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Abstract. The combination of images and text enhances the capability of joint rep-
resentation, facilitating tasks in image detection and recognition. In zero-shot learning
(ZSL) models, representing extensive knowledge enables the model to generalize funda-
mental components, thereby predicting new labels without direct training. Notably, in-
sulator defect detection encounters numerous challenges that necessitate leveraging both
images and text to improve detection quality. However, these methods often struggle to
fully grasp the context to focus on understanding features and enhancing reasoning abil-
ity for insulator defect detection. To address this, we propose a visual prompt-guided
zero-shot learning system for insulator defect detection based on a similarity retrieval
mechanism within the framework of narrowing the gap between semantic and visual fea-
tures. Our method can suggest the most relevant attributes and objects for recognition
based on visual and semantic features. Experiments on two standard benchmark datasets
in both closed and open scenarios demonstrate promising results in supporting insulator
defect detection.
Keywords: Insulator defect detection, zero-shot learning, image processing

1. Introduction. Detecting Insulator defects [1] is a crucial task for safeguarding electri-
cal power systems and ensuring timely maintenance and upkeep to prevent severe failures.
However, acquiring data on Insulator defects is challenging due to the inherent hazards
in power line environments. This necessitates the development of techniques capable of
learning novel labels and attributes such as color, texture, and shape. The capacity to
associate diverse attributes with various insulator defect instances is a facet of human
perception, often referred to as feature binding, which aids in recognition and detection.

Zero-Shot Learning (ZSL) [2, 3] aims to develop training techniques for predicting
novel labels and objects by leveraging attributes and objects that are not encountered or
observed during the training phase. ZSL endeavors to concentrate on the reconstruction
of known components to facilitate the recognition of new labels by efficiently enhancing
features through integrated visual representations.

The training process seeks to augment knowledge by integrating computer vision with
textual information and attempts to map concepts between images and semantic text.
This integration enables tasks such as zero-shot classification and image recognition [4,
5, 6, 7]. However, integrating images and semantic text presents significant challenges.
Furthermore, one of these components may suffer from data scarcity, such as a lack
of image data or semantic text data. Consequently, this deficiency in generalization
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capability can be attributed to the reliance on representational features of fixed classes,
resulting in limited flexibility for novel classes.

Recent research in ZSL, focusing on the integration of images and semantic text for
general recognition and detection problems and specifically for Insulator defect detec-
tion, remains relatively underexplored. Furthermore, general recognition and detection
paradigms encounter limitations such as: (1) State-of-the-art methods often necessitate a
fixed text format, for instance, ”a photo of [object] with [attributes],” lacking true textual
flexibility; (2) Algorithms are frequently limited to learning basic features like images
or image bounding boxes for feature representation; (3) Predominant methods primarily
concentrate on fixed data label sets, exhibiting inflexibility towards new label sets.

To address these challenges, we propose a Zero-Shot Learning (ZSL) based approach
that integrates images and textual context for Insulator defect detection. Our main
contributions are as follows:

• Visual Guidance: We introduce visual guidance by constructing embedding feature
space sets to facilitate the learning of designs and the capture of visual patterns
associated with attributes and objects.

• Semantic Text Repository Development : We develop a semantic text repository com-
prising several layers to support the recognition of novel classes in the future, as some
classes may lack training images but semantic text can be proactively generated.

• Insulator Defect Detection Adaptation: Our proposed VPZL model incorporates
an adaptation mechanism to dynamically adjust the training focus on label classes,
thereby enhancing Insulator defect detection through the utilization of image features
derived from a visual transformer.

2. Related Works. Zero-Shot Learning (ZSL) [2, 3] operates on the principle of rec-
ognizing untrained categories based on known foundational elements. Several ZSL ap-
proaches, such as leveraging distance-based methods [8], feature spaces [9], etc., aim to
achieve structured generalization. Zabihzadeh et al. [10] developed a novel distance
metric method for ZSL to facilitate object recognition. Visual feature embedding net-
works [11] are constructed to distinctly capture the diversity of patterns, attributes, and
objects. Wang [12] proposed an attribute-embedding based approach to build attribute-
based learning sets, thereby enhancing interaction when attributes change across different
objects.

Wang and Yiheng [13] integrated images and semantic text to develop methods for
attribute and object description to support object recognition and detection. Antwi [1]
constructed a deep learning model for Insulator defect recognition and detection. Zhu [14]
employed multi-modal deep learning for insulator defect detection to identify a wider range
of Insulator defect instances. In general, methods relying on deep learning models utilizing
neural networks still exhibit limitations in the accuracy of insulator defect detection.

