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Abstract. In the pixel value ordering (PVO) based reversible data hiding method, there
are only two pixels in a block are used for embedding data. It limits the data embedding
capacity (payload) of the PVO method. To overcome this drawback, lately, Weng et
al. proposed new development, in which all pixels in a block, except for one or two in
middle positions, can be involved in embedding data, so this method has a large embedding
capacity. This paper proposed a new method (HistC) using histogram shifting on blocks,
in which selected peak points are pixels at the center of the histogram distribution. These
peak points are invariant in the embedding process, so they do not need to be recorded for
extracting stage. Because in natural images, many pixels usually appear at the center of
the histogram, so our proposed method has a high payload. Moreover, the second method
(HistE) in which peak points are selected at the edges of the histogram distribution is also
presented. Experimental results show that both proposed methods have a large payload and
high stego image quality. Especially, the data embedding capacity of the HistC method is
higher than Weng et al.’s method and other PVO-based methods.
Keywords: PVO, data hiding, histogram shifting

1. Introduction. Nowadays, digital documents are usually transmitted on the Internet,
they can be risked by various types of attacks. So protecting the integrity of digital docu-
ments is an urgent problem in the field of information security. Two main approaches for
protecting digital documents are encryption and data hiding. Data hiding is the technol-
ogy in which secret data, such as authentication or copyright information is embedded in
a digital image. Traditional data hiding techniques [5, 25, 28, 32] usually cause perma-
nent distortions in the digital image, and this limits their application in some sensitive
fields, such as medical image processing and military communication. So new data hiding
methods called reversible (or lossless) data hiding are proposed to overcome this limita-
tion. Reversible data hiding (RDH) not only can extract hidden data but also restore the
original image.

The first RDH proposed by [21] is performed based on modulo addition 256. The
disadvantage of this method is that the stego image quality is very low. Shortly, some
RDH methods based on lossless compression [6, 7, 11] are developed. These methods
acquire embedding space through lossless compression of a specific part of the digital
original image. As a result, they usually have low embedding capacity.

In 2003, Tian proposed an important reversible data hiding algorithm called ”difference
expansion” (DE) [35], it overcomes the limitation on the embedding capacity of the above
methods. In the DE method, the difference of each pixel pair (x, y) is calculated h = x−y,
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then h is expanded to the left and one bit is inserted in the right. In fact, a bit b
is embedded in h as follows h′ = 2h + b. After having h′, a stego pixel pair (x′, y′) is
determined:

x′ = l +

⌊
h′ + 1

2

⌋
, y′ = l −

⌊
h′

2

⌋
, where l =

⌊
x+ y

2

⌋
.

If (x′, y′) pair is still in pixel domain ([0, 255] for grayscale image) then embedding is
successful, and (x, y) is called ”expandable”. In DE-method, a binary map is established
to mark expandable pixel pairs, it is called a location map. Since the compression code
of the location map must be embedded in the original image along with the data, so it
reduces the embedding capacity. An important improvement of DE method is to consider
pixel vectors (PV) instead of pixel pairs [1, 2, 3, 15, 17, 36]. In each n-sized pixel vector, a
fixed pixel (basic pixel) is selected, and (n-1) differences are computed by subtracting the
basic pixel from other pixels. Thus the number of differences obtained in the PV method
is increased almost twice than the DE-method. Moreover, the location map is constructed
in blocks so its size is decreased significantly. Two above advantages make remarkably
increasing the embedding capacity of the PV method in comparison with the DE-method.
To enlarge the embedding capacity of the DE-algorithm, other improved methods try to
decrease the size of the location map [13, 14, 20, 29]. The next important development
of the DE-method is prediction error expansion methods (PEE) [4, 33, 34] in which each
pixel is predicted by a predictor, and a difference between pixel and its prediction value is
computed. Each difference is expanded for embedding one bit. Because the absolute value
of prediction errors often is smaller than one of pixel pair differences, and the number of
prediction errors is almost twice the number of pixel pair differences, so the embedding
capacity of PEE methods is significantly larger than DE.

In addition to the DE technique, Ni et al. [22] proposed another important RDH method
called histogram shifting (HS). Two bins (denoted PeakL and PeakR) at which histogram
reaches largest values are selected, pixels are shifted to the left and the right sides of
PeakL and PeakR, respectively, such that bins (PeakL − 1) and (PeakR + 1) become
empty, finally data bits are embedded at pixels having a value of PeakL or PeakR. In HS
method, each pixel must be modified at most one, so this method has a good stego image
quality, however, its capacity is not very high. To overcome this drawback, prediction
error histogram shifting methods (PEH) are proposed [8, 9, 10, 16, 24, 31, 39], in which
prediction errors of pixels are evaluated, then HS method is applied for prediction errors.
In comparison with the HS method, PEH methods have significantly higher embedding
capacity.

Recently, Li et al. [19] proposed a new RDH method based on pixel value ordering
(PVO), in which, the pixel values of each block are sorted in ascending order. Then
the largest pixel value is predicted by the second-largest pixel, and the smallest pixel is
predicted by the second-smallest pixel. The prediction errors dmax ≥ 0 and dmin ≤ 0
at the largest and the smallest side, respectively, are calculated. When dmax = 1, a bit
is embedded by increasing the largest pixel by 1 or keeping it unchanged depending on
whether the to-be-embedded bit is 1 or 0.

Prediction error dmin is treated similarity, but the smallest pixel is decreased by one.
Thus, after embedding, PVO is unchanged, it guarantees reversibility.

It is noted that since the local pixel values are correlative, so there are many prediction
errors of 0, which are ignored by the PVO method. Peng et al. [27] proposed an improved
PVO method, called IPVO, in which a bit will be embedded when errors dmax or dmin
equal 0. So the IPVO method has an embedding capacity higher than the PVO method.
In [12], He et al. commented that the data embedding efficiency of the IPVO method in a
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block of pixels is highly dependent on the sequence of pixels obtained from this block. So,
unlike in [27] where only a fixed transformation is applied, He et al. use for each different
block of pixels a different way to convert the block into a sequence of pixels with as many
inversion pairs as possible. By this improvement, the embedding capacity of He et al.’s
method is greater than that of the IPVO method. Another method, known as PVO-K,
proposed in [23] is also an improvement of PVO. The PVO-K method considers all largest
pixels or all smallest pixels as a unit to embed data. That means, for embedding a bit,
increase all largest pixels by 1 or keep them unchanged depending on the to-be-embedded
bit is 1 or 0. The smallest pixels are treated similarly.

