
Journal of Information Hiding and Multimedia Signal Processing ©2022 ISSN 2073-4212

Ubiquitous International Volume 13, Number 1, March 2022

A Novel Approach to Improve the Performance of
Serpent Algorithm using Lorenz 96 Chaos-based

Block Key Generation

Huwaida T. Elshoush

Computer Science Department
Faculty of Mathematical Sciences and Informatics

University of Khartoum, Sudan
htelshoush@uofk.edu

Khalil T. Obeid

Computer Science Department
Faculty of Mathematical Sciences and Informatics

University of Khartoum, Sudan
khalil.obeid@outlook.com

Mahmoud M. Mahmoud

Computer Science Department
Faculty of Mathematical Sciences and Informatics

University of Khartoum, Sudan
Mahmoud.mustafa101@gmail.com

Received September 2021; revised December 2021

Abstract. This paper presents a novel approach to enhance the security and perfor-
mance of Serpent algorithm. A sub key is generated for each block using block key gen-
eration (BKG) algorithm that is based on Lorenz 96 chaos and then the processes of
encryption and decryption are run in parallel. The proposed approach is applied and
tested using forkjoinPool framework on java platform. The results were compared with
Serpent algorithm running sequentially and with another Serpent algorithm using block
key generation. The approach achieved better execution time than both of them, further-
more with high reduction rate in encryption execution time for large number of blocks.
While the reduction was not significant for small number of blocks, for large number of
blocks the implementation results showed reduction in time of up to 53.2%. Furthermore,
the reduction rate is compared with prevailing methods achieving great results. Thus, the
approach demonstrated the potential of the improved Serpent algorithm with Lorenz 96
choas-based BKG and gave favorable results.
Keywords: Serpent, Lorenz 96, Chaotic map, Block Key Generation, Parallel Comput-
ing

1. Introduction. Sending and receiving data is a key element of computer network. The
type of data exchanged differs in secrecy. Data can be classified as secret such as in per-
sonal information, and confidential or private in military and banking transactions. One
of the most important requirements of these networks is to provide secure transmission of
information. Cryptography is one of the techniques to provide the secure way to transfer
the important information [1].

49

50 H.T. Elshoush et al.

A replacement to Data Encryption Standard (DES) was needed by the US National
Institute of Standards and Technology [2] in 1997. Advance Encryption Standard (AES)
and Serpent were the top candidates. Eventually, AES was chosen because it is faster than
Serpent although the later was more secure [2][3]. Furthermore, memory requirement and
execution time were impediment to its choice. The 32 rounds of Serpent influence the
performance directly.

Serpent was developed by Ross Anderson (University of Cambridge Computer Labora-
tory), Eli Biham (Technion Israeli Institute of Technology), and Lars Knudsen (University
of Bergen Norway) [4]. Being is a symmetric block cipher, it uses 256 bit key to encrypt
128 bit of plaintext. Figure 1 depicts the details of the Serpent block cipher. It uses three
main functions as elucidated herein:

Figure 1. The Serpent Algorithm [5]

1. Initial Permutation (IP) The initial permutation of bits is performed using a
lookup permutation table to determine which bit to put in which position. Equally,
it could be done algorithmically by substituting a bit at index i with the bit at index
i * 32 mod 127, where only bits 0 and 127 are kept in their positions [6].

2. Round function (R)
The round function is performed 32 times. Each round consist of three operations:

key mixing, s-boxes substitution, and linear transformation; except in the last round,
the linear transformation is replaced by an additional key mixing operation as shown
in figure 2 [6].
• Serpent Round Keys Generation

For the 32 Serpent rounds, 33 round keys should be created from the user key. In
the first place, eight 32 bit keys, namely w1 to w8 will be generated by dividing
the user key into 32 bits. Then, 132 intermediate keys are created using the next
pseudo code:
For i = 8 to 131

wi = (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕−wi−1 ⊕ phi⊕ i) <<< 11
Note that:
⊕ is the exclusive-or operation
phi is known as golden ratio (hexadecimal 0x9e3779b9)
<<< is a left rotation

A Novel Approach to Improve the Performance of Serpent Algorithm 51

Thereafter, running the intermediate keys through the S-boxes, the 33 round keys
are hence created and then amalgamated into 128-bit blocks, as demonstrated
in figure 2.

