-F1 on the other hand
considers all entity kinds in order to determine the total precision, recall, and F1 score:

. > TP
Precisionyicro = =7 = m (13)
Y TP+ FP
* TP,
Recallyficro = Lizt (14)

Z?:l TP+ Z?:l FN;

2 x Precisionyiero X Recallyg
MiCI’O—Fl _ - Micro Micro (15>

Precisionyicro + Recallyicro
Micro-F1 better reflects the overall model effectiveness when there is an imbalance in
entity categories. Thus, the assessment metric in the named entity recognition experi-

ments reported in this research is the Micro-F1 score.

3.4. Validation of model validity. The performance of the lexical knowledge-enhanced
model described in this research was assessed by contrasting it with named entity model
tests conducted on the Note4d, MSRA, Weibo, and Resume datasets. Table 3 displays the
experimental outcomes, with the values representing the Micro-F'1 score. The pre-trained
model described in this research greatly increases performance on Chinese named entity
recognition tasks because to its strong semantic encoding capabilities, according to the
experimental data, when compared to the existing named entity recognition models. The
efficiency of the suggested model is confirmed by the model’s performance on the four
data sets, which outperforms the top three deep models.

As shown in Table 3, named entity recognition models that incorporate Chinese word
granularity information achieve better performance than other single character level mod-
els. Using the BERT+Word model, for instance, its performance on the Note4, MSRA,
and Weibo datasets, as measured by Micro-F1, is 0.42%, 0.17%, and 0.77% higher than
the BERT model, respectively. Additionally, it is seen that the BERT+Word model and
the ERNIE model, which is developed from BERT, outperform all other models. This
indicates that, for Chinese named entity recognition tasks, it makes sense to combine
the BERT pre-training model with word-level data specific to Chinese entities. Further-
more, the model in this paper integrates word information within the model, compared
to the BERT+Word model that interacts of character and word at the Embedding level.
This leads to performance improvements by 0.61%, 0.58%, 2.03%, and 0.61% in Micro-F1
values, respectively, on the Note4d, MSRA, Weibo, and Resume datasets. This improves
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TABLE 3. Model implementation comparison

Model Note4 | MSRA | Weibo | Resume
BiLSTM+CRF 86.16 | 91.87 | 56.75 | 94.41
Lattice LSTM][20] 86.28 | 93.18 | 59.92 | 94.46
LR-CNN 85.65 | 93.23 | 60.15 | 93.95
BERT 91.01 | 94.95 | 67.55 | 95.86
BERT+Word 91.43 | 95.12 | 68.32 | 95.46
ERNIE[24] 92.01 | 95.08 | 67.96 | 94.82
ZEN|26] 89.79 | 95.29 | 66.73 | 95.41
FLATI[23] 80.56 | 95.46 | 68.07 | 95.78
Ma et al.[22] 81.34 | 95.35 | 69.11 | 95.54
Lexicon Knowledge Enhancement | 92.04 | 95.70 | 70.35 | 96.07

TABLE 4. Experiment of interaction scheme

Model Span F1/% Type Acc/%
Note4 | MSRA | Noted | MSRA
BERT 91.68 | 96.07 | 93.16 | 97.29
BERT+Word 93.38 | 96.33 | 94.24 | 97.45
Lexicon Knowledge Enhancement | 94.16 | 96.58 | 94.84 | 97.52

the overall model’s comprehension of Chinese semantics by explicitly representing word
granularity information at the model level.

3.5. Comparison of Model-level interaction and Embedding-level interaction.
In contrast to models that carry out interaction between character and word vectors at the
external Embedding layer, the method in this paper is a form of lexicon enhancement at
the model level. It achieves deep interaction between characters and words by designing
a unique interaction module that directly injects external word vectors into the model.
BERT+Word is a benchmark method that performs character-word interaction outside
the model, mainly by concatenating the output part of the BERT model with word vectors,
and then feeding them into LSTM and CRF for further integration and inference.