GEPVO-K [18] is a remarkable development of PVO-K, it can embed k bits in all k
largest pixels and l bit in all l smallest pixels of a block. However this method has two
drawbacks: after embedding, pixels can be altered at most by two and each block is marked
by two binary bits in the location map. These drawbacks limit both embedding capacity
and stego image quality. The iGePVO-K method [30], an improvement of GePVO-K
overcame the above drawbacks. The length of the location map in iGePVO-K is the same
as in IPVO or PVO-K methods. After embedding by iGePVO-K, pixels are modified at
most by one, so this method has high embedding capacity and good stego image quality.

In [26], it is noted that the maximum embedding capacity is highly dependent on the
number of sub-blocks because the prediction errors for every sub-block are fixed by 2. For
this purpose, the three-pixel embedding structure (TPES) is used in [26] to create more
prediction errors by dividing the original image into 3-sized blocks. Thus, two pixels are
used to embed data over three pixels, and the maximal embedding rate is increased to
2
3

= 66.7%.
To enlarge the embedding capacity, the method proposed by [37] used the three largest

pixels and three smallest pixels for embedding. Suppose a sorted n-sized block is Xσ =
(xσ(1), . . . , xσ(n)). Method [37] used xσ(n−3) for predicting the three largest pixels and xσ(4)
for predicting the three smallest pixels. Then three prediction errors at the largest side
and three prediction errors at the smallest side are created for embedding at most six bits
in every block.

Method [38] is a development of [37] to can embed more than six bits in a smooth block
by selecting median pixel values for predicting remaining pixels. In fact, if n is even, two
median pixels xσ(n

2
), xσ(n

2
+1) are chosen, while when n odd, one median value xσ(n+1

2
) is

chosen. From this, (n− 2) prediction errors when n is even, and (n− 1) prediction errors
when n odd are created. Thus, at most (n− 1) bits can be embedded in a n-sized block.
Perhaps, this method achieves the highest embedding capacity among the PVO-based
methods. In [40], Zheng et al. applied the ideas of He et al. to Weng et al.’s method [37]
to achieve higher embedding capacity.

In this paper, we will analyze the relation between the PVO of a block and the histogram
of this block and show that can use histogram shifting in each block with two reasonably
defined peak points to achieve high embedding capacity. Two methods are presented.
The first method, called HistC (center histogram), selects two peak points at the center
of the histogram distribution. While, the second method, called HistE (Edge histogram),
selects two peak points at the Edge of the histogram. Each method is performed in two
modes: Left mode and right mode. The first method has an embedding capacity larger
than the second method. While the second method has a better stego image quality.

Experiment results show that the HistC method achieves the embedding capacity larger
in comparison with all above mentioned PVO-based methods.

The rest of this paper is organized as follows. Section 2 presents some related works.
The idea of the new methods is introduced in Section 3. In Section 4, two new methods
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are proposed. Experimental results are presented in Section 5. Finally, the conclusion is
made at the end of the paper.

2. Related works.

2.1. IPVO. Given a host 8-bit grayscale image I of size R × C, it is divided into non-
overlap r×c-sized blocks. Each block is converted to a pixel sequence X = (x1, x2, . . . , xn)
where n = r × c, then X is sorted in ascending order to get Xσ = (xσ(1), . . . , xσ(n)):
xσ(1) ≤ . . . ≤ xσ(n).
Moreover if xσ(i) = xσ(i+1) then σ(i) < σ(i+ 1). Value dmax is computed as:

dmax = xu − xv, (1)

where {
u = min(σ(n), σ(n− 1)),
v = max(σ(n), σ(n− 1)).

(2)

Then xσ(n) is modified to x′σ(n) for embedding a bit b as follows:

x′σ(n) =

{
xσ(n) + b if dmax = 0 or dmax = 1,
xσ(n) + 1 if dmax < 0 or dmax > 1.

(3)

It is noted that pixel value order of block is unchanged, so values σ(1), . . . , σ(n) and
u, v are retained. Therefore, at the decoder side, extracting bit b and restoring xσ(n) can
perform as follows:

d′max = x′u − x′v, (4)

b =

{
−d′max, if d′max ∈ {−1, 0},
d′max − 1, if d′max ∈ {1, 2},

(5)

and

xσ(n) =

{
x′σ(n) − b, if d′max ∈ {−1, 0, 1, 2},
x′σ(n) − 1, otherwise.

(6)

Similarly, xσ(1) is altered to x′σ(1) to embeded a bit b according to formulas:

dmin = xs − xt, (7)

{
s = min(σ(1), σ(2)),
t = max(σ(1), σ(2)),

(8)

x′σ(1) =

{
xσ(1) − b, if dmin = 0 or dmin = 1,
xσ(1) − 1, if dmin < 0 or dmin > 1.

(9)

Extracting hidden bit and restoring xσ(1) are carried out as follows:

d′min = x′s − x′t, (10)

b =

{
−d′min, if d′min ∈ {−1, 0},
d′min − 1, if d′min ∈ {1, 2},

(11)

xσ(1) =

{
x′σ(1) + b, if d′min ∈ {−1, 0, 1, 2},
x′σ(1) + 1, otherwise.

(12)
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To solve the over/underflow problem, the IPVO method uses a block-based location map.
Each block is assigned a position number in the location map. The block containing at
least a pixel value of 0 or 255, has a position number of 1, the other block’s position
number equals 0. The blocks with position number 1 will not be used for embedding
data, because they can cause over/underflow.

Although, the IPVO method has a higher embedding capacity than the PVO method,
it is still limited by the fact that it is only possible to embed at most 2 bits in each pixel
block.