3. Final Permutation (FP) The inverse of the initial permutation is the final per-
mutation. It is carried out to place the bits back into the right positions. It can be
performed through lookup table or algorithmically by substituting the bit at posi-
tion i with bit at position i*4 mod 127, where only bits 0 and 127 are in their actual
places. This produces the final output cipher text [6].

Figure 2. Serpent block encryption diagram [7]

The decryption is similar to encryption process but with the inverse ordering of keys.
Consequently, the initiation of this work is precisely to improve the performance and

security of Serpent. Ergo, the proposed approach improves the execution time of Ser-
pent by using parallel computing to speed-up encryption and decryption processes [26].
Parallel computation is a method in which several computations can be done simulta-
neously on two or more microprocessors. It can also be performed using multicore and
multiprocessor computers [8]. Furthermore, the proposed approach enhances the security
by generating sub keys for each block using two approaches; namely block key genera-
tion cipher mode, and Lorenz 96 choas-based block key generation algorithms [26]. The
execution performance of the two generated keys approaches are hence compared.

The remainder of the paper is structured as follows: the recent techniques in improving
the performance and security of the Serpent are discussed in the next section. Section
3 the two proposed key generation methods whilst the proposed method is elucidated in
section 4. The experimental results and analysis are represented in section 5. Finally,
section 6 concludes the paper.

2. Related work. Recently, many techniques to improve the performance and security
of Serpent were introduced by many researchers. A brief survey of the proposed modifi-
cations and their analysis are explained in this section.

In March 2000, Osvik et all [9] proposed hardware improvements to enhance Serpent by
speeding up the algorithm in 32-bit processors by reducing the number of registers needed
using boolean operations to be suitable for 32-bit processors that have 8 registers. More-
over, two way parallel execution is utilized. Although their results show enhancement, the
authors recommended trying three way parallel execution for finer results. Researchers
[10] attempted also to improve the Serpent using Hardware.

In July 2013, Fouda et al [11] proposed image block encryption algorithm based on
logistic map and linear chaotic map: PWLCM. The proposed function used permutation

52 H.T. Elshoush et al.

and diffusion keys that were generated using chaotic system and Linear Diophantine
Equation (LDE). The proposed algorithm was evaluated using speed analysis, entropy
analysis, key space analysis, differential attack analysis, key sensitivity analysis, and other
analysis. The results show that the proposed method can generate large permutation and
diffusion keys very fast also have faster and higher security level.

A year later, in October 2014, Taher et all [12] suggested another hardware implemen-
tation for Serpent called Field Program-mable Gated Arrays (FPGA) device. Their work
provide reliability and hardware-time speed, thus Serpent runs faster.

In December 2015, Ali et all [13] use Serpent in encrypting image by splitting it into
512-bit blocks and divide each block into 4 128-bit blocks. Afterwards, encrypt the last
block using Serpent and expand it into 3 blocks, then next XOR the new blocks with the
other blocks. This produces faster encryption and decryption processes.

In January 2016, Singh et al [14] designed an algorithm that generated multiple keys
from single user defined key called Block Key Generation (BKG). Thus every block has
its own key and does not depend on the output of the other blocks. This can make every
block runs independently and removes any data pattern. This function runs like EBC
with key generation function. It takes the user key and the previous block key as input
and returns new key in four steps. Initially, it runs the previous block key (or the user
key if it runs on the first block) in a permutation function. The output of this function
is run on exclusive OR function with the user key. Then the output of the exclusive OR
function is processed on hash function SHA-256 that returns 256 bit key. The last step
trims the key into 128 bit key and uses it as a key to the AES function.

