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Abstract. The recognition of classroom behavior for classroom management poses a
significant challenge in the fields of image recognition and computer vision. While ad-
vanced technologies such as global and local image feature extraction, combined with text
processing techniques, can improve the accuracy of behavior recognition, a systematic
approach remains essential to effectively address this problem. In this paper, we in-
troduce a novel network model, the Graph-embedded Aggregation of Global and Local
features (GaGL) network, designed specifically for classroom behavior recognition. Our
approach integrates both global and local feature information to construct an embedded
graph representation, while also incorporating textual annotations within images to fur-
ther refine recognition quality. Experimental results demonstrate the superiority of our
method, achieving state-of-the-art performance on the MSCOCO dataset and D-Edu—a
dataset collected from classroom camera footage. Additionally, we conduct comprehen-
sive qualitative experiments and in-depth evaluations to analyze the contribution of each
feature module to the proposed model, validating the effectiveness of our design.
Keywords: Classroom behavior recognition, graph learning, image processing

1. Introduction. Developing methods to recognize student behavior [1] in classroom
settings through camera-based monitoring has become increasingly critical in the field of
computer vision. This capability enables educators and administrators to monitor learn-
ing conditions and enhance educational quality. Recent advancements in deep learning
models [2, 3, 4] that integrate visual and textual data have significantly improved im-
age recognition performance. However, despite notable progress, multimodal recognition
tasks combining visual and textual information remain highly challenging due to data
complexity and the inherent difficulty of accurately identifying nuanced student behav-
iors.

To address the precise integration of student behavior visual data with supplementary
information such as image captions or annotations, researchers have explored mapping
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global features [5] alongside local features [6] to improve recognition accuracy. Semantic
strategies [7] have also been developed to establish relationships between objects in images
through textual analysis. While some studies propose robust feature encoding techniques
to align visual and textual modalities, the complexity of their interaction often limits
recognition precision.

In this paper, we propose a novel convolutional network named the Graph-embedded
Aggregation of Global and Local features (GaGL) for classroom student behavior recogni-
tion. Specifically, we combine global features with textual context to reconstruct enriched
global representations. Similarly, local features are fused with localized textual infor-
mation to generate refined local structures. An embedded graph is then constructed to
aggregate these two feature types, capturing their interdependencies while minimizing
redundant edges—effectively reducing noise from insignificant connections.

Our key contributions are summarized as follows:

• We propose a unified multimodal graph embedding framework (GaGL) that, for the
first time, integrates global scene context, local object features, and semantic text
annotations into a single, heterogeneous graph structure. This holistic approach
enables nuanced reasoning about complex classroom behaviors.

• We introduce a novel Vectorized Similarity Learning mechanism that replaces con-
ventional scalar metrics with a learnable, vector-based function. This allows the
model to capture fine-grained cross-modal associations between visual and textual
cues with much higher fidelity.

• We design an Efficient and Directed Graph Propagation method where graph edges
are dynamically pruned based on a learnable criterion. This significantly reduces
computational redundancy and noise from irrelevant connections, leading to a more
scalable and accurate model.

• We introduce D-Edu, a new, large-scale dataset for educational behavior analysis,
and demonstrate through extensive experiments that our GaGL model achieves state-
of-the-art performance.

2. Related Works.

2.1. Image-Text Feature Fusion. Feature Encoding Methods [8, 9] focus on extract-
ing image features and text features separately before combining them. For image feature
extraction [10], various techniques exist, including region-based feature extraction [11],
segmentation-based feature extraction [12], and frequency-based feature extraction [13].
Basly et al. [14] employed attention-based convolutional networks with self-attention
mechanisms to integrate global image features with local features. They also established
correlations between region features based on the representational capabilities of both
visual and textual data. While researchers have attempted to enhance critical feature
acquisition by building such correlations, existing methods remain rudimentary and lack
unification in encoding key features. These approaches are particularly limited in address-
ing the complexities of classroom behavior recognition, where harmonizing multimodal
representations and converging on discriminative features remain significant challenges.