2.2. GePVO-K. In the PVO-K method [23], one bit is embedded in k largest pixels of
an image block. GePVO-K [18] is a generation of PVO-K to embed k bits in k these
pixels.

In the GePVO-K, each block X = (x1, x2, . . . , xn) is divided into three types.
(a) Block having at least one pixel value of 0, 1, 254 or 255 will not be used for

embedding data, because it may cause under/overflow. The position number of this block
in the location map is set as 2 (LM(X) = 2).

(b) Block with all pixel values are equal (flat block): x1 = x2 = . . . = xn = α with α
differs from 0, 1, 254, 255 will be used to embed n− 1 bits. The position number of the
block is set as 1 (LM(X) = 1).

(c) Remaining blocks (rough blocks) will be used to embed data. The position number
of blocks is set as 0 (LM(X) = 0).

It is noted that the position number of each block is two binary bits, so the location
map is a binary sequence having the length of twice the number of blocks.

Next, the authors deal with each block depending on its position number on the map:
Case 1: If the position number of the block LM(X) = 2, the block is not used to embed

data and it is skipped
Case 2: If the position number of block LM(X) = 1, i.e, all pixel values in the block

are equal, keep the first pixel value unchanged and then embed the data in the remaining
pixels as follows:

x′i =

{
xi, if i = 1
xi + bi−1, if i = 2, 3, . . . , n,

where bi, i = 1, . . . , n− 1 are embedded bits.
Case 3: If the position number of the block LM(X) = 0, X is sorted in ascending order

to get (xσ(1), xσ(2),. . . , xσ(n)) as in subsection 2.1. Assume sorted block has k largest pixels
and l second largest pixels. The difference: dmax = xσ(n−k+1) − xσ(n−k) is calculated and
embedding is performed as follows:

Case 3.1: if dmax > 1: No data is embedded, all largest pixel values are increased by
one.

Case 3.2: if dmax = 1, all largest and second largest pixel values are modified for
embedding k bits as follows.

x′σ(i) =

{
xσ(i + 1, if n− k − l + 1 ≤ i ≤ n− k
xσ(i) + 1 + bj, if n− k + 1 ≤ i ≤ n; j = 1, . . . , k.

Embedding data bits in the smallest pixel values is performed similarly.

2.3. Weng, Pan et al.’s method (WengPan method). Like the IPVO method, in
Weng, Pan et al.’s method [37], each block (x1, x2, . . . , xn) is sorted in assending order to
get (xσ(1), . . . , xσ(n)). Then to improve the embedding capacity, Weng, Pan, et al. con-
sider three pixel pairs on the right side (xσ(n−3), xσ(n−2)), (xσ(n−3), xσ(n−1)), (xσ(n−3), xσ(n)),
and three pixel pairs on the left side (xσ(1), xσ(4)), (xσ(2), xσ(4)), (xσ(3), xσ(4)). The pixels
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(xσ(4), . . . , xσ(n−3)) are kept unchanged, while six pixels xσ(n−2), xσ(n−1), xσ(n), xσ(1), xσ(2),
xσ(3) will be used for embedding. In fact, each pair (xσ(n−3), xσ(i)), i = n−2, n−1, n will be
used for embedding according to formulas (1-3). Extracting data bits and restoring pixels
xσ(i) are performed as in (4-6). Similarly, each pair (xσ(i), xσ(4)), i = 1, 2, 3 are used for
embedding as in formulas (7-9). Extracting data bits and restoring pixels xσ(i), i = 1, 2, 3
are carried out as in formulas (10-12). In general, for flat blocks, this method provides
high embedding capacity.

2.4. Weng, Shi et al.’s method (WengShi method). Weng and Shi et al.[38] noted
that for high-correlation blocks, more than six pixels can be used to carry data. In fact,
X is sorted in ascending order to get Xσ = (xσ(1), . . . , xσ(n)). Two median positions m1

and m2 in Xσ are defined as follows: when n is even, m1 = n
2
,m2 = m1 + 1. In contrast,

when n is odd, m1 = m2 = n+1
2

The values xσ(m1) and xσ(m2) are called median values of
Xσ. Then data bits are embedded in pixel pairs (xσ(m2), xσ(m2+1)), . . . , (xσ(m2), xσ(n)) as in
formulas (1-3) and embedded in pixel pairs (xσ(1), xσ(m1)), . . . , (xσ(m1−1), xσ(m1)) according
to formulas (7-9). Thus, when n is odd, (n-1) bits can be embedded and when n is even,
(n− 2) bits can be embedded. It is noted that if n ≤ 8 then two methods: WengPan and
WengShi method are the same. In general, WengShi method has an embedding capacity
higher than WengPan method. Both these methods also use the location map similar to
the one in the method IPVO to solve the over/underflow.

3. Idea of proposed methods.

3.1. Histogram of the pixel block. Let X = (x1, x2, . . . , xn) be a n-sized pixel block,
then histogram of X, denoted h, is a function defined in segment [mi,ma] where mi and
ma are the minimal and the maximal values of X, respectively. Each x belongs to [mi,ma]
called a bin and h(x) equals the number of times that pixels having a value of x appear
in block X. For example for a block:

X =

25 24 25
26 27 28
26 25 26


histogram h(x) is as in Fig.1. It is noted that the shape of the histogram for natural image

Figure 1. Histogram of X in section 3.1

blocks is usually similar to Fig 1: Histogram achieves its maximal value at the center of
segment [mi,ma] (the center of the histogram). Then the values of the histogram are
decreased in both directions: the left and the right of [mi,ma].

Below it is shown that the histogram shifting method with reason defined peak-points
can provide embedding capacity higher than PVO-based reversible data hiding methods.
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3.2. Remark on GePVO-K method. Consider a n-sized block X = (x1, . . . , xn) which
has at least four distinct pixel values. Let k be the number of the largest pixels and l be
the number of smallest pixels, dmax be the difference between largest and second-largest
pixels. Then embedding capacity of the GePVO-K method in the largest pixels denoted
by CL is calculated as:

CL =

{
k, if dmax = 1
0, if dmax > 1

In other words:

CL = h(ma) ∗ sign(h(ma− 1))

where ma = max(X),

sign(z) =

 1, if z > 0
−1, if z < 0
0, if z = 0

Similarly, the embedding capacity of the GePVO-K method in the smallest pixels denoted
CS can be formulated as:

CS = h(mi) ∗ sign(h(mi+ 1)).