A month later, Pendli et al [1] proposed to use parallel computing to enhance the
execution time of AES algorithm on multiple cores processors. They used Open which is
an API for parallelization based on fork and join technique. The number of blocks to be
encrypted or decrypted is divided by 2 and each n/2 block is processed on a different core.
The implementation results showed reduction in time. This reduction started with 38%
for small files size and the percentage increased up to 45% for large files. At the end, they
concluded that it is possible to use the multi-core processors for parallel implementation
of AES algorithm and similar algorithms.

In July 2016, Altigani et al [15] tested the performance of the National Institute for
Standards and Technology (NIST) AES operation modes: ECB, CBC, CFB, OFB and
CTR using textual data as 100 characters for small data, 1000 characters for medium
data, and 10000 characters for large data. The results set CFB as best mode with small
input data, but with large and medium data CTR was the best one. On the other hand,
ECB was the worst mode when using small and medium data with huge difference than
others, but in large data it was the second best mode.

In August 2017, S.M.H.Alwahbani and H.T.Elshoush [16] proposed a chaos based au-
dio steganography and cryptography method. It is a higher Least Significant Bit (LSB)
layers algorithm in which the secret message is encrypted first by one-time pad algorithm,
then hid using steganography. Two chaotic sequences of Piecewise Linear Chaotic Map
(PWLCM) were used. In the encryption process, the key for one-time pad is generated by
PWLCM chaotic map. In the steganography process, the second sequence of PWLCM is
used to generate a random sequence. Indices of the ordered generated sequence were used
to embed the encrypted message in randomly selected audio samples. The encrypted data
were embedded on the higher layers other than the LSB using efficient bits adjustment al-
gorithm, in order to increase the robustness against noise addition or MPEG compression.
The use of chaotic map for generating the keys gave their method more strenght.

In the same year 2017, Ahmed et al [17] suggested two approaches to speed up Serpent.
The two approaches’ main feature is to encrypt/decrypt 512 bit input with 256 bit S-Box

A Novel Approach to Improve the Performance of Serpent Algorithm 53

and 256 bit round key with just more dividing and mixing functions. Their main problem
is in the 256 bit S-box which needs more time and hence did not succeed in speed test.

In March 2018, Elkamchouchi et al [18] used chaotic mapping and cycling group in-
stead of S-box to improve Serpent’s speed. They reduced the number of rounds to 10, and
hence making Serpent faster than normal and even AES. On the other hands, in secu-
rity verifications, chaotic map adds more strength to the algorithm by adding additional
complexity to the key.

2018, Shah et all [19] reduce the number of rounds to 22 and use 4 ∗ 4 S-box. Their
improved Serpent achieves 31% faster than normal but pays the cost on security.

Depends on these proposed modifications parallel execution and hardware implementa-
tion were the solution for speeding up Serpent algorithm, but hardware implementation
adds limitation to the Serpent because its need additional device, so parallel execution
become better but it decrease the security of the algorithm, this problem can be resolved
by block key generation that has many ways to generate key for every block, the best way
was chaotic map that used in image encryption because its faster and secure, so the good
solution for enhancing Serpent algorithm is running it in parallel mode and generate key
for every block using chaotic map.

3. Proposed Key Generation Methods. Hereby, the following sections explain two
proposed key generation methods. Our proposed method was tested using the two pro-
posals and a comparison of the time execution was performed.

Algorithm 1: Lorenz 96 Key Generator

Input: key: encryption key in array of 32 bytes
blockno: Number of blocks > 1

Output: (byte)keylist: Convert Integer array to Byte array
1 x← (int)key /* Convert byte array to Integer array */

2 keylist← newarray[blockno]
3 N ← length(key)
4 keylist[0]← (x[1]− x[N − 2]) ∗ x[N − 1]− x[0] + 8
5 keylist[1]← (x[2]− x[N − 1]) ∗ x[0]− x[1] + 8
6 keylist[N − 1]← (x[0]− x[N − 3]) ∗ x[N − 2]− x[N − 1] + 8
7 for i = 2 to N-1 do
8 keylist[i]← (x[i + 1]− x[i− 2]) ∗ x[i− 1]− x[i] + 8

9 output← (byte)keylist /* Convert Integer array to Byte array */

10 return output

3.1. Generating Encryption Keys using Lorenz 96 Chaotic Map. The first algo-
rithm of chaotic maps was proposed in 1989 by Robert and Matthews by investigating
Logistic map based on one-dimensional non-linear iterative function. Since then, many
chaotic encryption algorithms were proposed that can be classified into five types [20][21]:

1. Pure position scrambling.
2. Open loop based chaotic synchronization stream cipher.
3. Chaotic self-synchronization stream cipher whose ciphertext is fed back into encryp-

tion process.
4. Chaotic self-synchronization stream cipher whose ciphertext is fed back into chaotic

system.