2.2. Graph-Based Feature Embedding. Existing studies [15, 16, 17] focus on devel-
oping convolutional graph networks to link multimodal data such as images, text, and
video. Mubarak et al. [18] proposed a Graph Convolutional Network (GCN) for com-
puter vision tasks, while Li et al. [19] designed a graph-based convolutional framework to
align image and text modalities. Feng et al. [20] further introduced a method to model
semantic relationships between images and text, constructing image regions and graph-
based representations to enrich contextual knowledge for image recognition. While these
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efforts aim to enhance recognition quality by jointly modeling visual and textual data via
graphs, most existing frameworks remain computationally heavy, incurring high storage
and operational costs in real-world deployment.

3. Proposed Method. The core principle of our GaGL framework is the effective fusion
of two complementary types of visual information: global features and local features.
Before detailing the model architecture, we define these concepts in the context of our
work.

Global Features refer to a single, compact feature vector that summarizes the entire
input image. This vector captures the holistic, high-level context of the scene, such as
the overall classroom layout and the general positioning of students. In our pipeline, we
utilize a Convolutional Neural Network (CNN) like ResNet101 to process the whole image
and generate this single global representation.

Local Features, in contrast, are a collection of feature vectors where each vector corre-
sponds to a specific, semantically meaningful region or object within the image. These
features provide fine-grained details necessary to identify key items or actions. They are
extracted by first using models like Faster R-CNN or Mask R-CNN to detect objects of
interest (e.g., phones, faces, papers) or segment pertinent areas (e.g., a hand holding a
phone), and then deriving a distinct feature vector for each region.

The fundamental difference lies in their scope and the information they carry: global
features provide the overall context, while local features provide specific evidence. Our
proposed method is designed to leverage the synergy between them, as robust behavior
recognition requires grounding local, detailed observations within the broader context of
the scene.

3.1. Problem Definition. The integration of multimodal features, encompassing both
visual and textual data, plays a pivotal role in achieving robust image recognition within
complex domains such as classroom behavior analysis. Existing methodologies typically
extract visual and textual representations in isolation—relying, for instance, on region-
based image features and tokenized word embeddings—and subsequently merge these
features through simplistic alignment strategies. However, such strategies often fail to
fully capture the nuanced interactions between visual regions and textual tokens, leading
to suboptimal performance in tasks requiring fine-grained semantic comprehension.

Moreover, conventional methods typically compute inter-modal similarity using scalar
metrics (e.g., cosine distance), which provide limited expressiveness in modeling intri-
cate relationships. Graph-based approaches for multimodal reasoning offer a promising
alternative, yet many existing implementations suffer from two core drawbacks: (1) com-
putational inefficiency arising from the inclusion of redundant edges, and (2) the use of
undirected message propagation, which may introduce excessive noise and degrade scala-
bility in real-world scenarios.

In response to these limitations, this work introduces a novel framework for class-
room behavior recognition that addresses the shortcomings of current practices in three
major components. First, Unified Feature Encoding combines region-level visual fea-
tures {v1, . . . , vK} and word-level textual embeddings {t1, . . . , tL} by means of adaptive
attention mechanisms, thereby generating enriched global (v̄, t̄) and local (avj ) represen-
tations that preserve both granular and holistic semantics. Second, Vectorized Similarity
Learning replaces conventional scalar similarity metrics with learnable vector-based func-
tions s(x, y;W ). This substitution enhances the model’s capacity to capture fine-grained
cross-modal associations, enabling more precise alignment of semantic cues between vi-
sual regions and textual tokens. Third, Efficient Graph Propagation employs a directed
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Figure 1. The framework of the proposed GaGL

similarity graph N = {sl1, . . . , slL, sg} whose edges are dynamically pruned according to a
learnable criterion, thereby reducing redundancy while retaining critical node interactions.

By integrating these three components—unified encoding, vectorized similarity, and ef-
ficient graph-based propagation—the proposed framework overcomes the scalability issues
and oversimplified similarity models characteristic of existing methods. Consequently, it
achieves more precise behavior recognition in classroom environments without incurring
prohibitive computational overhead.

