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Abstract. Paddy leaf diseases, including fungal infections like Rice Blast and Brown
Spot and bacterial infections like Leaf Blight and Leaf Streak, often co-exist, creating
complex morphological variations. The dynamic evolution of lesions, influenced by envi-
ronmental conditions and pathogen interactions, leads to unpredictable changes in texture,
shape, and spectral properties. These factors cause feature misalignment, asymmetrical
lesion fusion, and optical distortions, making traditional models ineffective and resulting
in frequent misclassification. To address these challenges, the Vision Rotary Attention
Decision Forest Perceptron Transformer is proposed for accurate fungal and bacterial
disease classification. It starts with Image Patch Generation for segmenting rice leaf
images for fine-grained lesion details, then using RoPE (Rotary Position Encoding) and
Fourier Position Encoding for spatial and frequency representation. These enriched rep-
resentations are processed using Multihead Self-Attention and GBdt-enhanced feedforward
networks, gradient boosting trees, and Graph and Wavelet Patch Embeddings for precise
decision-making and robust segmentation in bacterial and fungal infections. Finally, the
hierarchical MLP with XGBoost and Random Forest improves classification accuracy by
capturing evolving lesion structures and mitigating feature misalignment errors, while
processing fungal and bacterial infections separately enhances robustness. The Exper-
imental evaluations confirm enhanced feature extraction, reduced time complexity, and
superior classification accuracy over conventional models.

Keywords: Paddy Leaf Disease; Fungal and Bacterial Infections; Feature Misalign-
ment; Disease Classification; Lesion Segmentation; Machine learning

1. Introduction. Paddy leaf plants, mainly of the Oryza sativa species, are some of
the most important sites for rice cultivation in the world. They are the main sites of
photosynthesis and nutrient absorption needed for plant growth [1]. The leaves are linear-
lanceolate with parallel venation and therefore capture light more effectively. Stomatal
functioning controls gas exchange and transpiration, which in turn affect yield. Leaf
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architecture varies among rice cultivars due to environmental stress subjection. Drought,
salinity, and extreme temperatures affect leaf morphogenesis and functioning [2]. Healthy
paddy leaves are generally bright green, suggesting good chlorophyll and nutrient status.
Discolored, yellowed, or curled leaves are common characteristics of deficiency symptoms
or plant stress. Leaves turn pale green in plants deficient in nitrogen while they have brown
edges because of potassium deficiencies [3]. The dark green to purple coloration arising
from phosphorus deficiency negatively affects growth. Excess moisture or standing water
weakens the roots and affects nutrient uptake and, hence, leaf health. Different soil types
with unsuitable conditions, including improper balance of pH, hinder good morphological
leaf development [4].

Beyond abiotic stressors, pathogenic infections, particularly viral and bacterial diseases,
pose critical threats to rice production, leading to significant yield losses, weakened plant
vigor, and reduced grain quality [5]. Viral infections, including Rice Tungro Virus (RTV),
Rice Dwarf Virus (RDV), and Rice Grassy Stunt Virus (RGSV), are primarily transmitted
by insect vectors such as green leafhoppers and brown planthoppers, causing yellowing,
mosaic-like patterns, curling, and severe growth stunting in leaves, ultimately disrupting
panicle development and reducing grain formation [6]. The high humidity and increasing
vector populations exacerbate disease transmission, making control strategies complex.
Traditional management relies on insecticides and virus-resistant cultivars, but excessive
chemical use harms beneficial pollinators, soil microbiota, and biodiversity, while also
accelerating vector resistance evolution, necessitating advanced detection and mitigation
strategies for effective disease control [7].

Moreover, it should be noted that several bacterial infections of paddy leaves are se-
rious problems in rice farming, causing considerable yield and quality loss [8]. Bacterial
pathogens, particularly Bacterial Blight and Bacterial Leaf Streak, cause devastating yield
losses in rice farming by infiltrating plant tissues through stomata, hydathodes, or mechan-
ical wounds, proliferating rapidly under warm and humid conditions [9]. Infected leaves
exhibit water-soaked lesions that turn yellowish-brown, necrotic streaks along veins, pre-
mature drying, and reduced photosynthetic efficiency, ultimately leading to poor tillering
and diminished grain formation [10]. Transmission occurs through contaminated irrigation
water, infected seeds, and insect vectors, making containment challenging. Conventional
strategies, such as field sanitation, resistant cultivars, and bactericides, provide partial
control but face limitations due to bacterial resistance evolution [11].

The detection and classification of paddy leaf diseases face significant challenges due
to environmental variability, symptom overlap, model adaptability, and data limitations.
Fluctuations in light conditions, humidity, and temperature affect image consistency, re-
ducing model accuracy [12]. Many diseases, including fungal, bacterial, and viral in-
fections, exhibit similar discoloration and lesion patterns, complicating differentiation.
Conventional epidemiological models like the Susceptible-Infected-Recovered (SIR) model
struggle to incorporate real-time climatic variations and sudden environmental stressors,
limiting their predictive reliability [13]. Machine learning models such as CNNs, k-NN,
and SVMs require large, high-resolution datasets for accurate classification, yet real-world
conditions introduce shadows, occlusions, and mixed infections, hindering precise disease
detection [14]. Overcoming these challenges demands robust, adaptable AI-driven mod-
els capable of real-time analysis while accounting for field complexities [15]. Hence, a
need for advanced AI-driven disease detection frameworks that integrate deep learning,
hyperspectral imaging, and real-time environmental monitoring to enhance accuracy and
adaptability.



Adaptive Vision Transformer for Paddy Leaf Disease Classification 817

1.1. The main contribution of the research. The Vision Rotary Attention Decision
Forest Perceptron Transformer effectively addresses feature misalignment and lesion evo-
lution by leveraging advanced spatial-frequency feature extraction, ensuring that lesion
morphology is preserved despite uneven infection spread. Its adaptive learning mecha-
nisms enhance feature differentiation, enabling accurate classification of dynamic fungal
and bacterial infections. To mitigate misclassification in co-existing infections, the model
incorporates advanced embeddings that distinguish fungal and bacterial lesions, ensuring
precise cross-infection recognition. This approach enhances feature alignment, minimizes
errors, and improves disease differentiation and diagnostic accuracy, making it a robust
and reliable solution for agricultural disease management.

