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ABSTRACT. Cross-domain guided few-shot learning aims to transfer knowledge from mul-
tiple known domains to an unknown domain to evaluate the generalization ability and
robustness of the model. However, these few-shot deep learning models encounter several
1ssues due to limited stability and suboptimal local optimization. This paper addresses
these issues by employing a self-flexibility mechanism to enhance stability and to improve
the performance of air quality image recognition. The model is capable of aggregating lo-
cal features of images and constructing stable factors for air quality tmage recognition.
Extensive experiments on two datasets, namely CUB and T-Air, demonstrate that our
method significantly outperforms the existing state-of-the-art methods.
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1. Introduction. In recent years, deep learning models [1, 2] have achieved significant
progress in image recognition tasks. However, the issue of data scarcity remains a major
obstacle to the further development of fundamental deep learning models. To address
this limitation, Few-Shot Learning (FSL) methods [3] have been developed to enable
models to recognize images with only a few training samples. Furthermore, in real-world
scenarios, there exists a domain gap, where different domains often exhibit substantial
image recognition disparities. Therefore, building a few-shot deep learning model capable
of handling various real-world domains is also a problem that needs to be solved.
Concurrently, the increasing rate of air pollution due to climate change highlights the
necessity of air quality image recognition [4]. This would facilitate the early detection and
timely intervention for poor air quality. While deep learning models have been applied
to air quality image recognition, most approaches primarily focus on recognition through

common features without delving into multiple domains and flexible tasks. Consequently,
875
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developing a deep learning model applicable to multiple domains and enhancing flexibility
for air quality image recognition is essential.

To address these challenges, we leverage diverse inputs from multiple air quality image
domains to enhance stylistic diversity and propose a novel cross-domain guided few-shot
learning model based on cross-domain learning and self-flexibility (CdFS) for air quality
image recognition. We have developed a local patch augmentation algorithm to improve
the model’s performance. The core idea of CdFS is to enhance knowledge transfer from
multiple domains by integrating local patch augmentation with global image optimization.
Specifically, our method learns both local and global features within air quality images,
thereby stabilizing relevant features across multiple domains. In summary, the main
contributions of this paper include three points:

e We propose a novel cross-domain guided few-shot learning model based on cross-
domain learning and self-flexibility, named CdFS, which aims to understand both
local and global features to improve the efficiency of image recognition.

e We develop an effective loss function to optimize the visual discrepancy between seen
and unseen domains during both the training and prediction phases.

e We conduct experiments using both qualitative and quantitative methods on two
datasets, CUB and T-Air, to evaluate the effectiveness of our approach. T-Air is an
air quality image dataset that we collected and labeled.

2. Related Works. Deep learning models [5, 6] based on convolutional neural networks
support air quality image recognition. Hardini [6] utilizes a CNN for air quality image
recognition. Kow et al. [4] incorporate an attention mechanism for air quality image
recognition. The majority of these studies employ a large amount of air quality image
data to train deep learning models, while in practice, obtaining and collecting such large
datasets is very challenging.

Few-shot learning models [7, 8, 9] have emerged to address the issue of limited data
and support image recognition. Some few-shot learning models are combined with cross-
domain learning [10, 11, 16] with the aim of effectively generalizing from the source domain
to the target domain. Cross-domain few-shot learning is crucial for building effective image
recognition methods. Li [13] has developed a few-shot learning approach combined with
multiple domains for image recognition.

Flexibility is manifested in input diversity or cross-domain transferability to support
the enhancement of image recognition quality in deep learning models [14, 15]. In cross-
domain generalization, Zhou [16] mixed images from different domains, while Ren [17]
combined multiple tokens from different domains to increase image recognition capability.
Zhuang [18] proposed a method to decompose image features into specific attributes such
as object, spatial, and subject. These data augmentation methods aim to create diversified
input data and increase the generalization ability of the model, as well as improve its
performance during prediction. However, models based on flexibility often lack stability
during training due to unstable data.