3.2. Model Architecture. In an effort to advance classroom behavior recognition and
enhance overall teaching quality, we propose a comprehensive, four-stage pipeline inte-
grating multimodal data from both visual and textual sources, show in Figure 1. The
first stage, the Input Layer, ingests video frames or still images captured by classroom
cameras, depicting students in various postures and states of engagement. These images
may show students looking down, holding a phone, reading papers, or sitting attentively.
To enrich the contextual cues provided by the visual data, we incorporate supplemen-
tary textual annotations or labels (e.g., “using phone,” “reading”), which can either be
manually crafted or derived from existing knowledge bases that map specific behaviors to
descriptive keywords.

In the second stage, Feature Extraction, we separately handle Visual and Textual fea-
tures. On the visual side, a convolutional neural network (CNN) such as ResNet101
is employed to obtain global features, capturing holistic image characteristics (e.g., the
classroom layout, student positioning, and high-level scene context). Subsequently, local
features are derived through object detection using Faster R-CNN, which precisely identi-
fies items of interest (e.g., phones, papers, and faces), and through semantic segmentation
with Mask R-CNN, which isolates pertinent regions of the image (e.g., a hand holding a
phone, eyes looking downward). To further refine the relevance of specific visual elements,
we adopt a self-attention mechanism, inspired by Transformer-based architectures [21],
allowing the system to focus on critical factors such as a phone in a student’s hand. Mean-
while, on the textual side, Textual Features are extracted via a pretrained language model
(BERT), which transforms captions, keywords, and descriptive labels into dense semantic
embeddings. As a result, phrases like “using phone” are converted into high-dimensional
vectors that preserve rich contextual information about the behavior in question.
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The third stage, Multimodal Graph Embedding, fuses these visual and textual features
by constructing a graph whose nodes represent global image embeddings v̄, localized
image embeddings (v1, . . . , vK), token-level text embeddings (t1, . . . , tL), and a global
text embedding t̄. Connections (edges) among these nodes are formed by assessing the
semantic alignment between visual cues and textual descriptions. Crucially, instead of
using a fixed similarity score, the weight and existence of these edges are determined by
our learnable vectorized similarity module. Furthermore, during propagation, we apply
our dynamic pruning mechanism to filter out weak or irrelevant connections, ensuring
that the subsequent Graph Attention Network (GAT) operates on a refined, low-noise
graph. This directed and pruned structure ensures that both global and localized data
streams are maintained in a unified framework, enabling a richer contextual interplay
between images and text. For instance, nodes corresponding to a detected phone in the
visual domain may be strongly linked to the textual node representing the concept “using
phone.” Additionally, directed internal edges connect interdependent visual elements (e.g.,
“hand holding phone”� “eyes looking down”) to reduce noise and highlight co-occurring
features. This graph-based representation ensures that both global and localized data
streams are maintained in a unified framework, enabling a richer contextual interplay
between images and text.

Finally, in the Behavior Classification stage, a Graph Attention Network (GAT) aggre-
gates information from the multimodal graph by adaptively weighing the significance of
each node and edge. After the GAT refines and propagates these context-aware embed-
dings, a Softmax classifier produces the final behavior predictions. Common classroom-
related behavior classes include using phone (characterized by phone detection plus a
downward gaze), reading (presence of documents with focused eye direction), attention
(upright posture and eye line aimed at the instructor or board), and taking notes (pen
or pencil in hand alongside an open notebook or paper). By effectively synthesizing vi-
sual cues and textual annotations within a graph-based learning paradigm, this approach
delivers robust, fine-grained recognition of student behaviors, ultimately contributing to
improved monitoring, feedback, and pedagogical strategies in modern classroom environ-
ments.

3.3. Loss function. Below is an example of how the loss function can be formulated
for the proposed behavior recognition pipeline. The overall objective typically consists of
multiple components: (1) Detection and Segmentation Losses to guide object localization
and region segmentation, (2) Multimodal Alignment Loss to ensure consistency between
visual and textual features, and (3) Classification Loss for the final behavior prediction.

For the object detection task (e.g., identifying phones, papers, faces), the loss function
usually follows the standard Faster R-CNN framework, which combines:

• Classification Loss, Lcls: A cross-entropy loss that classifies each detected region as
one of the object categories (e.g., “phone,” “paper,” “face”) or as background

• Bounding Box Regression Loss, Lreg: A smooth L1 (or L2) loss that refines the
bounding box coordinates of detected objects.