1.2. Organization of the Paper. In order to address the issues with Paddy Leaf Dis-
ease Prediction, the aforementioned contributions have been taken into consideration.
Section 2 of the article outlines the literature study, Section 3 outlines the suggested
methodology and how it operates, and Section 4 addresses the assessment, performance,
and comparative analysis of the suggested model. The article is finally concluded in
Section 5.

2. Literature review. Ritharson et al. [16] provided a solution by accurately identifying
and classifying rice leaf diseases by utilizing Deep Learning (DL) and transfer learning
techniques. Together with the benchmark datasets, a comprehensive dataset of 5932 self-
generated photographs of rice leaves was compiled. The suggested custom VGG16 model
performed well in recognizing and classifying nine distinct rice leaf disease class labels.
Data augmentation techniques were used to increase the quantity of photos after careful
human labeling and dataset segmentation, which were verified by horticulture specialists.
However, this model struggles to generalize to new or unseen diseases, regions with varying
agricultural practices, which requires additional fine-tuning.

Chakrabarty et al. [17] developed a thorough investigation for identifying rice leaf
illnesses using pre-trained CNNs (Convolutional Neural Networks) and an sophisticated
artificial intelligence system known as the BEiT model (optimal bidirectional encoder
representations from the transformers for pictures). For efficient disease identification,
the BEiT model uses convolution and attention methods to divide the input picture into
visual tokens and suppress unnecessary portions to improve emphasis on important char-
acteristics. The transformer network used contextual linkages and visual token analysis
to classify symptoms of plant diseases. By highlighting important regions involved in ill-
ness identification with superpixels and attention maps, the LIME approach was used to
analyze and explain the model’s decision-making process. Although LIME makes things
easier to understand, it is unable to fully describe the intricate connections between the
many elements that contribute to the development of illness.

Shafik et al. [18] presented two plant disease detection (PDDNet) models for effective
plant disease diagnosis and classification: the lead voting ensemble (LVE) and early fusion
(AE). These models were combined with nine pre-trained CNNs and refined by deep
feature extraction. A more reliable feature extraction procedure was made possible by
this model’s integration of early fusion, which blended features from the separate CNNs
at the first layers. To improve the accuracy of illness identification, this model used the
capabilities of many CNN models to vote on the final diagnosis. The multi-object deep
learning model’s efficacy in a variety of real-world scenarios is diminished by its inability
to generalize across various plant species, backgrounds, and environmental conditions.

Singh et al. [19] suggested a unique CNN architecture for identifying and categorizing
prevalent diseases in rice plants. To increase efficiency and preserve high disease detection



818 A. G and P. T. Sivasankar

accuracy, the architecture was created with a focus on minimizing the number of param-
eters. The specialized CNN architecture was created to identify diseases accurately while
being lightweight, efficient, and requiring fewer parameters. The model was trained us-
ing two optimization techniques Adam and Stochastic Gradient Descent with Momentum
(SGDM). Both methods were evaluated both with and without the dataset of healthy rice
leaves. However, only four rice plant illnesses were used to train the model, which limits
its capacity to detect additional diseases not present in the dataset. The dataset must be
expanded to include a greater variety of paddy leaf plant diseases.

Maheswaran et al. [20] provided a CNN-based model for image processing-based rice
leaf disease detection and classification. To highlight the damaged and healthy areas of
the leaves, the background of the image was removed during pre-processing based on hue
values. With an emphasis on both damaged and healthy leaf parts, CNN was used to
extract characteristics from the photos. After feature extraction, the model used a fully
connected layer to classify the pictures into one of six categories: either healthy leaves or
diseased leaves. The method helped farmers safeguard their crops by facilitating precise
early disease identification, which eventually increased agricultural output and quality and
contributed to food security. However, if the training dataset is not sufficiently varied,
the model suffers from overfitting.

Archana et al. [21] presented an approach to enhance rice plant disease identification’s
classification and computational capabilities. The input image was pre-processed, after
that noise and fuzzy pixels were eliminated using the Wiener filter. To determine which
areas of the pre-processed photos were impacted, the modified K-means segmentation
approach was used. To extract features: the area and diameter of the segmented image
were used to extract shape-based features; the gray-level cooccurrence matrix (GLCM)
and bit pattern features (BPF) were used to retrieve texture features; and the novel
intensity-based color feature extraction (NIBCFE) method was used to extract color-
based features. Lastly, the images were classified using the derived feature values using
a unique probabilistic neural network based on support vector machines. However, this
suffers in coordinating multiple agents to work collaboratively while handling independent
sub-spaces and facilitating effective communication among them.

Wang et al. [22] suggested using photos of rice leaves to identify and categorize rice
illness using an attention-based depthwise separable neural network with Bayesian op-
timization (ADSNN-BO). The model enhanced CNN architectures’ performance for rice
illness classification by using pre-trained ImageNet weights. Additionally, the model’s
hyperparameters were adjusted using the Bayesian optimization technique. Activation
map and filter visualization were also used for feature assessment in order to demonstrate
the model’s performance. However, the computational and memory constraints of some
mobile devices make real-time processing and large-scale deployment difficult, even if the
ADSNN-OB model is suited for mobile devices.

Azim et al. [23] developed a categorization method for rice leaf diseases that can identify
three distinct illnesses: leaf smut, brown spot, and bacterial leaf blight. The approach
included preprocessing stages including hue thresholding for impacted region segmentation
and saturation thresholding for background removal. The XGBoost model was used for
the classification of the extracted features, and model parameters were adjusted to attain
the best possible results. There are now just three distinct rice diseases that the model
can identify: bacterial leaf blight, brown spot, and leaf smut. It would be more applicable
in practical situations if the model extended to identify a wider variety of rice illnesses.

Tiwari et al. [24] introduced a DL-based technique for identifying and categorizing
plant diseases from images of leaves captured at various resolutions. A deep convolutional
neural network architecture was trained using a large collection of plant leaf photos from
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many countries. Six crops in 27 different categories were analyzed in the proposed study
in both laboratory and field settings. Several intra-class and inter-class changes of images
with complicated circumstances were handled by this dense neural network. The method
may be applied in a range of agricultural contexts because the model was trained on
a sizable and varied dataset that took into account several crop and disease categories.
Nevertheless, the model does not assess the severity of the illnesses; instead, it concentrates
on disease detection.