3. Proposed Method.

3.1. Problem Definition. Accurate and robust air quality image recognition is crucial
for environmental monitoring and public health. However, the development of effective
deep learning models for this task is often hampered by the limited availability of labeled
air quality image data. While traditional deep learning paradigms thrive on large-scale
datasets, real-world scenarios frequently present challenges associated with data scarcity.
To address this, FSL has emerged as a promising approach, enabling models to learn novel
concepts from only a handful of labeled examples.
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Furthermore, the practical deployment of air quality image recognition systems often en-
counters a significant domain shift between the training (source) data and the deployment
(target) environment. Variations in image acquisition conditions, sensor characteristics,
and geographical locations can lead to substantial differences in data distributions across
domains. Therefore, a critical challenge lies in developing models that can effectively
generalize from a source domain with limited labeled data to an unseen target domain
with potentially different characteristics and novel categories.

In this paper, we specifically tackle the problem within the Single Source Cross-Domain
Few-Shot Learning setting. We assume access to a labeled source dataset D, while
the target dataset D,, containing air quality images from a distinct distribution and
comprising disjoint categories, remains inaccessible during the training phase. Formally,
we have C(D,)NC(D,;) = ) and P(D;) # P(D;), where C(-) denotes the set of categories
and P(-) represents the data distribution of the respective dataset.

Existing approaches in few-shot learning and cross-domain adaptation often struggle
to effectively address both the limited data availability and the significant domain gap
inherent in air quality image recognition across diverse real-world scenarios. To overcome
these limitations, we propose a novel approach: Cross-Domain Few-Shot Learning based
on self-flexibility (CdFS). Our method aims to enhance the model’s ability to learn trans-
ferable features and adapt to new domains with minimal labeled data by leveraging a
self-flexibility mechanism.

Within the episodic training framework, our goal is to train a model on the source
dataset Dy that can accurately classify air quality images from the unseen target dataset
D, when presented with only K labeled examples per class (support set) and a set of
unlabeled query images from those same classes within an episode. The core challenge
lies in learning a feature representation that is both discriminative enough to distinguish
between the few examples in the support set and robust enough to generalize across the
significant domain shift between Dy and Dy, a challenge that our proposed CdF'S approach,
with its emphasis on self-flexibility, is designed to address.

3.2. Model Architecture. The proposed Cross-Domain Few-Shot Learning based on
self-flexibility (CdFS) model, as depicted in Figure 1, is designed to tackle the challenges
of air quality image recognition in scenarios with limited labeled data and significant
domain shifts. Our architecture comprises a backbone network £ (CNN/ViT), a domain
discriminator fgyom, a global fully connected (FC) classifier f,, and a FSL relation classifier
fre, all with their respective learnable parameters 0, Ogom, 04, and 0,..

To effectively capture and leverage style information at different scales, the Style-
Gradient Generation Module processes each input image / through both global and local
pathways. The global pathway operates on the full image with dimensions H x W x C.
Simultaneously, the local pathway generates N crops {[i, I, ..., Iy} of size h x w x C,
where h < H and w < W. These crops are not randomly selected but are strategically
sampled using a learned attention mechanism that identifies and focuses on regions within
the image that are most indicative of air quality characteristics.

This dual-pathway design is a cornerstone of our self-flexibility mechanism, allowing the
model to intrinsically handle and benefit from different image sizes. The global pathway
captures holistic contextual cues from the entire scene, while the local pathway focuses
on fine-grained details that might be crucial for accurate air quality assessment. The
effect of this multi-scale processing is to create a more robust and comprehensive feature
representation. Furthermore, the consistency between these scales is explicitly enforced
by our consistency loss term, Leonsistency, Which ensures that the model learns features that
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are invariant to scale variations, thereby enhancing stability and improving generalization
performance.

The Self-Versatility Gradient Ensemble Module then aggregates the style gradients
obtained from both the global and local pathways. This aggregation is performed using
a weighted sum, as defined by the equation:

Gensemble =a- C;global + ﬁ : Z(wz : Glocali) (]')

where Ggiopqr Tepresents the global style gradient, Gioeq, is the style gradient computed
from the i-th local crop, and {w;} are learnable weights that determine the contribution
of each local gradient. The coefficients v and [ are introduced to balance the influence
of the global and local features, and their values are optimized during training using a
meta-learning approach.