The total detection loss is:

Ldet = Lcls + Lreg (1)

For semantic or instance segmentation (e.g., segmenting a hand holding a phone or the
region around the eyes), Mask R-CNN introduces an additional mask prediction branch.
The segmentation loss, Lmask, is typically a pixel-wise binary cross-entropy loss evaluated
over each predicted mask compared to the ground-truth mask.
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Once both visual and textual features are extracted, we establish correspondences be-
tween region-based visual embeddings (v1, . . . , vK) and textual embeddings (t1, . . . , tL).
To strengthen the alignment between matching pairs (e.g., “phone” - visual region con-
taining a phone) and push away non-matching pairs (e.g., “phone” - a region containing
a book), a similarity-based loss or a contrastive loss can be used. One common strategy
is a triplet loss:

Ltriplet = max(0, α + d(vi, t
+)− d(vi, t

−)), (2)

where t+ is a textual embedding that is relevant to the visual feature vi, t− is an
irrelevant textual embedding, d(·, ·) is a distance metric (e.g., cosine distance or Euclidean
distance), and α is the margin. This encourages correct matches to lie closer in the
embedding space than incorrect ones.

Alternatively, a cosine similarity loss or cross-entropy loss over matching pairs can be
adopted, depending on the specific design. The key objective is to ensure that each
visual feature and its corresponding textual descriptor reinforce one another, improving
the quality of graph-based node connections in the subsequent steps.

After constructing the multimodal graph and passing node representations through the
Graph Attention Network (GAT), the final output layer classifies each sample into one of
the predefined behavior categories (e.g., using phone, reading, attention, taking notes).
The classification loss is typically a cross-entropy loss defined as:

Lclass = −
C∑
c=1

yc log(pc), (3)

where C is the number of classes (behavior categories), yc is the binary indicator (0 or
1) for whether class c is the correct classification, and pc is the predicted probability for
class c.

These different loss terms are combined into a single multi-task objective, often as a
weighted sum:

Ltotal = Ldet + Lmask + Ltriplet + Lclass, (4)

The system is trained end to end (or in stages, depending on computational constraints),
iteratively refining the network parameters to accurately detect objects, align visual and
textual features, and classify student behaviors with high precision.

By coupling losses at the object, segmentation, multimodal alignment, and classifica-
tion levels, this holistic loss formulation promotes robust feature learning that captures
both fine-grained details (e.g., hands holding a phone) and high-level contextual cues
(e.g., student posture, textual annotations). Consequently, the pipeline can more reliably
differentiate nuanced classroom behaviors, ultimately empowering educators with richer
insights for instructional improvement.

3.4. Implementation Details. To ensure the reproducibility and clarity of our pro-
posed GaGL framework, this section outlines detailed architectural configurations and
hyperparameters. Training-specific hyperparameters such as the optimizer and learning
rate are elaborated in Section 4.2; here, we focus primarily on core model specifications
and preprocessing steps.

Data Preprocessing: All input images from both datasets are resized uniformly to
a resolution of 224 × 224 pixels. Before feature extraction, images undergo standard
normalization procedures consistent with typical practices used in convolutional neural
network training.
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Feature Extractor Modules: Global visual features are extracted using a ResNet-
101 model pre-trained on the ImageNet dataset, resulting in a 2048-dimensional global
feature vector per image. For local visual features, a Faster R-CNN detector generates
exactly 18 region proposals per image, each encoded into a 2048-dimensional feature
vector. Textual features are derived from a BERT-base-uncased model. Specifically, the
global text embedding t corresponds to the 768-dimensional representation of the [CLS]
token, while local text embeddings {t1, . . . , tL} correspond to the 768-dimensional hidden
states from the final layer for each word token.

Graph Construction and Propagation: The vectorized similarity between vi-
sual and textual features is computed using a two-layer Multi-Layer Perceptron (MLP).
This similarity function s(x, y;W ) takes as input the concatenation of visual (2048-
dimensional) and textual (768-dimensional) vectors, passing through a hidden layer of
512 neurons, and outputs a similarity vector of 256 dimensions. For graph pruning, we
employ a top-k strategy, keeping only the five strongest connections per node based on
similarity scores, thus constructing a refined graph before passing it to the Graph Atten-
tion Network (GAT). The GAT module comprises two layers, each featuring four parallel
attention heads, and maintains a feature dimension of 512 throughout the network.

