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Abstract. The accurate classification of brain tumors plays a pivotal role in the timely
and effective treatment of patients. In this study, we propose a novel approach to en-
hance brain tumor classification by incorporating advanced feature extraction techniques
with enhanced segmentation algorithms. The developed framework incorporates an im-
proved U-Net architecture for precise tumor segmentation and a hybrid transfer learning
algorithm for effective feature extraction. The proposed methodology commences with the
collection of BraTS 2020 available publicly and pre-processing of brain tumor images.
This pre-processing phase enhances the quality of images by reducing noise and irrel-
evant background content. After this step, a tumor region growing U-Net algorithm is
applied so that the growing region of the tumor is accurately represented and bound. Such
images are segmented and processed further in the feature extraction module. A hybrid
feature extractor that combines Firefly Optimization (FO) metaheuristic with ResNet-50-
based transfer learning is proposed. This unique approach captures and exploits the most
salient features that can be found within the data. They are extracted and put through a
deep convolutional neural network designed to classify all trained types of tumors, thus
achieving a high accuracy rate. Weight and bias refinement within the U-Net archi-
tecture is done through the Emperor Penguin Optimizer (EPO), which aims to reduce
the cross-entropy loss. The designed framework works with a given Python tool, and
its performance is analyzed based on standard measures: correctness, precision, and F1
measurement. The results reported for these measures are 99.80%, 99.44%, and 99.55%,
which demonstrate the effectiveness of the approach.

Keywords: brain tumor; deep convolutional neural network; feature extraction; seg-
mentation; transfer learning

1. Introduction. The brain is a complex organ of the human body that regulates the
entire nervous system. It contains millions of nerve cells that are responsible for con-
trolling and regulating body functions [1]. Hence, any abnormality in this organ puts

854



Enhanced Brain Tumor Classification Using U-Net and Hybrid Feature Extraction 855

human health in danger. Brain tumor (BT) is an abnormality, that indicates uncon-
trolled proliferation of cells in the brain tissue [2]. Brain tumors are typically categorized
into two classes, namely benign and malignant. The benign are non-cancerous, while the
malignant are cancerous. The malignant class is further classified into three subtypes:
meningioma, glioma, and pituitary [3]. The World Health Organization (WHO) study re-
ported that meningioma, glioma, and pituitary prevalence rates are 45%, 15%, and 15%,
respectively [4]. The accurate detection and classification of these tumors is essential for
proper treatment planning and safeguarding the person from death.

However, the identification and categorization is complex because of its intricate charac-
teristics like location, size, etc., [5]. Various imaging tools, including ultrascopy, computed
tomography (CT), magnetic resonance imaging (MRI), etc., have been developed to as-
sist in tumor classification [6]. MRI images are widely used in clinical studies to analyze
brain anatomy. The MRI technique offers improved image resolution and contrast, assist-
ing healthcare professionals in precisely detecting specific diseases [7]. The conventional
methods of tumor detection involve manually analyzing the MRI images, which is time-
consuming and needs more experienced personnel. Moreover, manual detection is prone
to errors, making it less reliable and ineffective [8]. These drawbacks in manual detection
demand an automatic classification model for brain tumor prediction.

Hence, computer-aided diagnostic techniques are developed for automatically detect-
ing and classifying brain tumors [9]. Accurate categorizations assist doctors in treating
patients. Many studies are done on automatic brain tumor classification, which uses ad-
vanced image processing algorithms like machine learning and deep learning [10]. These
models deploy supervised or unsupervised learning techniques to understand healthy and
pathological tissue differences. Although these models are more effective than manual
detection, accurate segmentation of tumor regions is still the biggest concern [11, 12].
Separating pathological and healthy brain tissues is significant in tumor treatment plans
and cancer research. This accurate segmentation helps doctors treat tumors precisely, im-
proving their survival rates [13]. Image segmentation remains an important task in medical
image analysis, which involves discarding the regions of interest (ROI) from images [14].
Typically, this process is too long and imposes several challenges while processing large
databases. The traditional way of image segmentation includes thresholding, in which
certain threshold values are set to fragment the normal and abnormal tissues from the
MRI images [15, 16]. This methodology creates obstacles to the automatic diagnosis of
tumors, demanding a precise automatic image segmentation algorithm for proper detec-
tion and treatment [17]. The accurate segmentation of tumor regions is significant for
improving the classification process.

In addition to this, the existing works face difficulty in feature analysis. Effective fea-
ture extraction is vital in distinguishing healthy and pathological tissues [18, 19, 20].
Practical feature engineering significantly improves model training and reduces computa-
tional time. Few existing studies utilized techniques such as a Support Vector Machine
with a pre-trained DL algorithm [21], Generative Adversarial Network [22], Convolu-
tional Neural Network [23], DeepTumorNet [24], etc., for automatic segmentation and
classification of brain tumors. In order to improve diagnostic accuracy and extract useful
information from medical images, this study investigates a variety of machine learning and
deep learning techniques, including fuzzy C-means, KNN, SVM, decision trees, G-CNN,
ANN, CRF-RNN, DNN, and Naive Bayes classifiers. It gives practitioners and researchers
new perspectives [26]. Amudha’s [40] proposed brain tumor detection framework uses a
Multiscale Frangi Gaussian Matrix and a stacked CNN architecture for MRI analysis,
enhancing vessel structure enhancement and tumor classification. It incorporates Frangi
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filters, spatial channel-wise attention, CatBoost, and Extremely Randomized Trees. De-
spite higher classification accuracy, these models face challenges like higher computational
resources, large time consumption, limited scalability, lower generalization, etc. To resolve
these issues, we presented an improved segmentation and feature extraction algorithm for
improved tumor classification.