54 H.T. Elshoush et al.

5. Position scrambling combined with chaotic synchronization stream cipher or chaotic
self-synchronization stream cipher.

Because of speed and low memory, chaotic maps were used in various areas such as
random key generation. Hence, Lorenz 96 chaotic map is used to generate the block key
by using the previous block key (or the user key if it ran on the first block) as input and
convert it to an array of 32 bytes to generate new array of 32 bytes which will be the key
of the next block as in algorithm 1 [22][23][24].

It uses multiple pseudo numbers based on multiple numbers as input by utilizing the
simple mathematical functions explained hereby [25]:

Result[i] = (input[i + 1]− input[i− 2]) ∗ input[i− 1]− input[i] + 8

Algorithm 2: Proposed Block Key Generation (BKG)

Input: key: Encryption key = 256 bits
blockno: Number of blocks > 1

Output: keylist: an array of keys
1 Function BKG(key, blockno):
2 keylist← newarray[blockno]
3 currkey ← key
4 for i = 0 to blockno do
5 currkey ← permutation(currkey)
6 currkey ← currkey ⊕ key
7 keylist[i]← SHA256(currkey)

8 return keylist

3.2. Generating Encryption Keys using BKG. Block key generation (BKG) algo-
rithm is proposed by Singh et al [14] that generates key for each block in three steps as
shown in figure 3 and algorithm 2. Its operation is elucidated hereby:

1. the previous block key (or the user key if it runs on the first block) will be run in a
Permutation function,

2. the output of the Permutation function will be passed to an exclusive OR function
with the user key.

3. the output of exclusive OR function will be processed on the hash function SHA-256
that returns a 256 bit key which will be used for one block.

This algorithm will be compared with Lorenz 96 BKG that is part of the proposed
algorithm to evaluate the better performance.

4. The Proposed Method. The proposed method tries to enhance Serpent algorithm
by taking the advantage of ECB mode where every block encryption/decryption runs
independently, i.e. to take the advantage of parallel computing which is used by Pendli
et al [1] to enhance the AES performance.

A mode of operation describes how to repeatedly apply a cipher’s single-block encryp-
tion/decryption to securely encrypt/decrypt amounts of data larger than an input block
size (e.g. 128 bit in Serpent). ECB was the first proposed mode where the encryption of
each block is independent and the output of any block does not affect the output of the
other blocks. This makes ECB a faster mode with the ability of encrypting/decrypting
multiple blocks at the same time but it does not hide data patterns. Thus, it does not
provide cryptographic diffusion [14][27].

A Novel Approach to Improve the Performance of Serpent Algorithm 55

Figure 3. Remodeled BKG Algorithm from [14]

Figure 4. Flow chart for the proposed method

Furthermore, the proposed method uses Lorenz 96, which is one of chaotic algorithms,
to generate 256 bit key for each block using single 256 bit user key as input to resolve the
data pattern problem in ECB. The steps are depicted in figure 4 and algorithm 3.

The decryption is similar to the encryption process by calling the Serpent decryption
function with the reverse order of the keys.

The proposed method has the following main steps:

4.1. Reading input data. In this step, the method starts with reading the user key and
the input data that needs encryption or decryption from the user. The size of this key
must be 256 bit (Serpent key size), if it is less than 256 bit then the method adds 0’s to
complete the length. Otherwise, if the length is more than 256 bit, the system uses the
first 256 bit as key.