From the property of histogram presented in subsection 3.1, it is very likely that

CL+ CS ≤ h(ma− 1) + h(mi+ 1).

From this, it follows that the histogram shift method with the left peak = mi + 1 and
right peak = ma− 1 (HistE method) can reach the embedding capacity higher than the
GePVO-K method.

Example: Four following 3 × 3 blocks are randomly extracted from Cabeza and Lena
images. The embedding capacity of GePVO-K and HistE methods in these blocks is
shown in Table 1.

Cabeza block 1 Cabeza block 2

Lena block 1 Lena block 2

Figure 2. Randomly extracted 3× 3 blocks

Table 1. Capacity comparison between GePVO-K and HistE

Block Sorted pixel sequence of block GePVO-K HistE
Cabeza block 1 79 79 80 80 80 80 80 82 83 2+1=3 5+1=6
Cabeza block 2 68 68 68 69 69 69 70 70 71 3+1=4 3+2=5
Lena block 1 24 24 25 25 25 25 25 25 27 2+0=2 6+0=6
Lena block 2 67 68 68 70 70 70 70 71 73 1+0=1 2+0=2
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Table 2. Capacity comparison between Wengshi and HistC

Block Sorted pixel sequence of
block

WengShi HistC

Cabeza
block 3

Xσ : 67 67 68 68 69 69 69
69 70
σ : 1 7 4 5 2 3 6 9 8

m1 = m2 = 5
σ(m1) = σ(m2) = 2
xσ(m1) = xσ(m2) = 69
2 + 3 = 5

LPP =
⌊
67+70

2

⌋
= 68

RPP = 69
2 + 4 = 6

Cabeza
block 4

Xσ : 24 25 26 28 28 28 32
32 33
σ : 2 3 1 5 6 8 7 9 4

m1 = m2 = 5
σ(m1) = σ(m2) = 6
xσ(m1) = xσ(m2) = 28
1 + 1 = 2

LPP =
⌊
24+33

2

⌋
= 28

RPP = 29
3 + 0 = 3

Lena
block 3

Xσ : 95 97 97 99 100 101
101 102 103 105 107 108
σ : 2 4 7 5 1 6 8 10 3 11 9
12

m1 = 6, m2 = 7
σ(m1) = 6, σ(m2) = 8
xσ(m1) = xσ(m2) = 101
0 + 0 = 0

LPP =
⌊
95+108

2

⌋
= 101

RPP = 102
2 + 1 = 3

Lena
block 4

Xσ : 119 120 121 121 121
123 123 123 123 124 124 124
σ : 4 6 1 9 10 2 3 5 12 7 8
11

m1 = 6, m2 = 7
σ(m1) = 2, σ(m2) = 3
xσ(m1) = xσ(m2) = 123
0 + 2 = 2

LPP =
⌊
119+124

2

⌋
= 121

RPP = 122
3 + 0 = 3

3.3. Remark on WengShi method. WengShi method selects a left median pixel xσ(m1)

and a right median pixel xσ(m2) of block X. Then uses all pairs (xσ(i), xσ(m1)), 1 ≤ i ≤
m1−1 and (xσ(m2), xσ(i)),m2 +1 ≤ i ≤ n for embedding data. So the embedding capacity
of this method is very large. Now consider histogram shifting in block X with peak points
are selected at the center of the segment [mi,ma] (HistC method). In other words, values
LPP (Left Peak Point) and RPP (Right Peak Point) are defined as

LPP =

⌊
mi+ma

2

⌋
, RPP = LPP + 1,

where mi = min(X),ma = max(X). According to the remark in the subsection 3.1, the
values h(LPP ) and h(RPP ) are usually greater than or equal to the values h(xσ(m1)) and
h(xσ(m2)), where h(x) is the histogram of the block X. From this, it follows that most
likely the embedding capacity of HistC method is greater one of WengShi method. Below
present some examples for demonstrating the above remarks.

Example: Four following blocks are randomly extracted from Cabeza and Lena images.
The embedding capacity of WengShi and HistC methods in these blocks is shown in Table
2

Cabeza block 3 Cabeza block 4

Lena block 3 Lena block 4

Figure 3. Randomly extracted 3× 3 and 3× 4 blocks
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4. Proposed methods. In this section, two proposed methods are presented. Both
methods are performed according to the histogram shifting scheme on pixel blocks, but
selecting peak points is different. The first method is called HistCenter (HistC) because its
two peak points are at the center of the histogram distribution. While two peak points of
the second method are at the two edges of the histogram, so it is called HistEdge (HistE).
Each method is performed in two modes and what mode that gives higher embedding
capacity will be selected.

HistC method is presented in subsections from Subsection 4.1 to Subsection 4.5, while
HistE method will be considered briefly in Subsection 4.6.

4.1. Embedding algorithm in a block. In each of the 4 cases below pixels of a block
will be scanned in rows from the top to bottom and left to right. Consider an image block
of size r × c

X =

x11 . . . x1c
. . . . . . . . .
xr1 . . . xrc


First, let mi = min(X) and ma = max(X), establish the histogram h of X: h(x) with

mi ≤ x ≤ ma. If denote s = ma−mi+ 1, then histogram h consists of s bins.
Depending on value s the following cases are considered:
Case 1. If s = 1, i.e. histogram consists of only one bin, X is flat (all pixels of X are

equal). The embedding is done as follows: The first pixel x11 is unchanged, (r × c − 1)
remaining pixels are modified to embed (r × c− 1) bits by the formula:

x′ij =

{
x11 + bt, if x11 ≤ 254
x11 − bt, if x11 = 255,

with (ij) 6= (1, 1), i = 1, . . . , r, j = 1 . . . , c, t = 1, . . . , r × c − 1. It is noted that when
s = 1, histogram h′ of X ′ will consist of one or two bins.