Classifier and Loss Function: The final behavioral prediction leverages a two-layer
MLP classifier. The input to this classifier is the aggregated 512-dimensional graph feature
vector, processed through a hidden layer of 256 neurons, and culminating in an output
layer with C neurons (where C denotes the number of classes), followed by a softmax
activation. The overall training loss is a weighted combination of multiple task-specific
losses, defined as follows:

Ltotal = λdetLdet + λmaskLmask + λtripletLtriplet + λclassLclass. (5)

In our experiments, we empirically set the loss coefficients to λdet = 1.0, λmask = 1.0,
λtriplet = 0.5, and λclass = 1.0.

4. Experiments.

4.1. Dataset. We evaluated our model on two datasets: MSCOCO [22] and D-Edu. The
MSCOCO dataset includes 123,287 images, each annotated with 5 captions. It is divided
into 113,287 images for training, 5,000 for validation, and 5,000 for testing. The captions
in MSCOCO are descriptive of general scenes. For instance, a single image might have
five captions such as: (1) ’A person is using a laptop on a wooden table,’ (2) ’The kitchen
is sunlit and a man is working on a computer,’ (3) ’A person sits at a kitchen island with
a silver laptop,’ (4) ’A man types on a laptop in a modern kitchen,’ and (5) ’The view of
a person using a computer in a residential kitchen. We report performance by averaging
over 5 folds of 1,000 test images and the entire 5,000 test images. On the other hand, the
D-Edu dataset, which focuses on educational classroom imagery, contains 22,476 images
each with 9 manually annotated captions. This dataset is split into 20,476 images for
training, with 1,000 images each for validation and testing. D-Edu includes 9 specific
action labels for students, such as using a phone, turning sideways or vertically, raising
hand towards the board, talking, teasing, fighting, writing, and looking at the board, with
each label averaging around 2,000 images, though numbers can slightly vary.

A key feature of the D-Edu dataset is the richness of its annotations. The nine captions
for each image were intentionally designed to be multi-faceted, describing not just the core
action but also the context, objects, and posture. This provides a diverse semantic signal
for multimodal learning. For an image with the action label ’using a phone’, the nine
captions might include:



798 Thanh Nguyen Van and Son Nguyen Thanh

• Action-focused: ’A student is looking down and tapping on a bright screen.’
• Object-focused: ’The girl in the blue shirt is holding a smartphone under her desk.’
• Gaze-focused: ’Her gaze is directed at a personal electronic device, not the teacher.’
• Posture-focused: ’The student’s body is hunched forward, a posture typical of phone
use.’

• Interpretive: ’The student appears disengaged from the class activity and is using
her phone.’

• Contextual: ’Although a textbook is open on the desk, her attention is on the mobile
phone.’

• Formal/Neutral: ’An individual in a classroom setting is interacting with a handheld
device.’

• Explicit Label: ’This image shows a student who is using a phone during class time.’
• Location-specific: ’A phone is partially visible in the student’s lap below the table.’

This comprehensive annotation strategy is crucial for training a model like GaGL to
understand the subtle cues of classroom behavior.

4.2. Experiment setup. Our experimental setup involves processing images with the
Faster-RCNN using a ResNet-101 backbone from [24] to generate 18 region proposals,
each with a 2048-dimensional feature vector, alongside semantic segmentation via Mask
R-CNN. Textual data is handled by setting word embeddings to 224 dimensions and
hidden states to 512 per sentence. The similarity vector m is configured with a dimension
of 256, employing a smoothing temperature λ = 6, N = 3 reasoning steps, and a margin
γ = 0.1. We utilize the AdamW optimizer [23] for training the GaGL network, with a
batch size of 128. On the MSCOCO dataset, the learning rate starts at 0.00001 for the
first 10 epochs, dropping to 0.000001 for the next 10. For the D-Edu dataset, the SGR
(SAF) module begins training with a learning rate of 0.00001 for 30 (20) epochs, followed
by a decay by a factor of 0.01 for an additional 10 epochs. Textual features are derived
using a pretrained BERT model, converting text into dense semantic embeddings. We
implement early stopping at epoch 58 to avoid overfitting, choosing the model snapshot
with the best validation performance for final evaluation.