56 H.T. Elshoush et al.

Algorithm 3: Proposed Method Algorithm

Input: key: Encryption key
txt : Input data to be encrypted
LorenzOrBKG: key generation is either through ”Lorenz” or ”BKG”

1 if length(key) 6= 256 then
2 setsize(key, 256) /* Add 0’s if less than 256 or get first 256 */

3 blocks← split(txt, 128) /* split input data into array of 128 bit block */

4 if length(blocks) > 1 then
5 if Lorenz then
6 keylist← Lorenz(key, length(blocks)) /* call Lorenz algorithm */

7 else
8 BKG(key , blockno) /* call BKG algorithm */

9 for i = 0 to length(blocks) do
10 encblock[i]← SerpentEnc(blocks[i], keylist[i])

11 encdata ← combine(encblock)

12 else
13 encdata← SerpentEnc(blocks[0], key)

4.2. Splitting the data. Then the proposed method split the input data into fixed-
length blocks depending on the encryption/decryption function block size. Here, the
length of every block is 128 bit (Serpent block size). If the size of the last block is less
than 128 bit, the method adds 0’s to complete the length.

4.3. Lorenz 96 key Generation. In this step, the method checks if the number of
blocks that is generated from the input data is one block, then there is no need for key
generation algorithm to generate more keys and the method skips this step. Otherwise,
the method uses Lorenz 96 chaotic map to generate encryption keys.

4.4. Parallel Serpent. Next, Serpent algorithm is run to encrypt/decrypt each block
independently with its own key. This is done by distributing the blocks of encryp-
tion/decryption process in the available processors to get advantage of parallel computing.

4.5. Uniting the blocks. In the last step of the proposed method, after all encryp-
tion/decryption processes are complete, the method combines the encrypted/decrypted
blocks into a single output data.

5. Experimental Results and Analysis. The implementation results are reported in
this section. It contains comparisons between the execution time of

• sequential and parallel implementation for Serpent block cipher,
• Serpent using BKG and the proposed method Serpent using Lorenz 96 BKG in

sequential and parallel implementations.

Serpent, Serpent using BKG, and Serpent using Lorenz 96 BKG were implemented in
Windows 7 Ultimate Service Pack 1 OS with 4.00 GB RAM using JAVA programming
language with JDK version 1.8.0 and JAVA Heap 1 GB. For parallelization, ForkjoinPool
framework was used.

A Novel Approach to Improve the Performance of Serpent Algorithm 57

5.1. Sequential Execution Results. Table 1 and figure 5 show the sequential execution
results. There is no significant execution time difference between Serpent using Lorenz
96 BKG and Serpent. Actually, the execution of Serpent using BKG needs more time
than both Serpent with Lorenz 96 BKG or traditional Serpent, which indicates that the
proposed method, Serpent with Lorenz 96 BKG, has achieved less execution time than
Serpent using BKG.

Figure 5. Execution Time for Serpent, Serpent using BKG and Serpent
using Lorenz 96 BKG in Sequential Mode

Table 1 Execution Time (in msec) of Serpent, Serpent using BKG and Proposed

Method,

Blocks
Sequential Implementation Parallel Implementation

Classical
Serpent

Serpent
using
BKG

Serpent
using
Lorenz 96

Classical
Serpent

Serpent
using
BKG

Serpent
using
Lorenz 96

1 0.7 0.7 0.7 0.7 0.7 0.7
10 15 31 16 15 47 31
50 46 78 46 47 78 46
100 62 94 62 62 94 62
500 140 234 156 140 219 125
1000 218 327 234 203 297 187
25000 3728 4197 3728 1919 2418 1934
50000 7394 8099 7332 3479 4326 3546
100000 14612 15827 14690 6911 8256 6936
250000 36870 39302 36948 16950 19793 18159
500000 73565 78013 74564 34023 36125 34414
1000000 149007 158610 148949 67448 80215 69890
1500000 200391 237823 223996 102556 120050 102499
2000000 297730 318203 297207 133559 159743 139229
2097152 312787 333166 313888 147325 153504 148565

58 H.T. Elshoush et al.

5.2. Parallel Execution Results. Parallel execution results are shown in figure 6 and
the last three columns of table 1. The Serpent using Lorenz 96 necessitated more time than
classical Serpent because of the block key generation using Lorenz 96 chaotic map. But
Serpent using BKG required more time than both traditional Serpent and the proposed
method. This shows generating the keys using Lorenz 96 chaotic map had less execution
time than BKG for the Serpent algorithm in addition to the more added security.