Bijoy et al. [25] suggested a deep Convolutional Neural Network (dCNN) architecture
that was lightweight and optimized for the detection of rice leaf disease. The goal of
this technique was to increase the precision and effectiveness of identifying common rice
diseases, including brown spot, sheath blight, rice blast, bacterial leaf blight, and tungro.
Additionally, the study presented a crop health monitoring system that automatically
annotates fresh photos and is a useful tool for farmers and the academic community.
It consists of an Android application, a website, and an open API. Only five rice leaf
diseases are the focus of the system. However, additional dataset augmentation and
model retraining are necessary to extend the system’s detection capabilities to a wider
spectrum of ailments.

The above statements expressed that [16] struggles to generalize to new or unseen
diseases, requires additional fine-tuning, and [17] is unable to fully describe the intricate
connections between the many elements that contribute to the development of illness.
Whereas [18] multi-object deep learning model’s efficacy in a variety of real-world scenarios
is diminished by its inability to generalize, [19] limits its capacity to detect additional
diseases not present in the dataset, [20] training dataset is not sufficiently varied, the model
suffers from overfitting, [21] suffers in coordinating multiple agents to work collaboratively
while handling independent sub-spaces and facilitating effective communication among
them, [22] computational and memory constraints of some mobile devices make real-
time processing and large-scale deployment difficult, [23] practical situations if the model
extended to identify a wider variety of rice illnesses, [24] not assess the severity of the
illnesses; instead, it concentrates on disease detection, and [25] dataset augmentation and
model retraining are necessary to extend the system’s detection capabilities to a wider
spectrum of ailments. Therefore, a new approach is required to accurately predict and
classify bacterial and fungal diseases in rice leaves.

3. Problem overview. Paddy leaf is a staple crop that sustains global food security,
providing essential carbohydrates for over half the world’s population. Its cultivation
supports economic stability, promotes biodiversity in wetland ecosystems, and plays a vi-
tal role in sustainable agriculture through carbon sequestration and water management.
However, paddy leaf disease detection faces significant challenges due to the simultane-
ous occurrence of fungal and bacterial infections, which induce adaptive morphological
changes in plant tissue. These cross-infection interactions trigger complex biochemical
modifications, altering lesion texture, color, and shape, ultimately making traditional
feature extraction methods unreliable. As lesions evolve dynamically, fungal infections
typically manifest as small necrotic spots, while bacterial streaks expand along veins,
leading to asymmetrical lesion fusions that defy predefined segmentation models. Ad-
ditionally, the metabolic byproducts released by both pathogens alter the leaf’s optical
properties, disrupting reflectance and fluorescence signals, which in turn diminishes the
effectiveness of hyperspectral and multispectral imaging techniques. Furthermore, mois-
ture imbalances between infections cause localized tissue swelling or shrinkage, further
distorting spatial and spectral features, making conventional boundary-based segmenta-
tion techniques ineffective. These interconnected challenges necessitate the development
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of real-time adaptive learning models and multimodal imaging strategies to improve the
accuracy and robustness of disease detection.

In classification, environmental factors play a critical role in lesion transformations,
leading to feature misalignment and increased misclassification rates. For instance, Rice
Blast lesions, which typically have a distinct gray center, may lose this characteristic
under high humidity, making them resemble Brown Spot, while Bacterial Leaf Streak
gradually merges into blotches, mimicking Bacterial Leaf Blight. Additionally, as diseases
progress, structural disruptions in plant tissue further complicate classification nutrient
deficiencies cause Brown Spot lesions to lose their circular shape, while Bacterial Leaf
Blight induces uneven tissue swelling, distorting vein structures and disrupting spatial
feature alignment. These continuous variations blur inter-class boundaries, making it
difficult for traditional models to distinguish between diseases accurately. To overcome
these challenges, real-time adaptive feature extraction, multimodal imaging, and anomaly-
driven classification techniques are essential for improving disease differentiation accuracy
and enhancing model reliability.

3.1. Proposed Methodology. The Vision Rotary Attention Decision Forest Percep-
tron Transformer architecture combines next-generation spatial, frequency, and machine
learning-based enhancements to provide strong feature extraction and disease classifi-
cation of rice leaves. The model has a systematic pipeline that includes Image Patch
Generation which subdivides rice leaf into size-fixed patches (16×16 pixels) to maintain
the fine-grained lesion features with the ability to distinguish between bacterial and fun-
gal infection, then Position Encoding which incorporates Rotary Position Embedding and
Fourier Position Encoding to improve spatial and frequency representations by retaining
lesion structure. Additionally, Multihead Self-Attention is used to learn global and local
relationships while Vision Transformer (ViT) dynamically focuses on not letting overlap-
ping infection mask disease patterns, and Gradient Boosted Decision Trees (GBDT) in the
feedforward network hidden layers to improve the segmentation correctness with decision
boundaries fused into them. Furthermore, Graph and Wavelet Patch Embeddings sim-
ulate lesion connectivity patterns, and wavelet embeddings assist in edge detection and
texture contrasts to correctly mark lesion-induced deformations of tissues, and Hierar-
chical MLP Classification utilizes a Hierarchical Multi-Layer Perceptron. MLP involving
XGBoost and Random Forest models to correct disease-specific routing of features as well
as increasing resistance to evolving dynamic symptoms. By treating fungal and bacterial
infections individually before ultimate classification, the model achieves precise one-to-one
assignment of one fungal and one bacterial disease per image, which effectively counter-
acts real-world cross-infections. This multi-stage combination of spatial, frequency, and
machine learning-based methodologies ensures better flexibility and accuracy in rice leaf
disease classification, and it is thus a strong candidate for precision agriculture and plant
disease surveillance.