The major contributions of the study are described below,

• This study aims to create an enhanced image segmentation algorithm using the
improved deep learning model to separate the tumor and healthy tissues accurately.

• A hybrid feature extraction model was developed, combining the efficiencies of deep
learning and meta-heuristic optimization techniques to effectively capture and ex-
tract the most essential and relevant features.

• This study employs the deep convolutional neural network architecture as the clas-
sification model, which was trained using the extracted features to differentiate the
benign and malignant tumors.

• The developed algorithm was designed using the Python tool, and the results are
evaluated and validated with conventional techniques in terms of accuracy, precision,
recall, and f-measure.

2. Related Works. A few research works associated with the brain tumor classification
are reviewed below,

Muhammad Imran Sharif et al. [21] developed an automatic approach for categorizing
multiclass brain tumors. This study utilized the pre-trained DL algorithm to balance
the data in the training phase. Also, Entropy-Kurtosis-based High Feature Values and
a Modified Genetic Algorithm were deployed to extract and select the most significant
features from the MRI images. Finally, a Support Vector Machine (SVM) classification
model was employed for multiclass tumor categorization. This work was experimented
with the two publicly available databases, BRATS2018 and BRATS2019. The imple-
mentation outcomes offered high accuracy of 95.15% and 95.74% in tumor classification.
However, this technique faces challenges in offering generalization to unseen samples.

Navid Ghassemi et al. [22] developed a deep-learning approach for classifying tumors
using MRI images. In this study, a DNN was first pre-trained as a differentiator in
a generative adversarial network on various databases to capture unique and distinct
attributes. This process enables the system to learn the structure of a tumor effectively.
This study was validated using the MRI dataset containing 3064 T1-CE images collected
from 233 patients. The experimental results show that this algorithm obtained 95.47%
accuracy in classifying the three tumor instances (meningioma, glioma, and pituitary).
However, the computational complexity of the system is high.

Muhammad Aamir et al. [23] designed an effective automatic brain tumor diagnosis
using MRI images. The primary concern of this work is to resolve the challenges associated
with manual tumor detection. Here, the brain MRI images are gathered and filtered to
improve visual quality. Consequently, two different pre-trained DL models capture the
most significant attributes. Finally, a convolutional neural network (CNN) was utilized
to categorize benign and malignant tumors. This collaborative mechanism achieved a
higher accuracy of 98.95% and minimal computational time. However, fine-tuning CNN
architecture is complex and consumes more computational resources.

Kuraparthi et al. [25] developed a classification model to detect brain tumor cases
accurately using MRI images. This study executed three pre-trained DCNN models,
AlexNet, ResNet50, and VGG16, as the transfer learning models to capture and extract
the most significant attributes from the images. These extracted feature vectors were
fed into the SVM classifier for training to categorize the tumor cases. This algorithm
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was validated using the Kaggle and BraTs databases and attained 98.86% and 98.24%
accuracy. However, this method is prone to overfitting, which limits its generalization
ability to real-time scenarios. Table 1 presents the literature survey.

Qureshi et al. [38] proposed a deep learning framework called RobU-Net, a modified U-
Net architecture, for robust segmentation of brain tumors in MRI images. Their method is
specifically designed to handle Rician noise using discrete wavelet transforms for contrast
enhancement and various encoder-decoder structures for improved accuracy. Tested on an
MRI brain tumor dataset with 3,064 slices, the framework achieved high sensitivity, dice
coefficient, and Jaccard index values (up to 0.9831, 0.9781, and 0.9571), outperforming
existing methods and demonstrating its effectiveness for noise-impregnated and original
MRI scans.

Qureshi et al. [39] proposed a novel two-stage MGMT Promoter Methylation Prediction
(MGMT-PMP) system for radiogenomic classification of glioblastoma using multi-omics
fused feature space from mpMRI scans. Their framework combines a fine-tuned Deep
Learning Radiomic Feature Extraction (DLRFE) module with radiomic features (GLCM,
HOG, LBP) and employs a rejection algorithm to refine training data. Using the BraTS-
2021 dataset and k-NN and SVM classifiers, the system achieved high accuracy, sensitivity,
and specificity (up to 96.84%, 96.08%, and 97.44%), demonstrating its effectiveness for
non-invasive prediction of MGMT promoter methylation status to support personalized
treatment planning.

Mohammad Anwar Assaad et al. [41] proposed a hybrid method for brain tumor de-
tection in MRI images, combining deep learning and machine learning techniques. CNNs
were used to extract features, which were then reduced using an MLP trained with a
novel batch-splitting approach. Classification was performed using Euclidean distance
and backpropagation, followed by final classification with the KNN algorithm. Their
model achieved 97% accuracy, outperforming a standalone CNN model, which achieved
90%, highlighting the effectiveness of a hybrid architecture in medical image analysis.

3. System Model and Problem Statement. Brain tumors are one of the deadly and
life-threatening diseases that account for thousands of deaths every year around the world.
Hence, the timely and accurate identification of brain tumors is significant for treatment
planning and monitoring disease progression. The manual way of brain tumor detection
is done by radiologists, which is time-consuming and prone to errors [27]. These issues
in manual diagnosis create a demand for an automatic brain tumor classification model.
The deep learning models offer a promising solution for automatically identifying and
classifying brain tumors using scanned images. In particular, the ResNet-18 architecture
is an efficient method that eliminates the need to start from scratch when training a deep
convolutional neural network, providing a simple and quick method for disease prediction
[28]. The system model of brain tumor classification using the DL model is presented in
Figure 1.