Case 2: If s = 2, i.e. histogram consists of two bins: mi and ma. Denote h1 = h(mi)
and h2 = h(ma). We shift bin mi to the left and bin ma to the right, that means pixels
with a value of mi are decreased by 1 and the pixels with a value of ma are increased by
1. Then histogram consists of 4 bins that are mi− 1,mi,ma and ma+ 1, where mi and
ma are empty bins.

Embed (h1 − 1) bits at bin (mi− 1) and (h2 − 1) bits at bin (ma+ 1) as follows

x′ij =

 xij + b, if xij = (mi− 1) and (i, j) <> (p, q)
xij − b, if xij = (ma+ 1) and (i, j) <> (u, v)
xij, if otherwise,

where (p, q) is the position of the last pixel among pixels with value (mi− 1), (u, v) is the
position of the last pixel among pixels with value (ma+ 1), b is a to-be-embedded bit.

Case 3. If s = 3, i.e. histogram h consist of three bins: mi,mi + 1,ma. Denote
h1 = h(mi), h2 = h(mi+1), h3 = h(ma), shift bin mi to the left and bin ma to the right.
Then histogram has five bins: mi− 1,mi,mi+ 1,ma and ma+ 1. Here, the algorithm is
performed in two modes: left and right.

Left mode: Embed h1 − 1 bits at bin mi− 1 and h2 bits at bin mi+ 1 by the formula:

x′ij =

 xij + b, if xij = (mi− 1) and (i, j) <> (p, q)
xij + b, if xij = (mi+ 1),
xij, if otherwise

where (p, q) and b have the same meaning as in case 2.
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Right mode: Embed h2 bits at bin mi+ 1 and h3 − 1 bits at bin ma+ 1 as follows:

x′ij =

 xij − b, if xij = (ma+ 1) and (i, j) <> (u, v),
xij − b, if xij = (mi+ 1)
xij, if otherwise,

where (u, v) and b have the same meaning as in case 2.
Case 4: s ≥ 4. First, determine LPP (Left Peak Point) and RPP (Right Peak Point)

depending on s is even or odd and left mode or right mode as follows

LPP =


mi+ma−1

2
, if s is even,

mi+ma
2
− 1, if s is odd and left mode,

mi+ma
2

, if s is odd and right mode,
(13)

RPP = LPP + 1. (14)

Then [h(LPP ) + h(RPP )] bits are embedded at bins LPP and RPP as follows

x′ij =


xij − 1, if xij < LPP,
xij + 1, if xij > RPP,
xij − b, if xij = LPP,
xij + b, if xij = RPP,

(15)

where b is a to-be-embedded bit.

4.2. Examples for illustrating embedding algorithm in a block. Input: an original
block X, an array of embed bits b. Output: a stego block X ′.

Case 1: s = 1

X =

[
255 255 255
255 255 255

]
; b = (1, 0, 0, 1, 0) ⇒

X ′ =

[
255 254 255
255 254 255

]

X =

[
250 250 250
250 250 250

]
; b = (1, 0, 0, 1, 0) ⇒

X ′ =

[
250 251 250
250 251 250

]
Case 2: s = 2

X =

[
41 40 40
40 40 41

]
; b = (1, 0, 0, 1).

h(40) = 4, h(41) = 2; h1 = 4, h2 = 2, (h1 + h2)− 2 = 4;

Histogram shifting:

⇒ X =

[
42 39 39
39 39 42

]
For this block, we have (p, q) = (2, 2) and (u, v) = (2, 3). Embedding 3 bits on bin 39

and 1 bit on bin 42:

X ′ =

[
41 39 39
40 39 42

]
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Case 3: s = 3

X =

[
40 42 40
42 41 40

]
Histogram shifting:

⇒ X =

[
39 43 39
43 41 39

]
(16)

h(39) = 3, h(40) = 0, h(41) = 1, h(42) = 0, h(43) = 2; (p, q) = (2, 3); (u, v) = (2, 1).

Left mode: Embed (3− 1) bits on bin 39 and 1 bit on bin 41, suppose b = (1, 0, 1), then
from (16) have

X ′ =

[
40 43 39
43 42 39

]
Right mode: Embed 1 bit on bin 41 and (2− 1) bit on bin 43, suppose b = (1, 0) then

from (16)

X ′ =

[
39 42 39
43 41 39

]
Case 4: s ≥ 4, s = 5:

X =

41 40 43
42 41 41
41 44 43

 ; b = (1, 0, 1, 0, 1). (17)

mi = 40, ma = 44, s = ma−mi+ 1 = 5 is a odd number.
Left mode: From (13), (14), have

LPP =
mi+ma

2
− 1 = 41, RPP = 42

Amount of embedded bits: h(LPP ) + h(RPP ) = 5, b = (1, 0, 1, 0, 1).
Embedding b into X (see (17)) at bin 41 and 42 by formula (15), obtain

X ′ =

40 39 44
42 40 41
40 45 44


Right mode: From (13), (14), have

LPP =
mi+ma

2
= 42, RPP = 43

Amount of embedded bits: h(LPP ) + h(RPP ) = 3, b = (1, 0, 1).
Embedding b into X (see (17)) at bin 42 and 43 according to (15), obtain

X ′ =

40 39 44
42 40 40
40 45 44


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4.3. Extracting and restoring algorithm in a block. Given an r × c-sized stego
block X ′ which is obtained from algorithm 4.1. We need to extract data bits and restore
the original block X.

First, establish the histogram h′ ofX ′: h′(x) withmi′ ≤ x ≤ ma′, mi′ = min(X ′),ma′ =
max(X ′). If denote s′ = ma′ −mi′ + 1 then histogram h′ consists of s′ bins. Depending
on value s′, the algorithm is performed in the following cases.