Figure 1 illustrates the Vision Rotary Attention Decision Forest Perceptron Trans-
former (VRAD-FPT), a novel deep learning model for paddy leaf disease classification,
integrating spatial, frequency, and decision forest-based enhancements. It begins with
image patch generation, segmenting leaves into fixed-size patches to preserve fine-grained
lesion details. Next, Rotary Position Embedding (RoPE) and Fourier Position Encod-
ing enhance spatial-frequency representation, ensuring morphological consistency. The
Transformer blocks, equipped with Multi-Head Self Attention (MHSA) and a Gradient
Feedforward Network, extract global and local dependencies for robust feature learning.
Further, Graph Wavelet Patch Embeddings refine lesion connectivity and spectral varia-
tions, enhancing classification accuracy. The extracted features are then classified using
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Figure 1. Block diagram of the proposed Vision Rotary Attention Deci-
sion Forest Perceptron Transformer

a Multilayer Boost Forest Perceptron, which integrates XGBoost and Random Forest
to differentiate fungal and bacterial infections. This structured pipeline ensures supe-
rior classification performance, addressing feature misalignment and lesion transformation
challenges in real-world agricultural scenarios.

3.2. Image Patch Generation. Dividing the rice leaf image into small patches is es-
sential for preserving fine-grained lesion characteristics and improving disease detection
accuracy. Processing the entire image at once can lead to the loss of crucial details due to
variations in lesion size and shape, where some infections appear as small clusters while
others spread along veins. Additionally, the leaf’s natural texture, veins, and lighting
conditions introduce complexity that may interfere with segmentation and feature extrac-
tion. Large images also require significant computational power, making direct processing
inefficient. To overcome these challenges, the image is first pre-processed by resizing and
normalizing to improve contrast and brightness consistency. Then, the image is divided
into small, non-overlapping or slightly overlapping patches of 16×16 pixels, ensuring each
patch retains localized lesion features, such as color, texture, and structural variations,
without being blurred by spatial averaging.

These image patches are then tokenized and fed into a Vision Transformer (ViT) model,
where each patch is treated as an independent input unit. Unlike convolutional neural
networks (CNNs), which rely on local receptive fields, ViT processes these patches globally
using self-attention mechanisms. This ensures that localized lesion details are captured
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without being suppressed by pooling layers and inter-patch relationships are preserved,
allowing detection of small, clustered infections and larger, vein-spreading lesions.

3.3. Spatial Representation with Positional embeddings. Positional embeddings
are crucial in deep learning models, especially for processing non-sequential image patches
where spatial relationships must be preserved. Traditional positional encodings use ab-
solute positions, but Rotary Position Embedding (RoPE) and Fourier Position Encoding
provide more effective ways to capture lesion distribution patterns and frequency-based
variations in rice leaf disease detection.

RoPE introduces a rotationally invariant encoding that ensures spatial dependencies
between patches are preserved, allowing the model to track lesion spread and fusion ef-
fectively. Instead of assigning fixed positional values, RoPE applies a learned rotational
transformation to each feature vector, encoding positional relationships relative to other
patches rather than absolute locations. This enables the model to recognize lesion fusion
patterns, ensuring that gradual changes in lesion structures are captured across adjacent
patches. Additionally, it enhances robustness to variations in leaf orientation, preventing
misclassification due to positional shifts in the input image. Furthermore, RoPE strength-
ens long-range interactions between patches, allowing the Transformer model to detect
global lesion trends across the leaf. Instead of embedding fixed positional values, RoPE
represents each patch as a vector in a complex plane and applies rotational transforma-
tions. This embedding method is directly integrated into the attention mechanism of ViT,
improving lesion-tracking accuracy and feature alignment across different image regions.

Complementing RoPE, to further improve disease differentiation, Fourier Position En-
coding enhances lesion characterization by incorporating frequency-based information,
helping the model differentiate between bacterial streaks and fungal necrotic spots based
on their unique spatial frequency patterns. The process begins by converting each patch’s
spatial data into the frequency domain using the Fourier Transform, highlighting lesion-
specific periodic and irregular patterns. These frequency components are then encoded
into positional embeddings, allowing the model to distinguish structural variations even
when lesions appear visually similar in the spatial domain.

By integrating Fourier-based features with RoPE embeddings, ViT achieves a compre-
hensive understanding of both spatial connectivity and spectral differences. This fusion
significantly improves disease classification by ensuring the model captures fine-grained
local variations and broader lesion spread trends across the image.

3.4. Feature Extraction. In the feature extraction phase, Vision Transformer (ViT)
uses Multihead Self-Attention (MSA) to efficiently capture both local and global de-
pendencies between lesions, significantly enhancing rice leaf disease detection. Unlike
conventional CNN-based methods with fixed receptive fields, ViT dynamically learns re-
lationships between patches, ensuring disease-specific characteristics remain distinguish-
able, even in cases of overlapping bacterial and fungal infections. In contrast, MSA
dynamically learns relationships between patches, ensuring that disease-specific charac-
teristics remain distinguishable. By allowing each attention head to focus on different
lesion attributes such as texture variations, color intensities, and shape structures MSA
enhances the model’s ability to differentiate complex lesion interactions. In Figure 2 the
architecture of this process is given:

This process begins with the image being divided into 16 × 16-pixel patches, each
converted into a feature vector P ∈ Rs×f where S is the number of patches and f is the
feature dimension. Each feature vector is projected into three learned matrices given in
equation (1) [26, 27]:
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Figure 2. Architecture of Multihead Self-Attention in ViT Transformer

U = PWU , V = PWV , T = PWT (1)

Where, WU ,WV ,WT are weight matrices that transform input features into query, key,
and value representations. After that attention mechanism computes similarity scores
between patches using the scaled dot-product attention which is given in equation (2)

Attention(U, V, T ) = softmax

(
UV T

√
fv

)
T (2)

where fv is the feature dimension for normalization, ensuring numerical stability. Mul-
tiple attention heads run parallel computations, capturing different lesion features given
in equation (3):

MSA(U, V, T ) = Concat(head1, head2, . . . , headh)WY (3)

where WY is a learned projection matrix that merges insights from different attention
heads. This mechanism allows ViT to simultaneously focus on different spatial lesion
patterns, preserving spectral and textural characteristics. Finally, MSA-refined features
are passed to the feedforward network for robust disease classification.
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3.5. Adaptive feature learning. To enhance ViT’s feature representation, Gradient
Boosting Decision Trees (GBDT) are integrated within the hidden layers of the Feedfor-
ward Network (FFN). Deep learning excels at high-level feature extraction, but struggles
with fine-grained decision boundaries, particularly in cases where lesion structures evolve.
GBDT complements this by refining disease-specific texture patterns through an ensemble
of decision trees that iteratively reduce residual errors in lesion classification. This hy-
brid approach ensures that misclassified patterns from the deep network are recalibrated,
improving segmentation accuracy and reducing false positives by extracting features us-
ing a Transformer-based feature extractor that processes image patches, encoding spatial
and spectral characteristics. The extracted feature vectors X = {x1, x2, . . . , xn} represent
high-dimensional lesion attributes.