The system model includes modules like data collection, data pre-processing, data sam-
pling, classification model, and model evaluation. Many MRI images are collected from
patients, containing both benign and malignant images in the data collection module.
In the pre-processing module, the images are filtered to enhance their quality, making
them reliable and suitable for subsequent analysis. The pre-processed database was split
into two sets (training and testing) in data sampling. The training set was used to train
the classification model to differentiate the patterns and correlations between normal
and malignant tumors. Finally, the testing sequence was used to evaluate the model’s
performance. Although the DL models offer greater efficiency and accuracy in tumor pre-
diction and classification, they have inherent challenges. Firstly, training the DL models
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Table 1. Literature Survey

Authors Techniques Results Merits Demerits
Muhammad Im-
ran Sharif et al.
[21]

Support Vector Ma-
chine with pre-trained
DL algorithm

Achieved accu-
racy of 95.15%,
and 95.74%
for BRATS2018,
and BRATS2019

High classifica-
tion accuracy
and effective
feature analysis

Limited general-
ization to unseen
samples

Navid Ghassemi
et al. [22]

Deep Neural Network
Generative Adversar-
ial Network

Achieved accu-
racy of 95.14%

Improved fea-
ture discrimina-
tion and tumor
classification

High computa-
tional complex-
ity

Muhammad
Aamir et al. [23]

DL classification
model named Con-
volutional Neural
Network

Obtained
98.95% ac-
curacy in tumor
detection and
classification

Improved ac-
curacy and
minimal compu-
tational time

Fine-tuning is
complex and
requires more
computational
resources

Asaf Raza et al.
[24]

DeepTumorNet (Basic
Convolutional Neural
Network)

High accuracy of
98.56%

Greater accu-
racy, simple and
computationally
effective

Limited scala-
bility and less
adaptable

Kuraparthi et al.
[25]

Support Vector Ma-
chine and pre-trained
DL models like
AlexNet, ResNet50,
and VGG16

Acquired accu-
racies of 98.86%
and 98.24%

Fast and im-
proved training
and accurate
classification of
tumor

Overfitting and
less generaliza-
tion

Qureshi et al.
[38]

RobU-Net Sensitivity
0.9831, dice co-
efficient 0.9781,
and Jaccard
index 0.9571
values

Effectiveness
for noise-
impregnated

Limited scala-
bility and less
adaptable

Qureshi et al.
[39]

A novel two-stage
MGMT Promoter
Methylation Predic-
tion (MGMT-PMP)
system

Achieved high
accuracy 96.84%

High accuracy Limited general-
ization

Mohammad An-
war Assaad et al.
[41]

CNN for feature ex-
traction with KNN
Classification

Achieved accu-
racy of 97%

Efficient feature
analysis and
high classifica-
tion accuracy

High computa-
tional complex-
ity

requires large databases, making them computationally expensive. Secondly, refining and
optimizing the hyper-parameters of the DL model is complex and requires expertise.

Furthermore, the existing DL techniques often get over-trained on the training sequence
and cause overfitting, which limits generalization over real-time scenarios. Also, training
these models consumes more time, making them less reliable for clinical settings. In
addition, image segmentation and feature extraction algorithms are needed to reduce
the computational complexity of the classification model for effective and accurate brain
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Figure 1. Proposed System Architecture

classification. This study worked on providing an optimal solution to all these problems
by developing improved segmentation and feature extraction algorithms, which enhance
the classifier performance by analyzing the features differentiating the tumor and healthy
regions.

4. Improved Segmentation Using EPO and Feature Extraction by FO. This
study works on developing an improved image segmentation and optimal feature extrac-
tion algorithm for accurate brain tumor classification. The proposed work includes five
modules: data collection, image preprocessing, segmentation, feature extraction, and clas-
sification. Firstly, the brain MRI images are collected and imported into the system in
the data collection module. Secondly, the gathered images are preprocessed to improve
their quality. In the third module, we developed an image segmentation module using the
improved U-Net algorithm with EPO to segment the tumor regions accurately. Following
tumor segmentation, feature engineering was performed using the hybrid feature extrac-
tion algorithm. In the feature extraction module, we integrate firefly optimization and
transfer learning to extract the most discriminative attributes for differentiating health
and pathological tissues. Finally, a classification model was developed using the deep
convolutional neural network to detect benign and malignant tumors. Here, DCNN was
trained using these features to categorize the health and tumors precisely. Figure 2 depicts
the architecture of the proposed model.

4.1. Data collection. The proposed work involves collecting brain MRI images from pa-
tients and healthy individuals in a clinical setting. This dataset contains both MRI scans
of normal and tumor patients. In this study, we utilized the publicly available BraTs 2020
database, accessible at https://www.med.upenn.edu/cbica/brats2020/data.html. This
database contains multi-institutional routine clinically obtained preoperative multimodal
3D MRI scans. It includes scans of glioblastoma (GBM/HGG) and lower-grade glioma
(LGG), with pathologically confirmed diagnosis and available overall survival (OS) data.
The dataset consists of native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2),
and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes. Each scan is seg-
mented manually by one to four raters into different tumor sub-regions, including the
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Figure 2. Proposed U-Net with EPO and FO

GD-enhancing tumor (ET), peritumoral edema (ED), and the necrotic and non-enhancing
tumor core (NCR/NET). The study involved 369 subjects with 259 high-grade and 110
low-grade glioma, 125 validation cases, and 166 testing cases, with no publicly available
segmentation masks. The samples of the database are presented in Figure 3.