Our experiments were conducted to address two key research questions (RQs):

• RQ1: How well does the GaGL model perform compared to state-of-the-art models?
• RQ2: How does the GaGL model predict in the task of recognizing student behavior
in a classroom setting?

4.3. Performance Compare (RQ1). The results presented in the table 1 provide a
comparative evaluation of various object detection and segmentation methods across two
datasets: MSCOCO and D-Edu. The evaluation metrics include Precision, Recall, and
F1 measure, which are essential for assessing model performance in detecting classroom-
related behaviors. To comprehensively evaluate the performance of our GaGL model and
other baseline methods, we adopt three standard metrics: Precision, Recall, and the F1-
score. The selection of these metrics is deliberately aligned with the practical requirements
and ethical considerations of classroom behavior recognition.

• Precision is critical for ensuring the reliability of the system from an educator’s per-
spective. It measures the accuracy of positive predictions, and a high precision rate
minimizes the risk of falsely identifying a student as engaging in negative behav-
ior (e.g., ”using phone”), which is crucial for maintaining trust and avoiding unfair
judgment.

• Recall is vital for ensuring the system’s thoroughness. It measures the model’s
ability to detect all actual instances of a given behavior. High recall is necessary
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Table 1. A comparative analysis against contemporary methods over the
MS COCO and D-Edu dataset

MSCOCO D-Edu
Method Precision Recall F1 measure Precision Recall F1 measure

Faster-RCNN [25] - 0.93 - 0.9123 0.9276 0.9199
Mask R-CNN [26] 0.91 - - 0.8951 0.9254 0.9095

SAM [27] 0.8585 0.9094 0.8834 0.8343 0.8877 0.8602
Yolov11 [28] 0.933 - - 0.9275 0.9367 0.9321
GaGL (ours) 0.9453 0.9564 0.95 0.9352 0.9583 0.9466

for administrators who need a complete picture of classroom activities to effectively
”monitor learning conditions and enhance educational quality”.

• The F1-score, as the harmonic mean of Precision and Recall, offers a balanced assess-
ment, which is especially important for datasets like D-Edu where certain behaviors
may be less frequent than others. It ensures that the model’s performance is robust
and not skewed towards either precision or recall, making it a reliable indicator of
overall effectiveness in real-world classroom scenarios.

The evaluation of traditional object detection models, including Faster R-CNN and
Mask R-CNN, reveals that while these methods achieve high recall, their reported pre-
cision values are sometimes incomplete. Specifically, Faster R-CNN attains a recall of
0.93 on the MSCOCO dataset; however, its corresponding precision value is not docu-
mented. Conversely, Mask R-CNN reports a precision of 0.91 but lacks an explicit recall
measurement, limiting a comprehensive assessment of its overall performance.

The Segment Anything Model (SAM) provides both precision and recall metrics; how-
ever, its performance remains suboptimal compared to other methods. Although the
F1-score for MSCOCO is not reported, its performance on the D-Edu dataset (F1 =
0.8602) suggests challenges in accurately capturing classroom-related behaviors.

YOLOv11 demonstrates strong precision, achieving a value of 0.933 on MSCOCO,
though its recall remains unreported. On D-Edu, it maintains robust detection capabilities
with an F1-score of 0.9321, reinforcing its suitability for real-time object detection tasks.

The proposed GaGL model outperforms all other approaches across both datasets,
achieving the highest recorded precision, recall, and F1-score. On MSCOCO, GaGL
attains a precision of 0.9453, a recall of 0.9564, and an F1-score of 0.95. Similarly, on
the more specialized D-Edu dataset, it maintains superior accuracy with a precision of
0.9352, a recall of 0.9583, and an F1-score of 0.9466. These high scores are not just
numerically superior; they signify a model that is both reliable (high precision, minimizing
false accusations) and comprehensive (high recall, capturing most behaviors), making it
a practically viable tool for educators. This balanced excellence, reflected in the top-tier
F1-score, confirms that our multimodal graph embedding strategy effectively addresses
the nuanced challenges of classroom behavior recognition. These results indicate that
the multimodal graph embedding strategy effectively integrates both global and local
image-text interactions, leading to enhanced classification accuracy for classroom behavior
recognition.