To enhance the model’s robustness to stylistic variations encountered in unseen target
domains, the Adversarial Style Perturbation Module generates perturbations to the style
representation. This is achieved through the following formulation:

Sperturbed = Soriginal +€- Slgn(vSL(e)) (2)
where Sprigina s the original style representation extracted from the image, € is the
magnitude of the perturbation, and VgL(6) denotes the gradient of the loss function with
respect to the style parameters. This approach ensures that the introduced perturbations
remain within a controlled range while effectively challenging the model to learn domain-
invariant features.
Finally, the Discrepancy & Consistency Optimization module employs a compound loss
function to guide the training process. This loss function is defined as:

Ltotal = Ltask: + Ldiscrepancy + Lconsistency + Ladversarial (3)

where L;,q represents the primary loss associated with the few-shot learning task,
Lgiscrepancy €ncourages the separation of features from different domains, Leonsistency €n-
sures that the semantic information is consistent between the global image and its local
crops, and Lgygpersariar guides the adversarial training process in the style perturbation
module.
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In essence, the CdF'S model integrates these four modules to effectively learn discrimina-
tive and domain-invariant features, enabling robust performance in cross-domain few-shot
learning for the task of air quality image recognition.

3.3. Loss function. The CdFS model is trained using a compound loss function that
integrates several objectives to optimize its performance in cross-domain few-shot learning
for air quality image recognition. The total loss is defined as:

Ltotal = Ltask + Ldiscrepancy + Lconsistency + Ladversarial (4>

The primary objective of the few-shot learning task is captured by the task loss, Ligsk.

During each training episode, the model aims to correctly classify query images based on

the support set. We employ a relation network approach where the features extracted by

the backbone are fed into the FSL relation classifier. The task loss is then calculated as the

cross-entropy loss between the predicted and true labels of the query images, formulated
as:

Liast = Z Zué ¢)log(p(y, = ¢|S,z,)) (5)
(xquq )EQ c=1

Here, N is the number of classes, ¥(+) is an indicator function, and p(-) is the predicted
probability.

To mitigate the domain shift between the source and target domains, we introduce the
discrepancy 10ss, Lgiscrepancy- 1his loss utilizes the domain discriminator to maximize the
dissimilarity between features from the source and target domains. It is defined as the
binary cross-entropy loss for domain classification:

Laiscrepancy = —Ea,~D, Log( faom (E(75)))] — Ez,np, [10g(1 = faom(E(7:)))] (6)

By maximizing this loss for the feature extractor, we encourage the learning of domain-
agnostic features.

The consistency 10ss, Leonsistency, €nsures that the semantic information in the global
image is consistent with its local crops. We calculate this loss by taking the mean squared
error between the feature vector of the global image and the average of the feature vectors
of its N crops:

Lconsistency [HE global ZE crop; || (7)

This encourages the model to learn features that are coherent across different scales.

Finally, the adversarial 1oss, Lqgversarial, guides the adversarial style perturbation mod-
ule. It is defined as the task loss computed on the query set when the style of the support
set has been perturbed:

Ladversarial == E(S,Q)NT[Ltask(Sa Q|Sperturbed)] (8)

By maximizing the task loss with respect to style perturbations, the model learns to
be robust to various stylistic variations.

The combination of these four loss components within the overall training objective
drives the CdFS model to learn effective and generalizable features for the challenging
task of cross-domain few-shot learning for air quality image recognition.

4. Experiments.
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Ficure 2. 3200 Sky Photos in Hanoi, Vietnam

4.1. Dataset. To evaluate the effectiveness of our proposed Cross-Domain Few-Shot
Learning based on self-flexibility (CdFS) model for air quality image recognition, we
utilized two distinct datasets: CUB-200-2011 and T-Air.

The Caltech-UCSD Birds (CUB) dataset [28] is a widely recognized benchmark for
fine-grained visual categorization. It comprises 11,788 photographs of 200 subcategories
of birds, with a split of 5,994 images for training and 5,794 images for testing. In our
cross-domain experiments, we utilize CUB as one of the source datasets due to its rich
visual diversity and fine-grained classification challenges. The images in this standard
benchmark have varying resolutions and are preprocessed to fit the model’s input require-
ments.