Figure 3. Sample dataset images

4.2. Image preprocessing. After data collection, the next step is image preprocessing.
Image preprocessing defines the sequence of steps aimed at improving the image quality.
The steps involved in image preprocessing include cropping, noise reduction, background
elimination, and image resizing. The raw MRI images typically contain unwanted areas or
regions, noises, backgrounds, etc., which may lead to poor image analysis and inaccurate
tumor detection. Firstly, image cropping was done to remove the unwanted areas and
regions from the images. This step involves adjusting the boundaries, selecting the region
of interest (ROI), and pixel extraction to discard the unwanted regions. This enables
the system to focus on the most relevant content, making the classification and further
analysis more effective. Secondly, noise reduction was performed using the Gaussian filter
while preserving the most important characteristics of the images. It reduces the noise
features by convolving the input images with a Gaussian kernel, and it is mathematically
represented in Equation ??.

Gk(a, b) = Im(a, b) ∗
1

2πσ2
e−

a2+b2

2σ2 (1)
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Where Gk(a, b) defines the filtered image, Im(a, b) denotes the input image, σ indi-
cates the standard deviation of the Gaussian distribution, and (a, b) represents the kernel
coordinates. This step not only eliminates the noise attributes but also smoothens the
images. Further, thresholding was applied to eliminate the background from the images
while restoring the useful content. Finally, bicubic interpolation was utilized to resize
all images from the databases. After preprocessing, data augmentation steps, includ-
ing flipping, rotation, shearing, scaling, and changing brightness, introduce diversity in
the training sequence. These steps resolve the overfitting issues in the system training,
improving the model’s generalization.

4.3. Image segmentation based on U-Net with EPO. Image segmentation is de-
fined as separating the preprocessed brain MRI images into different regions based on
their characteristics in brain tumor classification. This plays a significant role in isolating
the tumor region from healthy brain tissues. We developed an improved U-Net architec-
ture for accurate and reliable tumor segmentation in the proposed work. The architecture
of U-Net is classified into three components, namely: encoder, bottleneck, and decoder.
The encoder accepts the preprocessed images as input, and the image’s dimensions are
256Ö256. Typically, the encoder module utilizes convolution and pooling to downsample
the images. In the improved U-Net, we use dense convolution instead of convolution.
In the downsampling process, the size of the image was minimized while preserving the
spatial attributes. Following downsampling operations, the images are fed into a deep
neural network (DNN) for further processing. The DNN is the bottleneck component,
which processes the feature maps obtained by the encoder part and extracts the high-
level features from it. Finally, the images are forwarded into the decoder module, which
utilizes upsampling algorithms to upscale the images. Here, deconvolution functions are
applied to upscale images. The encoder and decoder components are interconnected with
each other through skip connections. After a sequence of upsampling processes, the U-Net
system produces segmented images with features. Further, we deploy the Emperor Pen-
guin Optimizer (EPO) to optimize the weights and bias of the U-Net architecture. This
valuable feature enables researchers to solve domain-specific problems by modifying EPO
algorithm [30]. This optimization process aims to reduce cross-entropy loss, represented
in Eqn. 2.

Ls(s, s
′) = −

n∑
i=1

s′(i) log(s(i)) (2)

Where Ls(s, s
′) defines the loss function, n represents the number of classes, s′(i) defines

the probability of the ith class in the ground truth, and s(i) denotes the predicted proba-
bility of the ith class generated by the model. The EPO is a meta-heuristic optimization
algorithm, which was inspired and developed based on the social huddling characteristics
of emperor penguins. The emperor penguins typically live in the Antarctic region, where
the temperature falls very low during winter. This makes it very hard for the emperor
penguins to survive, changing their characteristics to keep them warm. This process is
called huddling and depends on numerous factors like distance, temperature, influential
movers, etc. The proposed work applied EPO to minimize the loss by updating its weights
during training. The EPO algorithm commences with the initialization of the emperor
penguin population. In the proposed work, the emperor penguin population defines the
population of candidate solutions (weights), which are randomly initialized. Then, the
fitness value of each solution will be determined based on the predetermined objective
function (cross-entropy loss). The fitness calculation is expressed in Eqn. (3).
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fw(t) =
1

Ls(s, s′)
(3)

The fitness value will be high if the loss incurred by the U-net for the candidate solution
is low, and vice versa. After fitness evaluation, the values of each candidate solution are
updated to find the optimal solution, which is mathematically expressed in Eqn. (4).

w(t+ 1) = w(t)− a⃗ · w∗(t) (4)

Where w(t + 1) represents the updated candidate solution, w(t) indicates the present
value of the candidate solution, w∗(t) denotes the best solution at iteration t, and a⃗ de-
fines the factor preventing collision in exploration. After the exploration phase, the fitness
value of the updated population was determined. If the updated fitness exceeds the old
fitness, the updated weight will be used for U-Net training. This process is an itera-
tive mechanism, making the system adaptable for diverse patient data and significantly
improving the segmentation process.