The extracted features X serve as inputs to the GBDT model, which consists of an
ensemble of decision trees. Each tree in the ensemble learns to correct the errors of its
predecessor using gradient-based optimization is given in equation (4) [28]:

Fm+1(x) = Fm(x) + γmhm(x) (4)

where: Fm(x) is the model at iteration m, hm(x) is the new decision tree trained on
residuals, γm is the learning rate.

The final prediction is obtained by aggregating the outputs of multiple decision trees,
leading to more precise lesion boundaries. This results in improved disease differentiation,
particularly in cases where bacterial and fungal infections overlap. By iteratively reducing
residual errors, GBDT refines lesion segmentation and improves classification accuracy.
Figure 3 shows the architecture of GBDT within FFNN Hidden layer.

This integration within ViT introduces a differentiable tree-based learning process,
ensuring a more adaptive classification system that maintains robust performance even
under varying environmental conditions.

3.6. Refining Extracted Features. To preserve disease-specific spatial relationships
and texture variations patch embeddings are crucial. So, Graph and Wavelet Patch
Embeddings are employed to enhance ViT’s feature embeddings.

Graph-based embeddings provide a structured approach to analyzing lesion spread and
connectivity patterns, offering a significant advantage over traditional pixel-based meth-
ods. By treating each image patch as a node and establishing edges based on spatial
relationships, this method effectively captures progressive infections and interconnected
lesion regions that might otherwise be overlooked. To construct the graph, each 16×16 im-
age patch is represented as a node vi, with spatially adjacent patches connected via edges
eij, forming a structured graph representation G = (V,E). Edge weights are determined
based on lesion similarity metrics such as color intensity, texture patterns, and shape con-
tinuity, ensuring that visually and structurally similar regions remain connected. Once
the graph is constructed, a Graph Convolutional Network (GCN) is applied to propagate
lesion-related information across the graph, enhancing feature extraction. The embedding
for each node (patch) is computed using the equation (5) [29]:

h
(l+1)
i = σ

 ∑
j∈N(i)

1

cij
W (l)h

(l)
j

 (5)

Where h
(l)
i represents the feature representation of node i at layer l, N(i) denotes the set

of neighboring nodes, cij is a normalization constant, and W (l) represents the trainable
weight matrix for feature transformation. The activation function σ, typically ReLU,
enables non-linear transformations. These graph embeddings effectively capture lesion
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Figure 3. Architecture of GBDT within FFNN hidden Layer

connectivity trends, ensuring that progressive infections are recognized and preserved
while maintaining long-range dependencies within the leaf structure. By integrating this
graph-based modeling, the model achieves a context-aware representation, allowing it to
track lesion spread dynamics and significantly enhance disease detection accuracy.

Wavelet-based embeddings enhance texture contrast, edge detection, and frequency-
based lesion differentiation, making them highly effective for analyzing disease-induced
tissue deformations. Since these deformations exhibit unique multi-scale frequency vari-
ations, wavelet transformation enables better lesion localization while preserving fine-
grained features. The process begins with wavelet decomposition, where each 16 × 16
image patch undergoes a 2D Discrete Wavelet Transform (DWT), breaking it down into
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low-frequency and high-frequency components. Accurately, this decomposition is repre-
sented as equation (6) [30]:

W (u, v) =
∑
m

∑
n

I(m,n)ψ∗
u,v(m,n) (6)

where I(m,n) is the image intensity at pixel (m,n), and ψu,v represents the wavelet
basis functions. High-frequency components highlight sharp lesion boundaries, aiding in
early-stage disease detection, while low-frequency components retain global lesion struc-
tures, ensuring consistency in disease pattern analysis. After decomposition, the wavelet-
extracted features undergo feature fusion, where they are concatenated with graph em-
beddings, ensuring that the model leverages both structural connectivity and frequency-
domain lesion contrast for improved classification.

The integration of Graph and Wavelet Embeddings provides complementary advan-
tages. Graph Embeddings preserve lesion connectivity, ensuring that spatial disease
progression is effectively captured, while Wavelet Embeddings highlight sharp lesion
boundaries, preventing texture loss in disease-induced tissue deformations. This com-
bined strength enables the model to learn both spatially-aware lesion interactions and
fine-grained texture details, significantly improving lesion segmentation, disease-specific
feature extraction, and classification accuracy under diverse infection patterns. By lever-
aging both structural and frequency-domain insights, the model ensures a robust and
highly precise classification of rice leaf diseases.

3.7. Classification. In rice leaf disease classification, lesion similarities, and symptom
evolution pose significant challenges. To address this, ViT’s extracted features are passed
to a Hierarchical Multi-Layer Perceptron (MLP) which integrates XGBoost and Random
Forest (RF) for precise disease differentiation. This hybrid approach combines deep learn-
ing with ensemble-based decision trees, ensuring fine-grained classification while maintain-
ing robustness against variations in symptoms.

XGBoost enhances feature routing by assigning higher importance to lesion charac-
teristics that distinguish visually similar infections, such as Rice Blast and Brown Spot.
It utilizes gradient-boosted decision trees, where each tree refines the classification by
correcting errors from the previous one, represented as equation (7) [31]:

ŷi =
K∑
k=1

fk(xi) (7)

Where fk(xi) represents each decision tree, and F is the set of all possible trees.
Meanwhile, Random Forest (RF) enhances robustness against symptom evolution by

training multiple decision trees on random subsets of the dataset. This ensemble tech-
nique prevents overfitting and ensures stable predictions across various disease stages.
Classification in RF follows majority voting given as equation (8) [32]:

ŷ = mode{h1(x), h2(x), . . . , hn(x)} (8)

where hn(x) represents predictions from each decision tree. The combination of XG-
Boost and Random Forest provides complementary advantages: XGBoost prioritizes fea-
ture importance and fine-tunes lesion differentiation, while Random Forest enhances gen-
eralization, ensuring effectiveness across different growth phases. This synergy prevents
overfitting while ensuring high accuracy in disease classification across various infection
stages.
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Given that rice leaves often exhibit cross-infections where fungal and bacterial diseases
coexist, the classification framework is designed to assign both a fungal and a bacterial
disease label per infected leaf. This biologically relevant dual-disease classification follows
a structured approach. The model is trained on two independent classification pipelines,
one for fungal and another for bacterial infections. Each lesion is first assigned a fungal
class and then a bacterial class, ensuring accurate detection of mixed infections.