Case 1: s′ ≤ 2 then according to subsection 4.1, s = 1 and block X is flat. Extracting
bits bt and restoring X are done as follows:

bt =

{
x′ij − x′11, if x′11 ≤ 254
x′11 − x′ij, if x′11 = 255

xij = x′11, i = 1, . . . , r, j = 1, . . . , c, t = 1, . . . , r ∗ c− 1.
Case 2: s′ = 4 i.e. the histogram h′ consist of 4 bins: mi′,mi′+ 1,ma′− 1,ma′. In this

case, s = 2, set h1 = h′(mi′) + h′(mi′ + 1) and h2 = h′(ma′ − 1) + h′(ma′).
Denote X ′1 as the set of (h1 − 1) first pixels x′ij ∈ {mi′,mi′ + 1} and X ′2 as the set of

(h2 − 1) first pixels x′ij ∈ {ma′ − 1,ma′}. Then extracting h1 + h2 − 2 bits is done as
follows.

Scan all pixels in the union X1 ∪X2. For each x′ij ∈ X1 ∪X2, a bit b is extracted as:

b =

{
0, if x′ij = mi′ or x′ij = ma′

1, if x′ij = mi′ + 1, or x′ij = ma′ − 1.

In this case X consists of only two distinct pixel values and they are returned as follows:

xij =

{
mi′ + 1, if x′ij = mi′ or x′ij = mi′ + 1
ma′ − 1, if x′ij = ma′, or x′ij = ma′ − 1.

Case 3. s′ = 5. In this case, s = 3. Histogram h′ consists of five bins: mi′,mi′+1,mi′+
2,ma′ − 1,ma′.

3.1. Left mode: Let h1 = h′(mi′) + h(mi′ + 1), h2 = h(mi′ + 2) + h(ma′ − 1). Denote
X ′1 as the set of first (h1 − 1) pixels x′ij ∈ {mi′,mi′ + 1}, and X ′2 as the set of h2 pixels
x′ij ∈ {mi′ + 2,ma′ − 1}. For each x′ij ∈ X ′1 ∪X ′2,, a bit b is extracted as follows:

b =

{
0, if x′ij = mi′ or x′ij = mi′ + 2
1, if x′ij = mi′ + 1, or x′ij = ma′ − 1.

Then pixels xij are restored as:

xij =


mi′ + 1, if x′ij = mi′ or x′ij = mi′ + 1
mi′ + 2, if x′ij = mi′ + 2, or x′ij = ma′ − 1
ma′ − 1, if x′ij = ma′.

3.2. Right mode:
Let h1 = h′(mi′+1)+h(mi′+2) and h2 = h(ma′−1)+h(ma′). Denote X ′1 as the set of

h1 pixels xij ∈ {mi′+1,mi′+2} and X ′2 as the set of first h2−1 pixels x′ij ∈ {ma−1,ma}.
For each x′ij ∈ X1 ∪X2, a bit b is extracted as follows:

b =

{
0, if x′ij = mi′ + 2 or x′ij = ma′

1, if x′ij = mi′ + 1, or x′ij = ma′ − 1.

Then pixels xij are restored as:

xij =


mi′ + 2, if x′ij ∈ {mi′ + 1,mi′ + 2}
ma′ − 1, if x′ij ∈ {ma′ − 1,ma′}
mi′ + 1, if x′ij = mi′.
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Case 4. s′ ≥ 6. First, set

mi′ = min(X ′),

ma′ = max(X ′),

s′ = ma′ −mi′ + 1.

Then similar as in case 4 of subsection 4.1, values LPP and RPP are defined as

LPP =


mi′+ma′−1

2
, if s′ is even

mi′+ma′

2
− 1, if s′ is odd and left mode

mi′+ma′

2
, if s′ is odd and right mode,

RPP = LPP + 1

After having LPP and RPP , extracting and restoring are performed by formulas:

b =

{
0, if x′ij ∈ {LPP,RPP}
1, if x′ij ∈ {LPP − 1, RPP + 1}.

xij =


x′ij + 1, if x′ij < LPP,
x′ij − 1, if x′ij > RPP,
x′ij, if otherwise.

It is noted that the number of extracted bits equals h(LPP ) + h(RPP ), where h is the
histogram of X

Table 3. Extra information

Information Nota
tion

Purpose Size in
bits

1 Size of a block r × c r, c Divide host image into
blocks

6

2 The size of data bits B DS To embed data bits 18
3 The size of compressed loca-

tion map
MS To embed compressed loca-

tion map
14

4 The compressed location
map

CLM To extract data bits MS

5 Embedding mode: left:0,
right: 1

Mode To know embedding algo-
rithm

1

6 The ordinal number of the
last block which is used to
embed data

END To read extra information 18

Size of extra informa-
tion

57+MS

4.4. Data embedding procedure. Here, the embedding process is described in detail.
Input: A 8-bit grayscale host image I of size R× C and the data bits B.
Output: A stego image I ′.
Step 1: Divide I into non-overlapped r × c-sized blocks and obtain a block sequence

X = {X1, . . . , XN}, whereN = bR
r
c.bC

c
c is the number of blocks. Establish a location map

for blocks to distinguish two block categories: The over/underflow blocks and remaining
blocks. Position number in the map for Xk having pixels values of 0 or 255 (over/underflow
block) is set as 1 (LM(Xk) = 1) and for other blocks is set as 0 (LM(Xk) = 0). Applying
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the algorithm in subsection 4.1 for all blocksXk with LM(Xk) = 0 to define the embedding
capacity in the image I for modes: Left and right, and select a mode providing larger
capacity.

Step 2. Visit from the first block, for block Xk if LM(Xk) = 1, skip (do nothing). In
the case LM(Xk) = 0, embed data bits B in Xk according to subsection 4.1.

Step 3. When embedding data bits are completed, defined the ordinal number of the
last block used for embedding, denoted as END, then establish extra information as in
Table 3.

Define the sequence consisting of the least significant bits (LSBs) of (73 + MS) first
pixels in the host image and embed this sequence in blocks from a block with the ordinal
number (END + 1) by using the algorithm in subsection 4.1.

Step 4: Insert value (57 + MS) into LSB of 16 first pixels of the image. Continue
inserting (57 +MS) bits of the extra information into LSB of the (57 +MS) next pixels.
After finishing this step, the stego image I ′ is obtained.