Figure 4. Input and segmented images

4.4. Hybrid Feature Extraction based on FO with Transfer Learning (ResNet-
50). After image segmentation, the next step is feature extraction, which involves cap-
turing and extracting the most informative and relevant attributes from the segmented
images. This process aims to extract the characteristics of the segmented regions by
quantifying their properties like shape, size, texture, intensity, etc., and these extracted
feature sequences serve as input for the classifier for brain tumor classification tasks. We
designed a hybrid feature extractor model in the proposed work by combining the op-
timization (FO) with the transfer learning algorithm (ResNet-50). The ResNet-50 is a
pre-trained deep neural network capable of learning the high-level hierarchical represen-
tations of the segmented images. The ResNet-50 accepts segmented images as input and
processes that extract the features. The segmented images are passed through five con-
volution layers to extract the feature sequence. Each convolution layer is designed with
multiple residual blocks, and the residual block contains three convolutional layers. The
first convolution layer contains 64 kernels, each having dimensions of [7x7x3]. This layer
is followed by a maxpool layer with a filter size of [3x3]. Following this maxpool layer,
four convolution layers are placed, each containing multiple residual blocks. The residual
blocks contain three convolutional layers of dimensions [1x1], [3x3], and [1x1] with varying
depths, progressively increasing from 64 to 2048. Following these convolutional layers, a
maxpool layer is placed, followed by a fully connected layer with a size of 100. This fully
connected layer acts as a feature extractor, producing the sequence of all features in the
segmented images. This feature sequence was forwarded to the firefly optimization, which
selects the most relevant and informative attributes for distinguishing the healthy and tu-
mor classes. Firefly optimization (FO) is a nature-inspired optimization developed based
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on the flashing characteristics of the fireflies. Firefly Algorithm (FA) is a highly efficient
population-based optimization technique developed by mimicking the flashing behavior
of fireflies when mating [31]. Like firefly initialization, we initialize the extracted feature
sequence from the ResNet-50 block. The initialization of the feature set is represented in
Eqn. (5).

fsq = [f1, f2, f3, . . . , fm] (5)

Where fsq indicates the extracted feature sequence and fi defines the feature vector ex-
tracted from the image i. The primary objective of the FO block is to identify the features
that differentiate the healthy and tumor classes. After initialization, the attractiveness
between the features (fi, fj) is determined using the Eqn. (6).

Atr(fi, fj) = e−χ∥fi−fj∥2 (6)

Where χ defines the parameter controlling the strength of attractiveness. The attrac-
tiveness indicates the similarity between the features, enabling us to reduce the similar
information from the extracted feature sequence. Also, it assists the system in exploring
feature subsets containing diverse and complementary features. Following the attractive-
ness calculation, the feature vectors are updated and expressed in Eqn. (7).

fi(t+ 1) = fi(t) + χ e−Atr(fi,fj)(fi − fj) + α (7)

Where t defines the iteration, α represents the randomness, and fi(t + 1) denotes the
updated feature. In this step, the feature vectors are updated based on their attractiveness
to neighbor brighter solutions (features with a greater ability to differentiate normal and
tumor classes). Then, the attractiveness was calculated for the updated feature subsets.
Finally, the features with attractiveness of less than 0.5 are returned as the best solution
(optimal features) and fed into the DCNN module for classifying tumors.

4.5. Brain Tumor Classification Using DCNN. A deep convolutional neural net-
work is a kind of artificial neural network widely deployed in computer-vision tasks like
image classification, objective detection, etc. In the developed work, we employed DCNN
as a classifier model to categorize the healthy and tumor classes. The structure of DCNN
is similar to that of CNN, with more than one convolutional layer. Using Deep CNN can
greatly reduce the time and effort needed for feature engineering when it comes to picture
classification [29]. Its general architecture includes five layers: an input layer, two or more
convolutional layers, a pooling layer, a fully connected layer, and an output layer. The
deep convolutional connections enable the system to learn hierarchical representations
within the data, providing accurate classifications. The input layer accepts the extracted
features as input. The convolutional layer uses kernel filters and captures the local pat-
terns and correlations within the input sequence. As a result, it produces feature maps
highlighting the spatial interconnections and patterns in the input data. The functioning
of the convolutional layer is mathematically represented in Eqn. (8).

Cn = Wn ∗ Fse +Bn (8)

Where Cn defines the outcome of the nth convolutional layer, Wn indicates the sequence
of learnable parameters, Fse denotes the input features, and Bn represents the bias term
of the nth convolutional layer. The learnable parameters (filters) are adjusted in the
training phase through backpropagation, which enables precise tumor classification. On
the other hand, the pooling layers perform down sampling operations and reduce the
spatial dimensions. This layer minimizes the feature dimensionality while preserving the
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most significant attributes. Here, we applied max pooling to perform the above task.
Finally, a fully connected layer was placed, which combined the learned patterns and
corrections from the above layers to perform classifications. The output of the FC layer
is defined in Eqn. (9).

Fc = Af (Wf ∗ Po) +Bf (9)

Where Fc represents the FC layer output, Af defines the activation function, Po denotes
the learned patterns, Wf refers to the weight of the FC layer, and Bf indicates the bias
term. The resultant of the FC layer is fed into the output layer, which is responsible for
performing tumor classification. The output layer provides probability value based on the
patterns and correlations learned, and it is presented in Eqn. (10).

Ps = softmax(Wo ∗ Fc) +Bo (10)

Where Ps defines the result of the output layer (probability value of classes), softmax
denotes the activation function, Wo indicates the weight of the output layer, and Bo

refers to the output layer bias vector. The working of the proposed model is presented in
pseudocode format in Algorithm 1.

Figure 5. Flowchart of the proposed framework

5. Experimental results and analysis.

5.1. Experimental environment and dataset. In this study, we focused on developing
improved image segmentation and feature extraction algorithms to classify brain tumors
accurately. The presented framework was modeled on a Windows 11 Computer with an
11th-generation Intel Core i5 processor, 16 GB of RAM, and a 2GB graphics card. The
Python language was used to model and implement the improved U-Net with EPO and
feature extraction by FO with transfer learning (ResNet-50). The performances were
assessed in terms of parameters such as accuracy, precision, recall, and f-measure.