In Table 4, on all four datasets, the model in this research performs better than the
BERT+Word model. To further verify how model-level character-word interaction im-
proves performance in entity recognition tasks, this section sets up two new evaluation
metrics Span F1 and Type Accuracy (Type Acc) for comparison. The experimental re-
sults are shown in Table 4. Span F1 represents the correctness of the entity span in NER,
while Type Acc calculates the consistency in calculate form and accuracy, indicating the
proportion of entities with both span and type correctly predicted among all predicted
entities. Both BERT4+Word and the model in this paper have higher Span F1 and Type
Acc values on Note4 and MSRA datasets than the original BERT model at the single
character level, further proving that the model’s capacity to identify and categorize en-
tity boundaries is enhanced by the inclusion of Chinese word granularity information.
Compared with the BERT+Word model, the model in this paper improves the Span F1
and Type Acc values on the Note4 and MSRA datasets by 0.78%, 0.25%, 0.6%, and
0.07%, respectively. The experimental results once again validate that compared to mod-
els that perform character-word interaction at the Embedding layer outside the model,
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TABLE 5. Exploration of interaction location

Interaction type Location | F1/%
Single interaction 1 92.04
3 91.73

6 91.34

9 91.11

12 90.67

Multiple interactions 1,3 89.54
1,3,6 88.53

1,3,6,9 | 88.28

Interactions between each layer All 86.23
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injecting word-level knowledge into the model to achieve deep interaction between word-
level and character-level features allows the model to more fully learn Chinese semantic
information.

3.6. Exploration of the Position for Character-Word Interaction Module. This
section applies the character-word interaction module between different Transformer lay-
ers of the model and conducts experiments using the Note4 dataset. Table 5 displays the
outcomes of the experiment. The experiments set up various schemes, including perform-
ing a single instance of character-word interaction between some two layers within the
BERT model, multiple instances of character-word interactions between different layers,
and character-word interactions between each Transformer layer.

It can be observed from Table 5 that enhancing the model with lexicon knowledge
at the lower layers of BERT, incorporating word granularity information to facilitate
interaction with other layers of BERT, allows for a more comprehensive learning of vector
semantic representations. Conversely, integrating character-word fusion interactions after
higher Transformer layers in BERT results in a shallower level of interaction between
semantic vectors at earlier layers. Moreover, performing character-word interactions after
all Transformer layers in BERT leads to severe overfitting, substantially degrading model
performance, with an F1 score of only 86.23% on Note4 dataset. Therefore, adding a
character-word interaction module after only the first Transformer layer of BERT yields
the best results, with an F1 value of 92.04%.

3.7. Validation of the Pre-Trained Model Size’s Effect. In the previous sets of
experiments, a fixed 12 Transformer layers was used in the model. However, large-scale
pre-trained models consume massive resources and have slow inference speeds, making
the choice of model size particularly important. This section of experiments attempts to
use fewer Transformer layers, specifically 12, 9, 6, and 3 layers, to verify the impact of
different numbers of model layers. Additionally, considering the real-time requirements in
practical applications, the experiments compare the inference time of the models on the
test set, with the outcomes displayed in Table 6.

TABLE 6. Model size experiment

Layers | Accuracy/% | Recall/% | F1/% | GPU inference time (ms/bar)
12 91.75 92.37 92.04 8.81
9 90.58 91.11 90.85 4.19
6 89.45 89.67 89.55 2.21
3 87.26 85.94 86.59 1.62
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As can be seen from Table 6, lightweight BERT models, with fewer parameters and
simpler model structures, have faster inference speeds. Compared to the original BERT
model, they are quicker to deploy and operate and need less resources in real applications,
but the model’s performance also suffers as a result.

4. Conclusion. In this paper, a Chinese named entity recognition model based on lexical
knowledge enhancement is proposed with the goal of improving the performance of Chi-
nese named entity recognition (NER) model. The model injects character granularity and
word granularity information into the underlying Transformer layer of the BERT model
through the attention mechanism, and realizes the deep interaction and fusion between
character and word inside the model, providing a new solution to the character-word fu-
sion problem in Chinese named entity recognition. Compared with existing methods, the
model in this paper helps to realize deeper knowledge fusion inside BERT, significantly
enhances the model’s ability to understand Chinese semantics, and achieves significant
performance improvement in Chinese named entity recognition tasks. The Micro-F1 val-
ues on Noted, MSRA, Weibo and Resume datasets reach 92.04%, 95.70%, 70.35% and
96.07%, respectively.

However, the introduction of word granularity information has led to a significant in-
crease in the number of model parameters, which in turn raises the demand for computing
power. Therefore, how to perform model lightweight compression while ensuring that the
accuracy loss remains within an acceptable range will be a key direction for future re-
search.
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