The T-Air dataset is an air quality image dataset specifically collected for this research,
samples show in Figure 2. It consists of 3200 landscape photographs captured using
mobile phone cameras, each accompanied by corresponding air quality measurements.
This dataset encompasses a substantial compilation of landscape images, capturing diverse
air quality levels across various regions in Hanoi, Vietnam. The use of mobile phone
cameras aims to reflect real-world scenarios where such devices are commonly used for
environmental monitoring. These 3,200 images feature a variety of real-world landscape
scenes, including urban skylines, roads with traffic, and diverse weather conditions, as
illustrated in Figure 2. Regarding image size, our CdFS model does not rely on a single
fixed resolution; its dual-pathway architecture is designed to process both the full global
image (H x W x C') and smaller local crops (h x w x C') to capture multi-scale features.
T-Air serves as the primary target dataset for evaluating the performance of our CdFS
model on the task of air quality image recognition under cross-domain settings.

We conduct extensive experiments on these two datasets to demonstrate the ability
of our proposed CdFS method to effectively perform cross-domain few-shot learning for
the task of air quality image recognition, showcasing its generalization capability from
a visually rich source domain (CUB-200-2011) to a real-world air quality image dataset
(T-Air) collected in Vietnam.

The T-Air dataset was specifically curated to facilitate research in real-world, image-
based air quality recognition. This section provides further details on its composition and
labeling methodology to improve reproducibility. The dataset contains 3,200 landscape
photographs captured across various districts of Hanoi, Vietnam. Images were taken
using standard mobile phone cameras to ensure the data reflects a practical, common-
use scenario for citizen-led environmental monitoring. The data collection was performed
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at different times of the day and under various weather conditions to capture a diverse
range of visual scenes and corresponding air quality levels. The labeling methodology was
direct and quantitative. For each photograph, a corresponding air quality measurement
was recorded on-site using a calibrated portable sensor. This numerical value, representing
the local Air Quality Index (AQI), was assigned as the ground truth (GT) label for the
image. This process ensures that each image is paired with an accurate, contemporaneous
environmental measurement, as shown in the qualitative examples in Figure 3 where GT
values are provided. While a full statistical distribution of the air quality labels is not
included in this paper, the dataset encompasses a wide spectrum of values, enabling the
training and evaluation of models on diverse air quality conditions.

4.2. Experiment setup. In this section, we detail the experimental setup used to eval-
uate the performance of our proposed Cross-Domain Few-Shot Learning based on self-
flexibility (CdFS) framework for air quality image recognition. We conducted experiments
using two different backbone architectures to ensure the robustness and generalizability
of our approach.

For the first set of experiments, we employed a ResNet-101 [19] backbone network with
a GNN [20] as the N-way K-shot classifier. This network was meta-trained for 240 epochs,
with each epoch consisting of 120 episodes. The ResNet-101 backbone was pretrained on
the minilmageNet dataset using traditional batch training. We used the Adam optimizer
with a learning rate of 0.0001 for this setup.

In the second set of experiments, we utilized a ViT-large [22] as the feature extractor
and ProtoNet [21] as the N-way K-shot classifier. This network was meta-trained for
30 epochs, with a significantly larger number of 3000 episodes per epoch. The optimizer
used was SGD with a learning rate of 5e-4 for the feature extractor (E) and 0.0001 for
the relation classifier (f..). Notably, a ViT-large model was pretrained on our T-Air
dataset using the DINO [23] self-supervised learning method, and we leverage the ViT-
large architecture in our main experiments.

During the testing phase, we evaluated the framework using the standard episodic
protocol. Specifically, we constructed 1,500 randomly generated episodes and averaged
the classification accuracy. Each episode was a 5-way 5-shot task, composed of a support
set and a query set. The support set contained 5 classes with 5 labeled images each (a
total of 25 support images), while the query set contained 15 unlabeled images for each of
those same 5 classes (a total of 75 query images) for the model to classify. We report the
final results with a 96% confidence interval. The hyperparameters for our CdFS model
were set as follows: £ = 0.1, k = 3, A = 0.3, and we selected the values for x; and k5 from
the set {0.006,0.06,0.6}. The probability of performing a style change during training was
set to 0.3. All experiments were conducted on a computational infrastructure equipped
with four NVIDIA GeForce RTX 4090 GPUs.