5.2. Performance evaluation. In this section, we assess the training and testing per-
formances of the proposed model. Firstly, we split the input database in the ratios 75:25
for model training and testing. In the training phase, the developed algorithm is trained
using the training sequence to learn the data’s patterns, features, and interconnections for
differentiating healthy and tumor classes. On the other hand, testing defines the model
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Algorithm 1 U-Net with EPO and Hybrid Feature Extraction (FO+ResNet-50)

Inputs: Brain MRI images; U-Net parameters; ResNet-50 parameters; DCNN
parameters

Outputs: Classified tumor type (e.g., Meningioma, Glioma, Pituitary)

1: Image Preprocessing
2: Load brain MRI image dataset
3: for each image do
4: Crop to region of interest (ROI)
5: Apply Gaussian filter for noise reduction
6: Eliminate background using thresholding or masking
7: Resize image to 224× 224
8: end for
9: Apply data augmentation (rotation, flipping, scaling, etc.)
10: Tumor Segmentation using Improved U-Net with EPO
11: Initialize U-Net architecture (encoder, bottleneck, decoder)
12: Initialize EPO parameters: population size, max iterations, initial solutions
13: for t = 1 to max iterations do
14: for each individual in population do
15: Decode weights
16: Apply U-Net forward pass
17: Compute segmentation loss (e.g., Dice loss)
18: Evaluate fitness = 1/loss
19: end for
20: Update weights using EPO behavior
21: Retain weights with improved fitness
22: end for
23: Output segmented tumor region from trained U-Net
24: Feature Extraction using ResNet-50 and Firefly Optimization (FO)
25: Initialize pre-trained ResNet-50
26: for each segmented image do
27: Feed image through ResNet-50
28: Extract deep features from final pooling layers
29: end for
30: Initialize FO parameters: population of feature subsets, attractiveness threshold, it-

erations
31: for t = 1 to max iterations do
32: for each firefly do
33: Calculate fitness based on feature subset performance
34: Update position toward more attractive fireflies
35: if attractiveness < 0.5 then
36: Discard poor features
37: end if
38: end for
39: end for
40: Return optimized feature subset
41: Tumor Classification using DCNN
42: Initialize DCNN architecture
43: Train DCNN using optimized feature vectors from FO
44: Predict tumor class for each test image

45: Model Evaluation
46: Evaluate model using Accuracy, Precision, Recall, F1-score, and AUC/ROC
47: Return performance metrics and classified tumor labels
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Figure 6. Model training and testing performances

evaluation over unseen brain MRI samples. This enables us to determine the model’s
generalization and how effectively it prevents the overfitting issue. The training and test-
ing performances are assessed regarding accuracy and loss by increasing the number of
epochs. The accuracy metric measures how well the developed algorithm learns the pat-
terns and interconnections within the image samples and classifies the tumor instances.
In contrast, the loss measures the deviation between the real and predicted outputs.

The training accuracy shows how well the proposed technique understands the pattern
difference between the normal and tumor instances. The developed algorithm obtained
higher training accuracy, demonstrating its faster learning capacity. Consequently, the
testing or validation accuracy is evaluated, which determines the model’s generalization
over unknown MRI samples. The presented approach obtained greater testing accuracy
over increasing epochs, highlighting that it generalizes well on the unseen data. Similar
to accuracy, we determined loss in both the training and testing phases. The training loss
depicts the difference between the real and predicted outcomes in the training sequence.
The smaller training obtained by the developed model manifests that it fits the train
set well, and it learns the hierarchical patterns and data representations more effectively.
On the other hand, the testing loss determines the difference between the actual and
the predicted results. It measures how the proposed technique resolves the overfitting
challenge and accurately classifies the tumor classes.

The classification performance of the proposed model is presented in the confusion
matrix. This table summarizes the proposed algorithm’s classification performance by
comparing the data’s actual class labels with the class labels predicted by the technique.
It utilizes four metrics for evaluating the model performances: true positive, true negative,
false positive, and false negative. The true positive defines the number of instances
correctly classified as positive (tumors), while the false positive represents the number of
instances incorrectly categorized as positive. On the other hand, the true negative defines
the number of instances that are correctly categorized as negative (healthy). In contrast,
false negative represents the number of instances that are incorrectly classified as negative
(tumor incorrectly predicted as normal).

Consequently, we analyzed the Receiver Operating Characteristics (ROC) curves. This
curve represents the trade-off between a specific class’s true and false positive rates. By
analyzing the area under the curve (AUC), we also highlighted the model’s capacity to
differentiate each tumor class from others. The proposed model obtained an AUC greater



Enhanced Brain Tumor Classification Using U-Net and Hybrid Feature Extraction 867

Figure 7. Confusion matrix

Figure 8. ROC curve

than 0.98, highlighting that it accurately classifies the tumor classes with a low false
positive rate.

5.3. Evaluation metrics. In this section, we discuss the metrics used to evaluate the
proposed model’s performance. The performance metrics include classification accuracy,
precision, recall, f-measure, Dice-similarity coefficient (DSC), and Jaccard Index (JI).

5.3.1. Accuracy. Accuracy defines the model’s ability and correctness in detecting and
classifying both healthy and tumor instances. It defines the ratio of true positive instances
made by the model out of the total number of instances, and it is formulated in Eqn. (11).

Accuracy =
Tps + Tnt

Tps + Tnt + Fps + Fnt

(11)
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Where Tps, Tnt, Fps and Fnt denote the true positive, true negative, false positive, and
false negative, respectively.

5.3.2. Precision. Precision quantifies the accuracy of the positive predictions made by
the classification model. It indicates the ratio of true positive predictions to the total
number of positive predictions made by the system, and it is expressed mathematically
in Eqn. (12).