Prompt learning based deep learning [15] leverages the attention mechanism of language
models to enhance the quality of pattern recognition or object detection. Prompting mod-
els [16] endeavor to focus on the multi-modal nature of both textual and visual content.
Huang et al. [17] combined ZSL with the creation of embedding spaces for textual and
computer vision content to improve the quality of object recognition. With advancements
in multi-modal learning techniques, prompt learning has seen new directions by focusing
on the multi-modality of both textual and visual content to construct embedding feature
spaces [15].

3. Proposed Method.
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3.1. Problem Definition. Ensuring the reliability and safety of electrical power systems
necessitates the automated detection of insulator defects, a task of paramount impor-
tance. Traditional supervised learning approaches for object detection require extensive
labeled data for each defect type, rendering them impractical for insulator defects. This
impracticality stems from the rarity of certain defect types and the inherent challenges
in acquiring comprehensive datasets under hazardous power line conditions. To address
these limitations, we explore a ZSL paradigm for insulator defect detection, capitalizing
on the compositional nature of defects and insulators.

Formally, let A = {a0, a1, ..., an} denote the set of attributes relevant to describing in-
sulators and their defects, encompassing visual characteristics such as color, texture, and
shape, as well as semantic descriptors. Let O = {o0, o1, ..., om} represent the set of ob-
jects, which in our context primarily includes objects related to insulators and potentially
distinct categories of defects. We define the composition space C as the Cartesian prod-
uct of attributes and objects, C = A × O. Each element within C embodies a plausible
description of an insulator or an insulator defect, derived from a combination of attributes
and objects.

We acknowledge that the set of all possible compositions C can be partitioned into two
disjoint subsets: seen compositions Cs encountered during training, and unseen compo-
sitions Cu absent from the training data. Our objective is to develop a model capable
of detecting and classifying insulator defects, particularly those belonging to the unseen
composition set Cu, effectively performing Zero-Shot Learning.

We further delineate two distinct scenarios within Compositional Zero-Shot Learning
(CZSL):

• Closed-World CZSL: In this setting, we operate under the premise that all possible
compositions encountered during testing are drawn from a predefined subset Ctest ⊆
C. While the model may not have been exposed to all compositions during training,
we assume that the test compositions reside within a known, bounded space of
possibilities, Ctest = Cs ∪ Cu. The task is to learn a function f : X → Ctest, where
X represents the input space of insulator images. The model must classify an input
image into one of the compositions within this predefined Ctest, encompassing both
seen and unseen combinations during training but confined to this known set.

• Open-World CZSL: In a more demanding Open-World scenario, we relax the as-
sumption of a predefined test composition set. The model is expected to navigate
the entire composition space C = A×O, encompassing both feasible and potentially
infeasible combinations. This implies that the model may encounter entirely novel
compositions during testing, compositions neither seen during training nor explicitly
anticipated within a predefined test set. The objective in this case is to learn a
function f : X → C, requiring the model to generalize to a truly open-ended space
of insulator defect compositions.

For both Closed-World and Open-World CZSL settings, we aim to harness the syn-
ergy of image and text encoders. The image encoder will extract visual features from
insulator images, while the text encoder will process semantic information pertaining
to attributes and objects. By effectively bridging the gap between visual and semantic
spaces, we aspire to empower the model to recognize and detect insulator defects, even
for novel compositions unseen during training. This approach is particularly pertinent
to real-world insulator defect detection, where the variability in defect types and appear-
ances necessitates robust generalization capabilities that transcend traditional supervised
learning methodologies.
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Figure 1. The framework of the proposed VPZL

3.2. Model Architecture. Figure 1 illustrates the proposed model architecture, de-
signed to leverage both visual and textual information to enhance object detection ca-
pabilities, particularly in the context of insulator defect detection. This architecture
employs a dual encoding framework, processing image and text input data in parallel
before merging their representations in a shared workspace. This multimodal approach
aims to exploit the complementary strengths of visual and semantic signals to improve
detection performance, especially for tasks such as ZSL.