For final classification, a Hierarchical MLP refines predictions from XGBoost and Ran-
dom Forest, improving decision boundaries. The final output is generated using equa-
tion (9) [33]:

P (y|X) = σ(W2 ·ReLU(W1X + b1) + b2) (9)

whereW1,W2 are weight matrices, b1, b2 are biases, and σ is the activation function. The
separate fungal and bacterial classification approach prevents confusion between visually
similar diseases and accounts for real-world co-infections, ensuring practical agricultural
recommendations.

The combination of XGBoost, Random Forest, and Hierarchical MLP allows the model
to capture subtle feature variations, ensure robustness across infection stages, and in-
tegrate predictions for a final, biologically relevant classification. By leveraging gradient
boosting, ensemble learning, and deep neural networks, this classification pipeline achieves
higher accuracy, robustness, and real-world applicability in rice leaf disease detection.

Overall, the Vision Rotary Attention Decision Forest Perceptron Transformer integrates
deep learning and ensemble techniques for precise rice leaf disease detection. It segments
images into 16 × 16 patches, preserving fine-grained lesion details. RoPE and Fourier
embeddings enhance spatial and frequency-based lesion representations, while MSA ex-
tracts key features without losing local dependencies. GBDT within ViT improves lesion
segmentation and disease-specific texture pattern learning. The Decision Forest Percep-
tron combines XGBoost and RF for robust classification. This structured pipeline ensures
high-accuracy classification of one fungal and one bacterial infection per leaf, effectively
handling complex lesion structures.

4. Results and Discussion. In this part, the outcomes of the suggested model have
been shown. When compared to other current methods, the findings shown that the sug-
gested model offers superior fungal illness and viral infection detection and classification,
as well as prediction accuracy.

4.1. Experimental Setup. This section provides a comprehensive overview of the per-
formance and implementation results of the suggested system, which was simulated in
Python. Additionally, a proportional analysis is provided to verify that the suggested
system functions as planned.

• OS: Windows 10 (64-bit)
• RAM: 8GB
• Processor: Intel i5
• Tool: Python

4.2. Dataset Description. The dataset used in this study comprises a total of 1,400
images of paddy leaves, categorized into four distinct paddy leaf diseases namely Bacterial
Leaf Blight, Brown Spot, Leaf Blast and Bacterial Leaf Streak. The dataset is organized
into training and testing folders, with 80:20 split, i.e., 1,120 images are allocated for
training and 280 images for testing. Each disease class is equally represented to maintain
class balance during both training and evaluation. To enhance the model’s robustness and
generalization, data augmentation techniques were applied to each image in the training



828 A. G and P. T. Sivasankar

Figure 4. ROC curve for the classification of viral and bacterial diseases

set. For a substantial increase in the effective training data, five augmentation methods
were used per image as Zooming, Rotation, Horizontal flipping, Brightness adjustment
and Shearing transformation. These augmentations help simulate real-world variations
in image capture conditions and improve the model’s ability to detect diseases under
diverse scenarios. The dataset is collected from https://www.kaggle.com/datasets/

dedeikhsandwisaputra/rice-leafs-disease-dataset.
Dataset Preprocessing:

• All images were resized to 256Ö256 pixels for uniformity.
• Image normalization was applied to ensure consistent pixel intensity distributions.

Data Splitting:

• The dataset was divided into 80% training and 20% testing using stratified sampling
to maintain class balance.

Model Training:

• The Vision Rotary Attention Decision Forest Perceptron Transformer (VRAD-FPT)
was implemented in Python using the PyTorch framework.

• Training was conducted over 30 epochs with a batch size of 32.
• The Adam optimizer was used with an initial learning rate of 0.001 and a learning
rate decay factor of 0.9 every 10 epochs.

• Early stopping was implemented based on validation loss to prevent overfitting.

Evaluation Protocol:

• Metrics such as Accuracy, Precision, Recall, F1-score, Specificity, Sensitivity, MCC,
NPV, and AUC-ROC were computed on the test set.

• Each model was trained and tested five times with different random seeds to ensure
result stability, and the average values are reported.

• ROC curves were plotted per class to assess classification performance.

4.3. Simulated results of the proposed model. In this section simulation outputs of
the suggested model, are given with implemented results, which are described below.

Figure 4 displays the Multi-Class ROC Curve, which plots the True Positive Rate
against the False Positive Rate at various thresholds to assess a classification model’s
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performance. The classifier achieves high AUC values: bacterial leaf blight of 0.98, bac-
terial leaf streak 0.99, brown spot of 0.97, and leaf blast of 0.96. The diagonal dashed
line represents a random classifier with no discriminative power. The model effectively
distinguishes between disease classes, as indicated by AUC values close to 1. The high
AUC scores suggest strong predictive accuracy across all categories. Overall, the classifier
demonstrates robust performance in identifying bacterial and fungal infections in paddy
leaves. The model handles co-existing infections by assigning one fungal and one bacte-
rial label per image using dual classification pipelines ensuring accurate identification of
co-existing infections, mitigating misclassification due to lesion overlap. Severity grad-
ing is indirectly managed through patch-based lesion segmentation and spatial-frequency
embedding, which capture fine-grained lesion variations and progression patterns. This
enables precise classification even in cases of overlapping or asymmetrical lesion struc-
tures. The model thus supports both cross-infection detection and nuanced symptom
representation.

Figure 5 (a-d) showcases fungal and viral infections using one original image and ten
different patches extracted from infected regions for detailed analysis. Each patch high-
lights distinct infection patterns, such as circular necrotic spots for fungal diseases and
mosaic or streak-like discoloration for viral infections. Patch-based segmentation helps in
capturing localized disease symptoms, aiding in precise classification and early detection.
The variations across patches emphasize the heterogeneous nature of infection spread,
which is crucial for developing robust disease identification models.