To comprehensively evaluate our CdFS model, we aimed to address the following re-
search questions (RQs):

1. RQ1: How much better does the CAFS model perform compared to state-of-the-art
methods? To answer this question, our experiments involved a thorough comparison
of the CdF'S model’s performance against several existing state-of-the-art methods on
the CUB and T-Air datasets under various cross-domain few-shot learning settings.
The quantitative results, including the reported average classification accuracies,
directly address the performance gains achieved by our proposed approach.
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TABLE 1. Quantitative comparison to state-of-the-arts methods on eight
target datasets based on ResNet-101. The optimal results are marked in
bold.

CUB T-Air
Method 1-shot | 5-shot | 15-shot | 1-shot | 5-shot | 15-shot
GNN [24] 45.72 | 62.35 73.56 52.74 | 70.34 80.98
ATA [25] 45.12 | 69.83 75.43 53.75 | 73.64 82.67
FWT [26] 47.48 | 66.98 72.64 55.56 | 72.46 79.21

StyleAdv [27] | 48.49 | 70.90 78.42 58.22 | 76.34 85.11

CdFS (Ours) | 50.23 | 72.58 | 80.72 | 60.21 | 79.45 | 86.27

2. RQ2: How well does the CAFS model predict air quality in real-world scenarios?
We addressed this question by evaluating the performance of our model on the T-
Air dataset, which comprises real-world landscape images captured in Hanoi, Viet-
nam, along with corresponding air quality measurements. The classification accuracy
achieved on this dataset provides insights into the practical applicability of our model
in recognizing different levels of air quality from real-world images.

4.3. Performance Compare (RQ1). Based on the experimental setup described in the
previous section and the quantitative results presented in Table 1, we now analyze the
performance of our proposed Cross-Domain Few-Shot Learning based on self-flexibility
(CdFS) method in comparison to several state-of-the-art approaches on the CUB-200-
2011 and T-Air datasets. This analysis directly addresses our first research question
(RQ1): How much better does the CAFS model perform compared to state-of-the-art
methods?

Table 1 presents the quantitative comparison using the ResNet-101 backbone across
different few-shot settings (1-shot, 5-shot, and 15-shot) for both the CUB and T-Air
target datasets. As described in the Dataset section, CUB is a widely used benchmark
for fine-grained visual categorization, while T-Air is our newly collected air quality image
dataset from Hanoi, Vietnam.

On the CUB dataset, CdFS consistently outperforms all the baseline methods (GNN,
ATA, FWT, and StyleAdv) across all the few-shot scenarios. Specifically, CAF'S achieves
accuracy scores of 50.23%, 72.58%, and 80.72% for 1-shot, 5-shot, and 15-shot settings,
respectively. These results represent a significant improvement over the second-best per-
forming method, StyleAdv, which achieves 48.49%, 70.90%, and 78.42% for the corre-
sponding settings. The consistent and substantial gains on CUB demonstrate the effec-
tiveness of our self-flexibility-based approach in learning generalizable features for fine-
grained image recognition in a cross-domain few-shot setting.

More importantly, when evaluating on our T-Air dataset, which is directly relevant
to the task of air quality image recognition, CdFS exhibits even more pronounced per-
formance gains. Our method achieves the highest accuracy scores of 60.21%, 79.45%,
and 86.27% for 1-shot, 5-shot, and 15-shot learning, respectively. These results signif-
icantly surpass the performance of the other state-of-the-art methods. For instance, in
the challenging 1-shot setting, CdF'S outperforms the second-best method (StyleAdv) by
approximately 2 percentage points. The margin of improvement widens further in the
5-shot and 15-shot settings, highlighting the superior ability of CdFS to learn effectively
from limited samples and generalize to our specific air quality image domain.

The quantitative results presented in Table 1 provide strong evidence that our pro-
posed CdFS model significantly outperforms existing state-of-the-art methods on both a
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standard fine-grained dataset (CUB) and our newly introduced air quality image dataset
(T-Air) under various cross-domain few-shot learning scenarios. This directly answers our
first research question, demonstrating the superior performance of CdFS. The particularly
strong results on the T-Air dataset underscore the effectiveness of our approach for the
specific task of air quality image recognition in a cross-domain setting.