The image processing branch, depicted in the upper portion of the architecture, spe-
cializes in processing image input data. As illustrated, the example images show various
insulator conditions, including ’insulator’ (normal), ’broken insulator,’ and ’surface dis-
charge due to pollution,’ demonstrating the model’s intended application in detecting
various insulator states, including defects. Raw image data, representing insulators and
their surrounding environment, is ingested into the system. These images are designed
to capture the visual characteristics of insulators, which are crucial for identifying po-
tential defects. The image input data is then fed into an ’Image Encoder.’ This module
is responsible for extracting salient visual features from the input images. The specific
type of Image Encoder is specified in the diagram, including Convolutional Neural Net-
works (CNNs), Vision Transformers (ViTs) [18], and other suitable architectures capable
of learning hierarchical and discriminative visual representations. The output of the Im-
age Encoder is a feature vector denoted as fi. This vector represents the encoded visual
features of the input image in a high-dimensional space.

The text processing branch, located in the lower portion of the architecture, is designed
to process textual information. This branch highlights the incorporation of ’Prompt En-
gineering’ and a ’Text Encoder’ to effectively utilize textual signals. The ’Prompt Engi-
neering’ component suggests that the system uses prompts to guide the text encoder in
extracting relevant semantic information. ’Prompt Engineering’ may involve constructing
specific textual prompts that provide contextual information or descriptions related to
objects or attributes of interest (e.g., ’detect broken insulator,’ ’identify surface discharge
due to pollution’). These prompts, along with relevant textual data, serve as input to the
Text Encoder. The ’Text Encoder’ processes the engineered prompts and related textual
data. This module is responsible for transforming the textual input data into a semantic
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embedding. Similar to the Image Encoder, the specific type of Text Encoder is speci-
fied, including Transformer-based models like BERT [19] capable of capturing semantic
relationships and contextual information from text. The output of the Text Encoder is a
feature vector denoted as ft. This vector represents the encoded semantic features derived
from the textual input data.

After separately encoding the image and text input data, the architecture proceeds to
merge these representations to create a joint multimodal representation. The ’Feature
Fusion’ module receives the image feature vector fi and text feature vector ft as inputs.
This module is responsible for integrating visual and semantic information. The diagram
does not specify the fusion mechanism, which may include techniques such as concatena-
tion, element-wise operations (addition, multiplication), attention mechanisms, or more
complex fusion networks. The goal of this module is to produce a combined feature rep-
resentation that effectively captures the relationships and interactions between visual and
textual signals. The output of the ’Feature Fusion’ module leads to a ’Workspace.’ This
space can be understood as a joint embedding space where the fused visual and textual
features are represented. In this workspace, the model can perform downstream tasks such
as object detection, classification, or recognition, leveraging the enriched multimodal rep-
resentation. The workspace allows the model to compare and associate visual and textual
features for effective object recognition and detection, particularly in scenarios requir-
ing semantic understanding, such as Zero-Shot Learning, where textual descriptions can
generalize to unseen object categories.

The described architecture represents a multimodal approach that effectively integrates
visual and textual information for object detection. By processing images and text in par-
allel and then fusing their representations, the model aims to achieve more robust and
semantically informed detection capabilities. The inclusion of Prompt Engineering [21]
highlights the importance of guiding the text encoder with relevant prompts, indicating
the intention to enhance the model’s ability to understand and utilize textual descrip-
tions for improved object recognition, particularly in tasks requiring generalization to
new categories or attributes as commonly found in Zero-Shot Learning scenarios. This
architecture is particularly suitable for complex image recognition tasks, such as insulator
defect detection, where contextual and semantic information can significantly improve
performance.

3.3. Loss function. To effectively train the proposed model architecture for ZSL based
insulator defect detection, we employ a contrastive loss function designed to align the
visual and textual feature representations within the shared working space. The primary
objective of this loss function is to ensure that semantically related image and text em-
beddings are mapped to close proximity in the joint embedding space, while embeddings
from unrelated pairs are pushed further apart. This mechanism facilitates the model’s
ability to generalize to unseen categories by understanding the underlying relationships
between visual features and semantic descriptions.

Let us denote the image feature vector extracted from the Image Encoder as fi and
the text feature vector extracted from the Text Encoder as ft. We define a similarity
function S(fi, ft) to measure the compatibility between the image and text embeddings.
A commonly used similarity measure is the cosine similarity, defined as:

S(fi, ft) =
fi · ft

∥fi∥∥ft∥
(1)

where · represents the dot product, and ∥ · ∥ denotes the Euclidean norm.
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Our loss function is formulated as a margin-based contrastive loss. For each train-
ing instance, we consider positive pairs, which consist of an image and its corresponding
text description (e.g., an image of a ”broken insulator” and the text prompt ”broken
insulator”), and negative pairs, which are composed of an image and a mismatched text
description (e.g., an image of a ”normal insulator” and the text prompt ”broken insula-
tor”). The loss function is then defined as:

L =
∑
(i,t)+

∑
(i,t)−

max(0,m− S(f+
i , f

+
t ) + S(f+

i , f
−
t )) (2)

where:

• (i, t)+ represents a positive pair of image and text embeddings, with f+
i and f+

t being
their respective feature vectors.