4.5. Data extracting procedure. Here, the data extracting and the host image restor-
ing process is presented in detail.

Input: A 8-bit grayscale stego image I ′ of size R× C caries data bits B.
Output: Data bits B and host image I.
The extracting procedure is carried out in inverse order with the embedding process as

follows.
Step1. Take 16 LSB bits from 16 first pixels of the stego image I ′ to get the value

equal to (57 +MS), then continue to extract (57 +MS) LSB bits of the following pixels
to obtain extra information as shown in Table 3. Decoding the compressed map to get
location map LM.

Step 2. Divide I ′ into r × c-sized blocks as the same in the data embedding procedure
to obtain a block sequence X ′ = {X ′1, . . . , X ′N}.

Step 3. Extracting (73+MS) embedded bits from blocks X ′k, beginning from the block
with an ordinal number (END + 1) at the same time restoring host blocks according to
the algorithm as in subsection 4.3. Inserting extracted bits into (73 + MS) LSB bits of
the (73 +MS) first pixels of I ′.

Step 4. Extracting data bits B and restoring host blocks beginning from the first block
by using the algorithm as in subsection 4.3.

After finishing step 4, data bits B are extracted and host image I is restored.

4.6. HistE method. As noted above, two methods HistC and HistE differ only in how
LPP and RPP are defined. In the HistC method, LPP and RPP are selected at the
center of histogram h(X), while in HistE these two values are determined at two edges
of the histogram. In fact, the HistE method is absolutely similar to the HistC method
except for defining values LPP and RPP when s ≥ 4 in embedding algorithm and when
s′ ≥ 6 in extracting algorithm for a block as follows:

1. When s ≥ 4 (in embedding algorithm)

LPP = mi+ 1, RPP = ma− 1

2. When s′ ≥ 6 (in extracting algorithm)

LPP = mi′ + 2, RPP = ma′ − 2.
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Lena Camera man Sailboat Cabeza Barbara Blob

Boat Tank Chest Goldhill Map Shirt

Tiffany Baboon Pepper Things

Figure 4. Experimental images

Camera man Barbara Blop

Sailboat Lena Pepper

Figure 5. Comparisons in term of the stego quality

5. Experimental results. To illustrate the results of theoretical analysis, we perform
experiments on 16 standard grayscale images of size 512 × 512 selected as shown in
Figure 4 for comparing 10 methods: PVO [19], IPVO [27], PVO-K [23], GePVO-K [18],
iGePVO-K [30], TRES [26], WengShi [38], WengPan [37], and HistC, HistE (two proposed
methods). The embedded data is a random bit sequence. Programs are written in the
Matlab platform and run on IdeaPad S410p Lenovo computer.

5.1. Data hiding capacity comparison. To obtain hiding capacity as many as possi-
ble, all blocks are used for embedding. The difference between embedding capacity and
the length of the compressed location map is called data hiding capacity or payload. It
is noted that for each method, the payload depends on the size of the blocks. For this
reason, in the experiments, for every method and each image, the size which gets maximal
payload is selected from sizes of r × c with r, c = 1, 2, 3, 4. The optimal size, embedding
capacity, the length of compressed location map and the maximal payload of the methods
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Table 4. Comparisons in terms of the max payload (continue to Table 5)