Figure 6 illustrates the segmentation results for bacterial and fungal diseases in paddy
leaves, where original images show infected leaves and corresponding segmentation images
highlight diseased regions in white. Bacterial infections appear as elongated streaks along
veins, turning yellow-brown over time, with segmentation effectively isolating these lesions
despite minor noise. Fungal infections manifest as circular lesions with brown margins
and grayish-white centers, with segmentation accurately detecting their discrete distribu-
tion. While bacterial streaks show linear necrotic patterns, fungal spots are scattered and
irregular, making segmentation crucial for precise classification. The results effectively
differentiate bacterial from fungal infections, though challenges like over-segmentation in
bacterial cases and under-segmentation in fungal lesions persist.

4.4. Analysis of Proposed Models Performance across various metrics. The
Paddy Leaf Disease performance metrics of proposed model This section provided a de-
tailed explanation of how the suggested method was predicted and categorized based on
the results obtained.

Figure 7 depicts the Training accuracy and validation accuracy of proposed model.
Initially, at the beginning training accuracy of the proposed model is 0.43 then it shows
a steady increase, when the epoch is 30 training accuracy is 0.99 indicating that the
model’s performance on the training data improves as the number of epochs increases.
MSA refines feature extraction by capturing long-range dependencies across different leaf
patches, ensuring that disease patterns are accurately identified. Validation Accuracy
also shows an increase, at the beginning validation accuracy is 0.69, and then epoch is 30
validation accuracy is 0.83 but with noticeable fluctuations. This suggests that while the
model’s performance on the validation data generally improves, it is not as consistent as
the training accuracy.

Figure 8 illustrates the training and validation loss trends of the proposed model. Ini-
tially, the training loss starts at 1.74 and progressively decreases to 0.03 by epoch 30,
indicating a steady reduction in model error as training progresses. Similarly, the valida-
tion loss begins at 0.75 and declines to 0.59, though with some fluctuations, suggesting



830 A. G and P. T. Sivasankar

(a)

(b)

(c)

(d)

Figure 5. (a-d). Identifying fungal and viral infections using different
patch

that while the model generalizes well, its performance on validation data is slightly in-
consistent. The Hierarchical MLP with XGBoost and Random Forest enhances decision
boundary optimization for complex lesion patterns, effectively minimizing both training
and validation errors.

Figure 9 illustrates the precision improvement of the proposed model over increasing
epochs. At 10 epochs, the precision starts at 0.36, gradually improving as training pro-
gresses, reaching 0.98 at 30 epochs. The GBDT-enhanced feedforward networks refine
feature representation, enabling the model to capture intricate lesion characteristics more
effectively, ultimately enhancing precision.
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Figure 6. Segmentation results of Bacterial and fungal diseases

Figure 7. Training accuracy and validation accuracy

Figure 10 shows the process of proposed model over training epochs from 10 to 30.
Initially, recall is 0.62, gradually improving and reaching 0.97 by epoch 30. A notable
increase is observed at epoch 15, reflecting an accelerated learning phase. The Hierar-
chical MLP with XGBoost and Random Forest enhances recall by effectively capturing
complex lesion variations and dynamic transformations. XGBoost refines feature impor-
tance ranking, while Random Forest improves generalization, minimizing overfitting and
ensuring better lesion detection.

The proposed model’s F1 score improved throughout several training epochs, as seen
in Figure 11. Starting at 0.43 at 10 epochs, the score gradually increases, reaching 0.99
by epoch 30. The Hierarchical MLP with XGBoost and Random Forest enhances the
F1 score by balancing precision and recall in paddy leaf disease classification. XGBoost
optimizes feature selection, ensuring key lesion patterns are effectively recognized, while
Random Forest strengthens generalization, reducing overfitting and improving recall for
diverse lesion variations.

Figure 12 shows how the proposed model’s specificity gradually improved over several
training epochs.. Beginning at 0.34 at 10 epochs, specificity steadily improves, reaching
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Figure 8. Training loss and validation loss

Figure 9. Analysis of Proposed Models Precision

0.98 by epoch 30. This consistent increase highlights the model’s capacity for continu-
ous learning and refinement, leading to more precise predictions over time. Optimizing
decision boundaries, lowering misclassification, and enhancing the model’s capacity to
precisely identify non-diseased areas are all made possible by the GBDT-enhanced feed-
forward networks.

Sensitivity of proposed model improves significantly over training epochs, as illustrated
in Figure 13, starting at 0.42 at 10 epochs and reaching 0.97 by epoch 30. This steady
increase highlights the model’s ability to correctly identify diseased regions while minimiz-
ing false negatives. The Hierarchical MLP with XGBoost and Random Forest contributes
to this improvement by refining feature representation and classification. XGBoost en-
hances feature importance ranking, ensuring the model focuses on critical lesion patterns,
while Random Forest improves generalization by reducing overfitting, thereby increasing
the model’s ability to detect subtle disease variations accurately.

Figure 14 illustrates the progression of detection accuracy in the proposed model as
training epochs increase. Initially, at 10 epochs, the precision is 0.76, and it steadily
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Figure 10. Analysis of Proposed models Recall

Figure 11. Analysis of Proposed Models F1 score

improves, reaching 0.98 by epoch 30. Graph and Wavelet Patch Embeddings enhance
lesion connectivity and texture contrast, enabling the model to effectively differentiate
between diseased and healthy regions. This refinement minimizes false positives and false
negatives, thereby improving overall detection accuracy.

Figure 15 illustrates the progression of Matthews Correlation Coefficient (MCC) in
proposed model over training epochs. Initially, at epoch 10, the MCC is 0.41, and it
steadily increases, reaching 0.98 by epoch 30. This upward trend signifies the model’s im-
proving predictive capability and balanced classification. The Multihead Self-Attention &
GBDT-Enhanced Feedforward Networks play a crucial role in this enhancement by refin-
ing adaptive feature learning and decision boundaries, effectively reducing false positives
and false negatives. This results in a more robust and reliable classification, contributing
to the continuous improvement of MCC.