• (i, t)− represents a negative pair, with f+
i being the image feature vector from the

positive pair, and f−
t being the text feature vector from a mismatched text descrip-

tion.
• m is a margin parameter, typically set to a positive value (e.g., m = 1), which
controls the desired separation between positive and negative pairs.

The loss function L is minimized during training. Minimizing L encourages the similar-
ity S(f+

i , f
+
t ) between positive pairs to be high (ideally close to 1 for cosine similarity), and

the similarity S(f+
i , f

−
t ) between negative pairs to be low (ideally less thanm−S(f+

i , f
+
t )).

In essence, the model is penalized when the similarity of a negative pair is not sufficiently
smaller than that of a positive pair by at least the margin m.

By optimizing this contrastive loss, we aim to learn an embedding space where visual
features of insulator defects are closely aligned with their corresponding semantic descrip-
tions. This alignment is crucial for enabling the model to effectively perform Zero-Shot
Learning, allowing it to detect and classify novel insulator defect types based on learned
semantic relationships, even for categories not explicitly seen during training.

4. Experiments.

4.1. Dataset. To comprehensively evaluate the proposed model’s performance and gen-
eralization capabilities, we employ two distinct datasets: Ins-States and MIT-States [20].
The Ins-States dataset is a specialized dataset for insulator defect detection that we have
collected, while the MIT-States dataset is a publicly available compositional dataset for
broader evaluation.

The Ins-States dataset is specifically constructed for the task of insulator defect de-
tection and is organized into three distinct subsets to facilitate model development and
evaluation. As depicted in the data card, the dataset is structured into train, val, and
test directories. The training set (train) comprises the largest portion with 1296 images,
intended for model parameter optimization. The validation set (val), consisting of 144
images, is utilized for model validation and hyperparameter tuning during the training
process. Finally, the test set (test), containing 160 images, is reserved for assessing the
final performance of the trained model. The Ins-States dataset focuses on capturing a
variety of insulator conditions, encompassing both normal and defective states, rendering
it a highly relevant resource for our insulator defect detection task. Within the Ins-States
dataset, we designate the following classes as ”seen” during the training phase: (1) Normal
Insulator: This fundamental class represents insulators in their operational, defect-free
state. It is essential for the model to learn baseline insulator characteristics and to dif-
ferentiate them from defective conditions. (2) Seen Insulator Defect Types: Depending
on the diversity of defect types within the Ins-States dataset, a selection of the most
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prevalent defect types may be designated as ”seen” classes. For instance, if the dataset
encompasses defect types such as chipped insulators, surface cracks, or minor corrosion,
these could be included as ”seen” classes. Conversely, the following classes are designated
as ”unseen” and are reserved exclusively for ZSL testing purposes: (i) Broken Insulator:
This class represents insulators exhibiting severe physical damage, often resulting from
physical impact or aging processes. ”Broken insulators” are a critical defect type in prac-
tical applications; however, this class is intentionally kept ”unseen” during training to
evaluate the ZSL capability of the model; (ii) Pollution-Flashover: This class describes
surface flashover events caused by the accumulation of pollutants on the insulator surface.
”Pollution-flashover” represents a distinct defect type compared to ”broken insulators”
and is also retained within the ”unseen” set to assess the model’s ability to generalize to
novel defect categories; (iii) Other Unseen Insulator Defect Types: In addition to ”broken
insulator” and ”pollution-flashover”, should the Ins-States dataset contain further, less
prevalent or data-scarce defect types (e.g., punctured insulators, deep cracks, etc.), these
could also be incorporated into the ”unseen” set to enhance the challenge of the ZSL task.

In addition to the domain-specific Ins-States dataset, we leverage the MIT-States
dataset to evaluate the generalization capabilities of our model on a more general com-
positional recognition task. MIT-States, a publicly accessible dataset gathered from web-
crawled images, is characterized by its rich compositional structure. It encompasses a
diverse range of 245 distinct object categories and 115 diverse attribute categories. The
MIT-States dataset serves as a challenging benchmark for evaluating compositional gen-
eralization, enabling us to examine the model’s capacity to handle a wider spectrum of
visual concepts beyond the insulator defect domain.