Images [19] [27] [23] [18] [30] [26] [38] [37] HistC HistE
Lena 2 × 2

32108
0
32108

2 × 2
38173
0
38173

2 × 2
38951
0
38951

2 × 2
43845
2428
41417

2 × 2
42709
0
42709

3 × 1
45263
0
45263

3 × 3
49319
0
49319

4 × 2
48937
0
48937

3 × 2L
52288
0
52288

2 × 2R
44501
0
44501

Baboon 2 × 2
13211
65
13146

2 × 2
13730
268
13462

2 × 2
14208
268
13940

2 × 2
14994
448
14546

2 × 2
14929
268
14661

1 × 3
14669
228
14441

3 × 3
16295
0
16295

2 × 4
15494
170
15324

2 × 2R
17462
268
17194

2 × 2L
15145
268
14877

Barbara 2 × 2
29525
35
29490

2 × 2
48101
35
48066

2 × 2
40237
35
40202

3 × 2
47049
5218
41831

2 × 2
51810
35
51775

3 × 1
47135
0
47135

4 × 2
52173
33
52140

4 × 2
52173
33
52140

3 × 2R
53002
34
52968

2 × 2R
51407
35
51372

Blob 2 × 2
41495
0
41495

2 × 2
53326
0
53326

2 × 2
52733
0
52733

2 × 2
64624
8151
56473

2 × 2
61386
0
61386

3 × 1
59182
0
59182

3 × 3
68614
0
68614

4 × 2
65751
0
65751

3 × 2L
69183
0
69183

3 × 2L
62753
0
62753

Cabeza 2 × 2
54327
64
54263

2 × 2
72101
64
71946

2 × 2
73480
64
73416

2 × 2
86457
7259
79198

2 × 2
81453
64
81389

3 × 1
77542
0
77542

3 × 3
96610
47
96563

4 × 2
91260
61
91199

4 × 2L
102949
61
102888

2 × 3R
90419
63
90356

Boat 2 × 2
27575
183
27392

2 × 2
35485
326
35159

2 × 2
33109
326
32783

2 × 2
39113
5792
33321

2 × 2
37370
326
37044

3 × 1
36826
0
36826

4 × 2
39687
216
39471

4 × 2
39687
216
39471

3 × 2L
39717
235
39482

2 × 2L
37772
326
37446

Camera
man

2 × 2
44168
710
43458

2 × 2
72138
1041
71097

2 × 2
64419
1041
63378

2 × 3
74892
5089
69803

2 × 2
80691
1041
79650

1 × 3
76019
1398
74621

3 × 3
90974
794
90180

4 × 2
85197
765
84432

3 × 3L
91867
794
91073

2 × 3L
87927
976
86951

Goldhill 2 × 2
25955
0
25955

2 × 2
28662
0
28662

2 × 2
29918
0
29918

2 × 2
32722
1512
31210

2 × 2
32183
0
32183

1 × 3
31899
0
31899

3 × 3
35520
0
35520

2 × 4
34402
0
34402

2 × 3R
36073
0
36073

2 × 2L
32959
0
32959

Pepper 2 × 2
28143
50
28093

2 × 2
30936
50
30886

2 × 2
32472
50
32422

2 × 2
35511
658
34853

2 × 2
35073
50
35023

3 × 1
33576
0
33576

3 × 3
42060
47
42013

4 × 2
39359
47
39312

3 × 2L
43146
49
43097

2 × 2L
35940
50
35890

Sailboat 2 × 2
23569
0
23569

2 × 2
26314
0
26314

2 × 2
27462
0
27462

2 × 2
30314
1321
28993

2 × 2
29628
0
29628

1 × 3
28240
0
28240

3 × 3
35316
0
35316

2 × 4
32948
0
32948

2 × 3R
35905
0
35905

2 × 2L
30459
0
30459

Tiffany 2 × 2
33957
3962
29995

2 × 2
41775
6979
34776

2 × 2
41070
6979
34091

2 × 2
47642
13224
34418

2 × 2
45552
6868
38684

3 × 1
41965
0
41965

3 × 3
46716
4008
42708

4 × 2
45509
4592
40917

3 × 2R
50612
4866
45746

2 × 2R
46969
6868
40101
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Table 5. Comparisons in terms of the max payload (continued from Table 4)

Images [19] [27] [23] [18] [30] [26] [38] [37] HistC HistE
Shirt 2 × 2

17567
4126
13441

2 × 2
23405
10482
12923

2 × 2
21368
10482
10886

3 × 4
12856
11867
989

2 × 2
28401
6545
21496

1 × 3
23904
13295
10609

3 × 3
26668
6108
20560

2 × 4
25955
6535
19420

2 × 3R
28368
5618
22750

2 × 2R
27988
6545
21443

Chest 2 × 2
45781
0
45781

2 × 2
63502
0
63502

2 × 2
60470
0
60470

2 × 2
74200
10049
64151

2 × 2
69117
0
69117

3 × 1
63280
0
63280

3 × 3
71815
0
71815

4 × 2
69260
0
69260

2 × 3L
74215
0
74215

3 × 2L
72090
0
72090

Things 2 × 2
33931
159
33772

2 × 2
49589
171
49418

2 × 2
44392
171
44221

2 × 3
50076
5770
44306

2 × 2
55265
171
55094

1 × 3
52239
190
52049

3 × 3
57991
157
57834

2 × 4
56816
159
56657

2 × 3L
58336
165
58171

2 × 2R
55448
171
55277

Tank 2 × 2
11187
0
11187

2 × 2
20469
0
20469

2 × 2
12426
0
12426

2 × 2
13752
681
13071

2 × 2
13609
0
13609

1 × 3
21388
0
21388

3 × 3
24236
0
24236

2 × 4
23753
0
23753

2 × 2R
24252
0
24252

2 × 2L
14196
0
14196

Map 2 × 2
26693
0
26693

2 × 2
32492
2324
30058

2 × 2
32852
2434
30418

2 × 2
38215
5420
32795

2 × 2
36498
2434
34064

1 × 3
34538
1793
32745

3 × 3
38234
1521
36713

2 × 4
36931
1225
35706

2 × 3R
37759
1622
36137

2 × 2R
37463
2434
35029

Average 30575
585
29990

40637
1359
39265

38723
1366
37357

44141
5305
38836

44730
1113
43595

42979
1057
41923

49514
808
48706

47715
863
46852

50946
857
50089

46465
1109
45356

for each image are written in Table 4, 5. Moreover, for proposed methods, the mode (left
and right) selected in experiments is also shown.

From Table 4, Table 5, we deduce some following conclusions:
Three methods PVO, IPVO, PVO-K where each block can embed at most two bits,

have the same optimal size of 2× 2, method GePVO-K where smallest and largest pixels
are used for embedding has the optimal size from 2×2, 2×3, 3×2, 3×4. The optimal size
of three methods WengShi, WengPan, and histC is larger than 2×2. Meanwhile, methods
HistE and iGePVO-K often reach the largest payload at the size of 2× 2, 2× 3, 3× 2.

The proposed HistC has the largest payload, followed by WengShi, WengPan, HistE,
and other methods.

5.2. Stego image quality comparison. To get high stego image quality with each given
payload, only more smooth blocks are selected to embed enough desired data. To evaluate
the smoothness of blocks, a context is defined for each block as shown in Figure 6. In fact,
the context of the block B containing rows r, . . . , s and columns u, . . . , v is constituted
from pixels (i, j) with i = s+1, s+2; j = u, . . . , v and i = r, . . . , s, s+1, s+2; j = v+1, v+2
(gray region in Figure 6). The context of the block B is denoted by C(B). Then smoothness
of B is evaluated by the local variance of the context C(B) as follows:

ν(B) =

√∑
(i,j)∈C(B) (P (i, j)− P̄ )2

L
,

where L is the number of pixels of C(B) and P̄ =
∑

(i,j)∈C(B) P (i,j)

L
.
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Figure 6. Context of blocks

To be equal, ν(B) is used for all compared methods. In other words, for each method,
each original image, and each given payload, a threshold T is defined such that if only
blocks having the local variance less than T are used for embedding, then obtained payload
is just greater than or equal to the given payload. Then image quality is measured by
coefficient PSNR between the image obtained after embedding and the original image.

The image quality comparison results of all methods are shown in Figure 5. From this, it
follows that both proposed methods HistC and HistE have image quality a little less than
TRES [26], WengPan [37] and WengShi [38] methods, but much better than GePVO-
K [18]. While, the payloads presented in Table 4,5 show that the proposed methods,
especially, HistC method outperforms other methods in all cases.

6. Conclusion. In this paper, we present two new reversible data hiding methods that
use histogram shifting in blocks. In the first method (HistC), the center pixels of the
histogram distribution are selected to be peak points, while for the second one (HistE),
the edge pixels are selected. It is noted that peak points defined as above are invariant
after embedding, and they can be easily restored in extracting stage. Both proposed
methods have a large payload and high image quality. Especially, the data embedding
capacity of the HistC method is larger than one of all existing PVO-based reversible data
hiding methods.
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