4.4. Qualitative Study (RQ2). Figure 3 showcases qualitative results of our proposed
Cross-Domain Few-Shot Learning based on self-flexibility (CdFS) model on the T-Air
dataset, providing insights into our second research question (RQ2): How well does the
CdFS model predict air quality in practice? The image displays four distinct landscape
scenes captured in Hanoi, Vietnam, each accompanied by the ground truth (GT) air
quality measurement and the prediction made by our CdFS model.

Observing the examples, we can see that in the top-left image, the ground truth air
quality is indicated as 110, and our model predicts 105, which is a reasonably close
estimation. Similarly, in the top-right image, the ground truth is 103, and the prediction
is 110, again demonstrating a close approximation. The bottom-left example shows a
ground truth of 110 and a prediction of 108, indicating a very accurate prediction by the
CdFS model. Finally, the bottom-right image has a ground truth value of 110, and our
model predicts 109, which is also a highly accurate prediction.

Across these four diverse landscape images, which include varying elements such as
roads, vehicles, buildings, and sky conditions typical of an urban environment in Hanoi,
the CdFS model demonstrates a strong ability to predict air quality levels that are con-
sistent with the ground truth measurements. These qualitative results suggest that our
proposed approach, which leverages cross-domain learning and self-flexibility, is effective
in learning relevant features from landscape images to infer the underlying air quality.
The model’s predictions, being in close proximity to the actual measurements, indicate
its potential for practical application in real-world air quality monitoring scenarios using
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readily available landscape photographs. These qualitative examples, alongside the quan-
titative improvements reported in Table 1, further validate the effectiveness and practical
relevance of our CdFS framework for air quality image recognition.

5. Limitations and Future Work. While our proposed CdFS model has demonstrated
significant improvements in cross-domain few-shot learning for air quality image recogni-
tion, we acknowledge several limitations that also point toward avenues for future research.

First, the architecture of CdFS, with its dual-pathway processing of global and local
patches and its multi-component loss function, is computationally intensive. As evidenced
by our experimental setup requiring four high-end GPUs, the model demands considerable
computational resources, which may limit its deployment in resource-constrained environ-
ments. Future work could explore model compression or knowledge distillation techniques
to create a more lightweight version without significantly compromising performance.

Second, the model’s performance is dependent on a set of hyperparameters that balance
the four loss terms and control the training dynamics. While we have identified effective
settings for our experiments, these parameters may require careful re-tuning when the
model is applied to new target domains, which could be a time-consuming process. De-
veloping an adaptive mechanism to automatically balance these components would be a
valuable improvement.

Third, although our experiments confirm the model’s effectiveness in generalizing across
the CUB and T-Air datasets, both contain natural outdoor scenes. The model’s perfor-
mance on domains with drastically different visual characteristics, such as medical or
satellite imagery, remains untested. Future studies should evaluate the generalization
capabilities of CdFS on a wider and more diverse range of cross-domain tasks.

Finally, the T-Air dataset was collected in a single geographical location, Hanoi, Viet-
nam. Visual cues for air quality can differ across the globe due to variations in climate,
pollution sources, and urban landscapes. Therefore, testing and potentially fine-tuning
the model on air quality datasets from other regions is a necessary step to validate its
global applicability and robustness.

6. Conclusions. In conclusion, this paper has addressed the challenging problem of air
quality image recognition within the context of cross-domain few-shot learning by propos-
ing a novel Cross-Domain Few-Shot Learning based on self-flexibility (CdFS) model. Our
architecture incorporates a Style-Gradient Generation module, a Self-Versatility Gradi-
ent Ensemble module, an Adversarial Style Perturbation module, and a Discrepancy &
Consistency Optimization strategy to learn robust and generalizable features. Exten-
sive experiments conducted on the CUB-200-2011 dataset and our newly collected T-Air
dataset, comprising real-world air quality images from Hanoi, Vietnam, demonstrate that
CdFS significantly outperforms state-of-the-art methods across various few-shot settings.
The qualitative results further highlight the model’s ability to predict air quality levels in
diverse real-world scenarios. The primary contributions of this work include the introduc-
tion of the CdF'S model with its self-flexibility mechanism, which effectively enhances sta-
bility and generalization in cross-domain few-shot learning, offering a promising approach
for practical air quality monitoring with limited labeled data and domain variations.
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