By utilizing both the Ins-States dataset and the MIT-States dataset, we aim to achieve
a rigorous evaluation of our proposed approach. The Ins-States dataset provides a focused
assessment on the target task of insulator defect detection, while the MIT-States dataset
allows us to gauge the broader generalization abilities of our model in a compositional
zero-shot learning context.

4.2. Experiment setup. The VPZL model is implemented using the PyTorch frame-
work. Model optimization is performed using the Adam optimizer across the Ins-States
and MIT-States datasets. For feature extraction, we leverage pretrained models for both
image and text encoding. Specifically, the image encoder is initialized with a pretrained
Vision Transformer (ViT) model, while the text encoder is based on a pretrained BERT
model. All experiments are conducted on four NVIDIA RTX 4090 GPUs, ensuring con-
sistent computational resources across evaluations. The batch size, denoted as M , is set
to 32 for the Ins-States dataset and 30 for the MIT-States dataset. The smaller batch
size for MIT-States is attributed to the dataset’s greater compositional diversity, which
necessitates adjustments for efficient training.

Our experimental evaluation is designed to address the following key research questions:

• RQ1: How does the VPZL model perform compared to state-of-the-art methods?
• RQ2: How does the VPZL model predict in practice to detect insulator defects?

4.3. Performance Compare (RQ1). Table 1 presents the performance comparison of
different methods, including TMN, SymNet, CGE, CompCos, and the proposed VPZL
model, in an Open World environment on both MIT-States and Ins-States datasets. The
evaluation metrics include accuracy on seen compositions (’Seen’), accuracy on unseen
compositions (’Unseen’), and Area Under the Curve (AUC). Overall, the VPZL model
significantly outperforms the comparison methods across both datasets and all metrics,
achieving the highest scores, highlighted in bold in the table. This is particularly crucial



850 Pho Hai Dang

Table 1. Open-World Results on MIT-States and Ins-States. The results
are reported for Seen, Unseen, and Area Under the Curve (AUC). Bold and
blue indicate the first and second best results, respectively

Method
MIT-States Ins-States

Seen Unseen AUC Seen Unseen AUC
TMN [25] 12.6 0.9 0.1 56.4 42.6 19.2

SymNet [23] 21.4 7.0 0.8 54.8 43.1 18.5
CGE [24] 32.4 5.1 1.0 62.7 47.3 22.9

CompCos [25] 25.4 10.0 1.6 59.5 46.5 21.3
VPZL (Ours) 30.5 15.9 3.3 66.2 60.0 30.8

in the context of insulator defect detection, where the ability to recognize new defect
types not encountered during training (’Unseen’ accuracy) is vital.

On the MIT-States dataset, VPZL demonstrates a ’Seen’ accuracy of 30.5% and an
’Unseen’ accuracy of 15.9%, achieving an AUC of 3.3. Although MIT-States is a more
general dataset, these results show VPZL’s superiority, particularly in ’Unseen’ accuracy,
which is a major challenge in ZSL. Compared to other methods on MIT-States, CompCos
achieves the second-best ’Unseen’ accuracy at 10.0%, and CGE achieves the second-best
’Seen’ accuracy at 32.4%, though CGE’s ’Unseen’ performance is significantly lower than
VPZL’s.

More importantly, on the Ins-States dataset, specialized for insulator defect detection,
VPZL continues to demonstrate superior performance with a ’Seen’ accuracy of 66.2%,
an impressive ’Unseen’ accuracy of 60.0%, and an AUC of 30.8. Notably, while CGE and
CompCos show relatively competitive ’Seen’ accuracy on Ins-States, their ’Unseen’ accu-
racy and AUC scores remain significantly lower than VPZL’s. In the context of insulator
defect detection, VPZL’s high ’Unseen’ accuracy on Ins-States is particularly significant.
It demonstrates the model’s strong generalization capability to new, previously untrained
insulator defect types. In practical applications, insulator defect detection systems often
face a wide variety of defects, many of which may be new variants or rare cases. There-
fore, VPZL’s robust ZSL capability, evidenced by its high ’Unseen’ accuracy, provides a
significant advantage in real-world deployment.