Figure 16 presents the time complexity of the proposed model across training epochs.
Initially, at epoch 10, the complexity is 85ms, rising to 120ms at epoch 15 before reducing
to 76ms by epoch 30. This trend indicates an initial computational overhead, followed
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Figure 12. Proposed Models Specificity

Figure 13. Proposed Models Sensitivity

by optimization as training progresses. Fourier Position Encoding enhances spatial fea-
ture representation efficiently without extensive convolution operations. RoPE preserves
sequential dependencies while minimizing computational overhead.

4.5. Analysis of Proposed model with other Approaches. By comparing the out-
comes of the proposed model with those of current methods and presenting its output
based on several metrics, this part demonstrates the effectiveness of the model.

A comparison of proposed model’s accuracy with other current approaches is shown
in Figure 17. The proposed approach is contrasted with other current methods such
as CNNIR-OWELM, VGG16, DeepNN, and ConvNN [34]. In comparison to CNNIR-
OWELM’s accuracy of 94.2%, VGG16’s accuracy of 92.9%, DeepNN’s accuracy of 90%,
and ConvNN’s accuracy of 93.8%, the proposed model’s accuracy is 99.2%. Therefore, it
appears that the suggested model’s prediction accuracy for leaves is higher than that of
the DeepNN model.
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Figure 14. Detection accuracy of the Proposed Model

Figure 15. Proposed Models MCC

The precision comparison of the varied models presented with existing differential tech-
niques is depicted in Figure 18 [34]. The proposed framework is compared to other
methods that are currently in use, such as CNNIR-OWELM, VGG16, ConvNN, and
SIFTSVM [28]. The precision achieved by the proposed model is 98.4% while the preci-
sion of CNNIR-OWELM is 92%, VGG16 is 90%, ConvNN is 94%, and SIFTSVM is 91%.
The proposed model is a good classifier, greatly outranking VGG16 in this respect.

The proposed model’s sensitivity comparison with other current methods is shown
in Figure 19 [34]. The proposed method’s sensitivity is comparatively high, at about
97.8%, in contrast to CNNIR-OWELM, VGG16, ConvNN, and SIFTSVM, which have
sensitivities of 91%, 89%, 96%, and 90%, respectively.

The comparison of the suggested model’s specificity with other current methods is
shown in Figure 20. The suggested model’s specificity is 98.2%, while CNNIR-OWELM,
VGG16, ConvNN, and SIFTSVM have respective specificities of 95%, 92%, 94%, and
88%.
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Figure 16. Time Complexity

Figure 17. Comparison of Accuracy in proposed model

Figure 18. Comparison of precision in proposed model

The proposed model’s F1 score was 99.1%, whereas CNNIR-OWELM, VGG16, Con-
vNN, and SIFTSVM obtained F1 scores of 91%, 89%, 94%, and 86.7%, respectively.
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Figure 19. Comparison of sensitivity with other approaches

Figure 20. Comparison of specificity with other approaches

Figure 21. F1 score comparison with other approaches

The suggested model achieves a recall of 97.5%, while the corresponding values for
APS-DCCNN, AlexNet, CNN, and DSGAN are 76%, 82%, 85%, and 92% [35].
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Figure 22. Recall comparison with other approaches

Figure 23. Detection accuracy Comparison

The suggested model achieves a detection accuracy of 98.9%, while APS-DCCNN,
AlexNet, CNN, and DSGAN are 78%, 82%, 91%, and 96% [35].

The suggested model’s temporal complexity is 76 ms, while that of APS-DCCNN,
AlexNet, CNN, and DSGAN is 146 ms, 120 ms, 185 ms, and 98 ms, respectively [35].

In contrast to WOA-ANN, SVM, ANN, and KNN, which have respective MCCs of
97.7%, 83.4%, 86.5%, and 90.6%, the suggested model’s MCC is 98.6% [36].

The proposed model’s NPV is 99.4%, while WOA-ANN, SVM, ANN, and KNN have
respective NPVs of 94.4%, 95.5%, 96.8%, and 96.8% [36].

Overall, the proposed model shows advancements in disease prediction and manage-
ment in agricultural fields, particularly in classifying fungal infections and viral diseases
affecting paddy leaves. By integrating techniques like Multihead Self-Attention, Gradient
Boosting Decision Trees (GBDT), and Hierarchical MLP, the model achieves outstanding
accuracy and performance metrics compared to existing approaches. Despite complex
interactions and changing environmental conditions, the model has a high accuracy of
99.2%, precision of 98.4%, recall of 97.5%, F1-score of 99.1%, sensitivity of 97.8%, speci-
ficity of 98.2%, detection rate of 98.9%, MCC of 98.6%, and NPV of 99.4%.
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Figure 24. Time complexity Comparison

Figure 25. Comparison of MCC in proposed model

Figure 26. Comparison of NPV in proposed model

5. Conclusion. Paddy leaf disease prediction and classification are critical in image pro-
cessing, so a novel Vision Rotary Attention Decision Forest Perceptron Transformer is pro-
posed to ensure superior accuracy through a structured six-stage pipeline. By integrating
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RoPE, Fourier embeddings, Multihead Self-Attention (MSA), GBDT-enhanced ViT, and
Decision Forest Perceptron (XGBoost + RF), the model effectively captures fine-grained
lesion details while overcoming cross-infection complexities. The patch-based image pro-
cessing ensures localized disease feature retention, while MSA and GBDT-enhanced ViT
optimize spatial-frequency feature extraction. The inclusion of Graph & Wavelet Patch
Embeddings further refines lesion connectivity modeling, improving differentiation be-
tween fungal and bacterial infections. The Hierarchical MLP Classifier ensures precise
classification through a combination of XGBoost and Random Forest, reducing misclassifi-
cation errors. Experimental results validate its superiority over existing models, achieving
99.2% accuracy, 98.4% precision, 97.5% recall, 99.1% F1-score, 97.8% sensitivity, 98.2%
specificity, 98.9% detection rate, 98.6% MCC, and 99.4% NPV. These outstanding per-
formance metrics demonstrate its ability to accurately identify multiple disease types,
significantly improving early disease detection and enabling timely interventions. While
the proposed model shows high accuracy and robustness, the current hardware setup
limit scalability for large datasets or real-time applications, particularly when processing
high-resolution images. Future work could involve deploying the model on more power-
ful systems or optimizing it for edge devices to support broader and faster deployment.
Additionally, expanding the dataset diversity could further enhance generalization across
varied field conditions.
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