Precision =
Tps

Tps + Fps

(12)

5.3.3. Recall. Recall quantifies the ratio of actual positive cases correctly detected and
classified as positive by the proposed model. It is also known as sensitivity, and it is
represented in Eqn. (13).

Recall =
Tps

Tps + Fnt

(13)

5.3.4. F-measure. F-measure presents the harmonic mean of precision and recall metrics
and offers a balanced evaluation of model performance considering both true and false
instances. It is expressed in Eqn. (14).

F−measure = 2×
(
Pn ×Ra

Pn +Ra

)
(14)

5.3.5. Dice Similarity Coefficient (DSC). DSC quantifies the overlap between the seg-
mented and ground truth tumor regions. This metric evaluates the efficiency of the
segmentation algorithm by measuring the similarity between the segmented and ground
truth regions, and it is formulated in Eqn. (15).

DSC =
2× |S ∩G|
|S|+ |G|

(15)

Where S defines the segmented region and G denotes the ground truth tumor region.

5.3.6. Jaccard Index (JI). Jaccard Index, also defined as Intersection over Union (IoU),
measures the similarity between the segmented and ground truth tumor regions. It is
formulated in Eqn. (16).

JI =
|S ∩G|
|S ∪G|

(16)

The evaluation of these metrics enables us to understand the proposed model’s perfor-
mance. Also, the assessment of DSC and JI enables us to determine the efficiency of the
developed segmentation algorithm.

5.4. Performance comparison. In this section, we compare the performances of the
proposed model with the existing techniques to validate its effectiveness and robustness
in tumor classification. The existing methods used for comparative analysis include
Enhanced Convolutional Neural Network (ECNN) [32], Hierarchical Deep Neural Net-
work (HDNN) [33], Convolution Neural Network with Long Short-Term Memory (CNN-
LSTM) [34], Whale Optimization-based Radial Neural Network (WO-RNN) [35], Social
Spider Optimization with Radial Basis Neural Network (SSO-RBNN) [36], and Fully
Optimized Convolutional Neural Network (FOCNN) [37]. The performances of these
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techniques are determined by implementing them on the Python tool for the same in-
put database, and outcomes are determined in terms of accuracy, precision, recall, and
f-measure.

The accuracy metrics measure how well the developed model learns the patterns and
interconnections between the healthy and the tumor instances. Figure ?? presents the
comparison of accuracy. The existing techniques, such as ECNN, HDNN, CNN-LSTM,
WO-RNN, SSO-RBNN, and FOCNN, obtained an accuracy of 94.62%, 90.10%, 96.17%,
95.30%, 92.65%, and 94.36%, respectively, while the proposed approach obtained higher
accuracy of 99.80%. This improved accuracy depicts that the utilization of enhanced
image segmentation and feature extraction algorithms increases the model’s classification
accuracy.

Consequently, the precision performance of the developed technique was validated with
the existing methods, and it is graphically presented in Figure ??. The conventional
approaches, such as ECNN, HDNN, CNN-LSTM, WO-RNN, SSO-RBNN, and FOCNN,
achieved precision of 94.18%, 89.17%, 95.68%, 95.58%, 91.37%, and 94.48%, respectively.
On the other hand, the proposed technique obtained an improved precision of 99.44%,
highlighting that it more accurately predicts tumor instances than the conventional mod-
els.

The recall metric measures the model’s ability to classify actual tumor instances as
positive. It also defines the model’s ability to extract all relevant attributes for differ-
entiating the healthy and tumor instances. Figure ?? presents the comparison of recall
with existing techniques. The existing techniques, including ECNN, HDNN, CNN-LSTM,
WO-RNN, SSO-RBNN, and FOCNN, attained recall of 94.34%, 89.58%, 96.22%, 94.62%,
92.50%, and 94.10%, respectively, while the designed approach achieved greater recall rate
of 99.55%.

Finally, the F-measure performance of the developed algorithm is validated with the
conventional models, which is presented in Figure ??. The above-stated existing tech-
niques obtained f-measures of 94.37%, 89.48%, 95.06%, 94.81%, 92.33%, and 94.05%,
respectively, while the developed algorithm obtained higher f-measures of 99.49%. The
improved f-measures highlight the model’s capacity to accurately identify the tumor and
healthy images. Table 2 presents the comparative analysis of classification performances.

Table 2. Comparative Performance Analysis

Methods Accuracy (%) Precision (%) Recall (%) F-measure (%)
ECNN 94.62 94.18 94.34 94.37
HDNN 90.10 89.17 89.58 89.48
CNN-LSTM 96.17 95.68 96.22 95.06
WO-RNN 95.30 95.58 94.62 94.81
SSO-RBNN 92.65 91.37 92.50 92.33
FOCNN 94.36 94.48 94.10 94.05
Proposed 99.80 99.44 99.55 99.49

5.5. Comparison of Segmentation Algorithm Performances. In this subsection,
we compare and evaluate the segmentation efficiency of the developed improved U-Net
algorithm with the existing segmentation techniques like U-Net, ResNet, VGG-16, VGG-
19, and DenseNet. The parameters used for comparative analysis include DSC and JI.

The DSC measures the segmentation accuracy of the models by measuring the similarity
between the segmented and the actual ground truth tumor regions. Here, we compare
the DSC performance of the improved U-Net architecture with conventional algorithms



870 K. Pranitha and V. S. Rao

(a) Accuracy (b) Precision

(c) Recall (d) F-measure

Figure 9. Comparative Analysis of Proposed Model with Existing Meth-
ods

like U-Net, ResNet, VGG-16, VGG-19, and DenseNet. These models obtained DSCs
of 0.98, 0.97, 0.96, 0.97, and 0.95, respectively, while the proposed approach obtained
a higher DSC of 0.995. The improved DSC defines that the proposed improved U-Net
architecture offers more accurate segmentation of tumor regions than the conventional
models. Figure 10 (a, b) compares DSC and JI performances.