These results emphasize the effectiveness of the VPZL method in open-world composi-
tional zero-shot learning, particularly in the insulator defect detection problem. VPZL’s
enhanced generalization capability to novel attribute-object combinations, clearly demon-
strated on the challenging Ins-States dataset, proves the advantage of the model archi-
tecture in handling open-world scenario complexities and effectively learning transferable
representations for unseen compositions. The significant performance gap compared to
other methods further reinforces VPZL’s advantage in practical insulator defect detection
applications, where recognizing new and diverse defect types is crucial.

4.4. Qualitative Study (RQ2). Figure 2 shows the prediction results of the insulator
defect detection model in two scenarios: Closed World and Open World. In each scenario,
the image displays three different examples of insulators, accompanied by ground truth
(GT) labels - actual labels assigned by humans - and the top three predictions made by
the model. This analysis highlights the differences in model performance and behavior
when faced with different assumptions about the test label space, which is crucial in the
context of Zero-Shot Learning (ZSL) and particularly in the insulator defect detection
problem.
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Figure 2. The detection results of VPZL model.

In the Closed World scenario, the model operates within a restricted and predefined la-
bel space. In the first example (GT: porcelain breakage), the model’s top three predictions
all focus on material attributes (’porcelain’, ’composite’) and defect type (’breakage’).
Similarly, in the second example (GT: porcelain), the predictions also revolve around ma-
terials (’porcelain’, ’glass’) and surface condition (’flashover’). This demonstrates that in
the Closed World, the model tends to predict familiar labels within the predefined label
space, focusing on accurate classification within known labels.

Conversely, in the Open World scenario, the model must deal with a broader label space
that may contain labels unseen during training. This is clearly illustrated through the
examples in the figure. In the third example (GT: porcelain explode), while the top pre-
diction still relates to material (’glass’, ’porcelain’), the third prediction shows the ’dirty’
label, a surface condition attribute, indicating that the model begins to explore broader
descriptive aspects when facing an open label space. Similarly, in the fourth example (GT:
porcelain flashover), the ’flashover’ label is correctly predicted in the first position, show-
ing the ability to recognize the target defect. However, subsequent predictions expand
to other material attributes and defect types (’glass’, ’breakage’). Finally, in the fifth
example (GT: composite breakage), the top prediction continues to be ’flashover’, and
subsequent predictions relate to different materials and defect types (’glass’, ’breakage’).

This analysis demonstrates that the VPZL model, trained using the Zero-Shot Learning
approach, shows effective operational capability in both Closed World and Open World
scenarios. In the Closed World, the model focuses on accurate classification within the
known label space. Meanwhile, in the OpenWorld, the model tends to explore and propose
more diverse labels, potentially including new attributes and defect types, demonstrating
its ability to generalize and adapt to an open label space. This is particularly important
in the insulator defect detection problem, where various types of defects may appear,
including rare or previously unknown types during training. The ability to perform well
in both scenarios, especially the generalization capability in the Open World, confirms
the superiority and practical application potential of the VPZL model in insulator defect
detection.

5. Conclusions. To comprehensively evaluate the VPZL model, we constructed and uti-
lized the Ins-States dataset specifically for insulator defect detection, alongside the public
MIT-States dataset to test general generalization capability. Experiments were conducted
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in both Closed World and Open World settings, using a strict Zero-Shot Learning proto-
col where the model is trained on a set of ’seen’ classes and evaluated on ’unseen’ classes.
Experimental results on both datasets, particularly on the Ins-States dataset, convinc-
ingly demonstrated the superiority of the VPZL model compared to other state-of-the-art
methods such as TMN, SymNet, CGE, and CompCos. VPZL showed significant improve-
ments in accuracy on ’unseen’ classes and AUC scores, indicating strong generalization
capability to new, previously unseen insulator defect types. Qualitative analysis of pre-
diction results also highlighted VPZL’s ability to adapt to both restricted label space
(Closed World) and open label space (Open World), demonstrating high flexibility and
practical applicability.

The main contributions of this research include proposing the unique VPZL architec-
ture, constructing the specialized Ins-States dataset, and experimentally demonstrating
VPZL’s effectiveness in the Zero-Shot Learning approach to insulator defect detection.
These research findings open up a new and promising direction for developing intelligent
insulator defect detection systems capable of operating effectively in real-world environ-
ments, where the diversity and novelty of defect types pose significant challenges. In
the future, the research could be extended to explore deeper aspects such as the in-
terpretability of VPZL’s predictions, optimization of architecture and loss functions for
further performance improvement, and application of the model in large-scale real-world
insulator defect detection systems.
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