According to the above results, parallel execution is better than sequential execution,
specifically if the number of blocks is greater than 1000 blocks, otherwise the difference
becomes in the range of 10 msec which does not have a big effect. Specifically, the
reduction rate for bigger number of blocks is in the range of 48.1 - 53.2%.

Figure 6. Execution Time for Serpent, Serpent using BKG and Serpent
using Lorenz 96 BKG in Parallel Mode

5.3. Sequential versus Parallel Execution Results. Comparisons between sequential
and parallel execution are presented in figures 7, 8 and 9. Figure 7 shows the execution of
Serpent in sequential and parallel modes. Whilst 8 presents the execution of Serpent using
BKG in sequential and parallel modes. Finally, the execution of Serpent using Lorenz 96
BKG in sequential and parallel modes is illustrated in figure 9.

All three graphs show that the parallel execution time is less than the sequential when
the number of blocks is large. On the other hand, if the number of blocks is less than
1000 blocks, the difference in execution time is insignificant.

5.4. Serpent versus Serpent using Lorenz 96 BKG Execution. The comparison
between Serpent in sequential and parallel modes and Serpent using Lorenz 96 chaotic-
based BKG in parallel mode is illustrated in figure 10.

The execution time of sequential mode of Serpent using secure operation mode such
as CBC and others is very high compared to Serpent using Lorenz 96 BKG or Serpent
in parallel mode. Although the difference in execution time between Serpent in parallel
mode and Serpent with Lorenz 96 chaotic-based BKG is not significant, the generation of
the block keys using Lorenz 96 chaotic map provides the needed security in ECB mode.

5.5. Brute Force Attack. The results of the brute force attack is illustrated in table
2, which is expressed by the number of probability of breaking the key. It is clear that
the number of possibilities for breaking the key is large for the novel enhanced Serpent
using Lorenz 96 BKG algorithm compared to the traditional Serpent. Actually, it could
be calculated as follows:

A Novel Approach to Improve the Performance of Serpent Algorithm 59

Figure 7. Execution Time for Serpent Algorithm in Sequential and Par-
allel Modes

Figure 8. Execution Time for Serpent using BKG in Sequential and Par-
allel Modes

Figure 9. Execution Time for Serpent using Lorenze BKG in Sequential
and Parallel Modes

n × 2256 where n is the block number

60 H.T. Elshoush et al.

Figure 10. Execution Time for Parallel Serpent, Sequential Serpent and
Serpent using Lorenz 96 BKG in Parallel Mode

Table 2 Comparison of Key Space Between Serpent and Serpent using
BKG and Serpent using Lorenz 96 BKG based on Brute Force Attack

Number of Serpent Serpent using Serpent using
blocks BKG Lorenz 96 BKG

1 2256 1×2256 1×2256

10 2256 10×2256 10×2256

50 2256 50×2256 50×2256

100 2256 100×2256 100×2256

500 2256 500×2256 500×2256

1000 2256 1000×2256 1000×2256

25 000 2256 25 000×2256 25 000×2256

50 000 2256 50 000×2256 50 000×2256

100 000 2256 100 000×2256 100 000×2256

250 000 2256 250 000×2256 250 000×2256

500 000 2256 500 000×2256 500 000×2256

1000 000 2256 1000 000×2256 1000 000×2256

1 500 000 2256 1 500 000×2256 1 500 000×2256

2 000 000 2256 2 000 000×2256 2 000 000×2256

2 097 152 2256 2 097 152×2256 2 097 152×2256

Table 2 shows that the key space of Serpent using BKG and Serpent using Lorenz
96 BKG is the same which is very large compared to that key space of the traditional
Serpent algorithm. This means a stronger key and hence higher security which proves the
efficiency of the proposed algorithm, as its strength depends on the large key space, thus
making the brute force attack more difficult.