The superior performance of GaGL can be attributed to its four-stage pipeline, which
effectively utilizes multimodal data fusion. By integrating CNN-based feature extraction,
semantic segmentation, and graph-based attention mechanisms, the model achieves a com-
prehensive contextual understanding. The representation of student behaviors through
graph embeddings further enhances classification accuracy, surpassing conventional meth-
ods that rely primarily on object detection.
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Figure 2. The detection and semantic results of GaGL model.

4.4. Qualitative Study (RQ2). Figure 2 illustrates qualitative examples of the GaGL
model’s performance in detecting and interpreting student behaviors within the class-
room setting. Each column corresponds to a predicted behavior (e.g., “open bag,” “using
phone,” “read article,” “open book”), while the accompanying heatmaps and bounding
boxes highlight salient regions that guided the classification. Notably, the model accu-
rately localizes objects of interest such as phones and books, as well as relevant body
parts (e.g., hands, faces) associated with these actions. For instance, in the top row, the
bounding box around the phone and the high-intensity regions in the heatmap both in-
dicate the model’s focus on the student’s hand and device, thereby reinforcing the “using
phone” prediction. Similarly, in the lower rows, the highlighted areas around the student’s
torso and the detected books/papers confirm reading-related behaviors. These examples
underscore the model’s ability to capture nuanced interactions—such as hand-object con-
tact or gaze direction—and fuse them with contextual cues (e.g., posture, surrounding
objects) through its multimodal graph representation. Consequently, GaGL demonstrates
robust and fine-grained behavior recognition, facilitating more accurate and interpretable
monitoring of student engagement in classroom environments.

To assess the practical applicability of the GaGL framework, we analyzed its compu-
tational complexity by measuring the inference time. The experiments were conducted
on a server equipped with an NVIDIA Tesla V100 GPU. The total processing time for a
single image was approximately 156 ms, which translates to a throughput of roughly 6.4
frames per second (FPS). The breakdown of the average inference time across the main
components of our pipeline is presented in Table 2.

The results indicate that the primary computational bottleneck lies in the visual fea-
ture extraction stage, which was designed to maximize accuracy using deep and complex
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Table 2. Inference Time Analysis of the GaGL Pipeline

Module Description Average Time (ms)
Visual Feature Extraction ResNet-101 + Faster/Mask R-CNN for global/local features 120
Textual Feature Extraction BERT encoding for descriptive labels 10
Graph Construction & Propagation Vectorized similarity, pruning, and GAT message passing 25
Behavior Classification Final Softmax classifier <1
Total Inference Time ∼156 ms

models. While the current performance is insufficient for live, real-time video processing,
the GaGL framework is highly effective for offline analysis tasks, where high precision and
detailed behavioral understanding are more critical than processing speed. This allows
for in-depth post-session analysis of classroom recordings by educators.

For future real-time applications, several optimization strategies could be explored.
These include replacing the current backbone with a more lightweight architecture (e.g.,
MobileNet, EfficientDet), applying model compression techniques like quantization and
knowledge distillation, and implementing a temporal frame sampling strategy to reduce
the processing load.

5. Conclusions. In this paper, we have presented the Graph-embedded Aggregation of
Global and Local features (GaGL) network, a novel approach tailored for classroom be-
havior recognition. By systematically integrating global scene context, localized object
and action cues, and textual annotations into a unified graph representation, the pro-
posed model effectively captures both high-level and fine-grained behaviors. Experimen-
tal evaluations on MSCOCO and the newly introduced D-Edu dataset demonstrate the
superiority of our method over existing techniques, validating its robustness and accuracy
in real-world classroom scenarios. Furthermore, ablation studies confirm the complemen-
tary nature of the global, local, and textual feature modules, underscoring the benefits
of fusing diverse information sources. Through these findings, GaGL not only addresses
the complexities of classroom behavior recognition but also offers a scalable framework
for broader applications in image recognition and computer vision. Future work will ex-
plore the integration of additional modalities and real-time processing capabilities, thereby
further enhancing the potential impact of this approach on classroom management and
educational research.
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