Consequently, we validated the developed model’s JI performance with the existing
techniques. The existing methods, such as U-Net, ResNet, VGG-16, VGG-19, and
DenseNet, obtained JI performance of 0.982, 0.973, 0.956, 0.962, and 0.967, respectively,
while the developed improved U-Net algorithm achieved a higher JI performance of 0.996.
The enhanced JI performance highlights the model’s capacity to segment the tumor re-
gions correctly.



Enhanced Brain Tumor Classification Using U-Net and Hybrid Feature Extraction 871

(a) DSC (b) JI

Figure 10. Comparative Analysis of Segmentation Performances

Table 3. Comparative Performance Of Segmentation Algorithms

Techniques DSC JI
U-Net 0.98 0.982
ResNet 0.97 0.973
DenseNet 0.95 0.956
VGG-16 0.96 0.962
VGG-19 0.97 0.967
Improved-U-Net 0.995 0.996

The comparison of DSC and JI performances is tabulated in Table 3. The proposed
improved U-Net algorithm obtained higher DSC and JI performances than the conven-
tional models, highlighting its efficiency in segmenting the tumor regions as accurately as
ground truth tumor regions.

6. Discussion. The proposed model combines an improved U-Net with Emperor Penguin
Optimization (EPO), ResNet-50 for deep feature extraction, and Firefly Optimization
(FO) for feature selection. High classification performance, efficient feature extraction,
and precise segmentation are the main issues in brain tumor identification with MRI
images that the system is designed to overcome.

6.1. Analysis of Results. The experimental results demonstrate segmentation and clas-
sification metrics compared to existing methods. The proposed model achieved a classifi-
cation accuracy of 99.80%, precision of 99.44%, recall of 99.55%, and F1-score of 99.49%,
while the segmentation performance attained a Dice Similarity Coefficient (DSC) of 0.995
and Jaccard Index (JI) of 0.996. These results underscore the model’s capability in accu-
rately segmenting and classifying brain tumors from MRI scans.

Several factors contributed to this performance:

• Accurate Segmentation with EPO-U-Net: The incorporation of Emperor Penguin
Optimization into the U-Net training phase enables more precise weight optimiza-
tion. Unlike conventional gradient-based methods, EPO enhances convergence and
avoids local minima, resulting in better tumor boundary detection.
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• Deep Feature Representation using ResNet-50: ResNet-50 successfully captures com-
plex texture and structural patterns from segmented images. Its residual blocks allow
for deeper architectures without vanishing gradients, enabling robust feature extrac-
tion.

• Feature Selection via Firefly Optimization: The FO algorithm discards redundant
or irrelevant features, improving classification speed and accuracy. This selective
process contributes to reduced overfitting, especially on smaller datasets.

• End-to-End Pipeline Efficiency: By combining segmentation, deep feature extrac-
tion, and classification into a seamless pipeline, the model reduces manual prepro-
cessing steps and supports automation.

The proposed method offers several advantages, including high accuracy in classifi-
cation and segmentation, improved learning through optimization techniques, robustness
against noise and variability, and enhanced feature discriminability enabled by deep trans-
fer learning combined with metaheuristic algorithms.

6.2. Limitations and Challenges.

• Computational Cost: The inclusion of metaheuristic optimizations (EPO and FO)
increases computational time and resource requirements, especially during training.

• Hyperparameter Sensitivity: The performance of EPO and FO depends heavily on
parameters like population size, iterations, and attraction coefficients, which require
careful tuning.

• Generalization on External Datasets: Although results are strong on the tested
dataset, further validation is needed on external, diverse datasets to confirm gener-
alizability.

• Explainability Concerns: Deep learning and metaheuristics lack interpretability,
which may hinder clinical trust and adoption.

7. Conclusion. This study developed an improved segmentation and hybrid feature ex-
traction algorithm for accurately classifying brain tumors using MRI images. The study’s
novelty lies in the seamless integration of optimization and transfer learning models for
accurate segmentation and effective feature extraction. Firstly, the images are collected
from the site and preprocessed to improve their quality and make them effective for further
analysis. Then, we performed tumor segmentation using the proposed improved U-Net
architecture. Consequently, feature extraction was done using the developed hybrid FO-
ResNet-50 model, which enables the capture and extraction of the most informative and
discriminative features for tumor classification. Finally, we trained the DCNN model with
the extracted features to distinguish healthy and tumor classes. The proposed study was
trained and validated using the BraTS 2020 database. The experimental results depict
that the developed model achieved a high classification accuracy of 99.80%, improved pre-
cision of 99.44%, greater recall of 99.55%, and enhanced f-measure of 99.49%. In addition,
the developed segmentation algorithm achieved a greater DSC of 0.995 and JI of 0.996,
highlighting its efficiency in segmenting the tumor regions more effectively. Finally, we
made a comparative assessment with the existing techniques, and it validated that the
developed algorithm outperformed the existing models. These improved performances
of the proposed approach make it effective and reliable for real-time brain tumor seg-
mentation and classification. Future research will focus on incorporating explainable AI,
reducing complexity through model compression and lightweight architectures, expanding
validation using multicentre and cross-domain datasets, and exploring other metaheuristic
algorithms or hybrid optimization techniques.
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