6. Comparison with State-of-the-Art. The proposed Serpent with Lorenz 96 key
generation is further compared with reference to the reduction in execution time with the
works of Pendli et al [1] and Rahmah et al [28]. Blatantly, as demonstrated in table 3, it is
clear that the proposed Serpent with 96 key generation prevails existing enhanced Serpent

schemes by achieving a reduction rate of 48.1 - 53.2% whilst [1] attained a reduction of
40 - 45% and [28] a 20.6 - 23.8% reduction in execution time.

Table 3 Comparison of the Time Execution Reduction Rate in % for
different Serpent Enhanced Schemes

Reference Time Execution
Reduction rate in %

Proposed Method 48.1 - 53.2%
Pendli et al [1] 2016 40 - 45%

Rahmah et al [28] 2020 20.6 - 23.8%

7. Conclusion. A novel approach enhancing the performance and security of the Serpent
algorithm is proposed. The Serpent is run in parallel mode and a key is generated for every
block using Lorenz 96 chaotic map. Based on the experimental results, it is concluded that
the parallel implementation of Serpent is an appropriate method when the performance
is the main concern. Moreover, adding Lorenz 96 BKG to Serpent algorithm with EBC
mode is an excellent option when high security and performance is needed.

The experimental results got the maximum execution time for the Serpent with BKG
and Serpent with Lorenz 96 BKG because of the need for generating block keys. This can
be solved by generating all keys before encryption. To reduce this time, it becomes a good
idea to start parallel encryption after generating the first key. Furthermore, it is better to
use sequential mode like CBC mode for a few number of blocks. Moreover, the proposed
method was compared with existing enhanced Serpent schemes and proved its efficacy
in reducing the execution time by 53.2%. Thus, the results proved the effectiveness of
the proposed novel approach and the Serpent’s performance and security are significantly
improved.

As a future work, we recommend to test the proposed method using CTR instead of
EBC cipher mode.

REFERENCES.

[1] Pendli, Vandan and Pathuri, Mokshitha and Yandrathi, Subhakar and Razaque, Ab-
dul, Improving performance of Advanced Encryption Standard algorithm, Mobile and
Secure Services (MobiSecServ), 2016 Second International Conference on, 1–5, IEEE,
2016.

[2] Rijmen, Vincent and Daemen, Joan, Advanced encryption standard, Proceedings of
Federal Information Processing Standards Publications, National Institute of Stan-
dards and Technology, 19–22, 2001.

[3] Izevbizua, Peter OdionData Security in the Cloud , using Serpent Encryption and
Distributed Steganography, European Scientific Journal, ESJ, 11(18), 2015.

[4] Anderson, Ross and Biham, Eli and Knudsen, Lars, Serpent: A candidate block cipher
for the Advanced Encryption Standard, Página oficial do SERPENT, dispońıvel em
http://www. cl. cam. ac. uk/˜ rja14/serpent. html, 2005.

[5] Tayel, Mazhar and Dawood, George and Shawky, Hamed. A Proposed Serpent-
Elliptic Hybrid Cryptosystem For Multimedia Protection. 2018 International Con-
ference on Advances in Computing, Communications and Informatics (ICACCI),
387–391,IEEE (2018).

A Novel Approach to Improve the Performance of Serpent Algorithm 61

[6] Simha S., Prathibha and Prof. Priya, Hari, Enhancing Cloud Security with the Im-
plementation of Serpent Encryption Algorithm, Imperial Journal of Interdisciplinary
Research, 3(5), 2017.

[7] Mohammadreza Naeemabadi, Behnam Sadeghi Ordoubadi, Alireza Mehri Dehnavi
and Kambiz Bahaadinbeigy. Comparison of Serpent, Twofish and Rijndael encryption
algorithms in teleophthalmology system. Advances in Natural and Applied Sciences,
9(4) April 2015, Pages: 137-149. 2015.

[8] Nagendra, M and Sekhar, M Chandra, Performance improvement of Advanced En-
cryption Algorithm using parallel computation, International Journal of Software En-
gineering and Its Applications, 8(2), 287–296, 2014.

[9] Osvik, Dag Arne, Speeding up Serpent, AES Candidate Conference, 317–329, Citeseer,
2000.

[10] Najafi, B and Sadeghian, B and Zamani, M Saheb and Valizadeh, A, High speed
implementation of Serpent algorithm, Microelectronics, 2004. ICM 2004 Proceedings.
The 16th International Conference on, 718–721, IEEE, 2004.

[11] Fouda, JS Armand Eyebe and Effa, J Yves and Sabat, Samrat L and Ali, Maaruf,
A Fast Chaotic Block Cipher for Image Encryption, Communications in Nonlinear
Science and Numerical Simulation, 19(3), 578–588, Elsevier, 2014.

[12] Taher, Mai Hossam and El Deen, Ali E Taki and Abo-Elsoud, Mohy E, Hardware Im-
plementation of The Serpent Block Cipher Using FPGA Technology, Journal Impact
Factor, 5(10), 34–44, 2014.

[13] Ali, Yossra Hussain and Ressan, Haider Aabdali, Image Encryption Using Block
Cipher Based Serpent Algorithm, Engineering and Technology Journal, 34 (2 Part
(B) Scientific), 278–286, University of Technology, 2016.

[14] Singh, Harpreet and Singh, Paramvir, Enhancing AES using Novel Block Key Gen-
eration Algorithm and Key Dependent S-boxes, Cyber-Security and Digital Forensics,
30, 2016.

[15] Altigani, Abdelrahman and Abdelmagid, Muawia and Barry, Bazara, Analyzing the
Performance of the Advanced Encryption Standard Block Cipher Modes of Operation:
Highlighting the National Institute of Standards and Technology Recommendations,
Indian Journal of Science and Technology, 9(28), 2016.

[16] Alwahbani, Samah MH and Elshoush, Huwaida TI, Chaos-based Audio Steganogra-
phy and Cryptography Using LSB Method and One-Time Pad, Proceedings of SAI
Intelligent Systems Conference, 755–768,Springer, 2016.

[17] Prof. Kadhim, Alaa F. and Hassin, Semaa and Ali, Gada and Ahmed, Israa, New Ap-
proach for Serpent Block Cipher Algorithm Based on Multi Techniques, Iraqi Journal
of Information Technology, 7(3),1–13, Iraqi Association of Information, 2017.

[18] Elkamchouchi, Hassan M and Takieldeen, Ali E and Shawky, Mahmoud A, A Modified
Serpent Based Algorithm for Image Encryption, National Radio Science Conference
(NRSC), 2018 35th, 239–248, IEEE, 2018.

[19] Shah, Tariq and ul Haq, Tanveer and Farooq, Ghazanfar, Serpent Algorithm: An
Improvement by 4× 4 S-Box from Finite Chain Ring, 2018 International Conference
on Applied and Engineering Mathematics (ICAEM), 1–6, IEEE, 2018.

[20] Matthews, Robert, On the Derivation of a ”Chaotic” Encryption Algorithm, Cryp-
tologia, 13(1),29–42,Taylor & Francis, 1989.

[21] Lin, Zhuosheng and Wang, Guangyi and Wang, Xiaoyuan and Yu, Simin and Lü,
Jinhu, Security Performance Analysis of a Chaotic Stream Cipher, Nonlinear Dy-
namics, 1–15, Springer, 2018.

[22] Audhkhasi, Kartik, Chaos Based Cryptography, CiteSeerX Scientific Literature Dig-
ital Library and Search Engine, 2009.

H.T. Elshoush et al.62

[23] Kocarev, Ljupco, Chaos-based Cryptography: A Brief Overview, IEEE Circuits and
Systems Magazine, 1(3),6–21, IEEE, 2001.

[24] Xiao, Di and Liao, Xiaofeng and Deng, Shaojiang, One-way Hash Function Con-
struction Based on the Chaotic Map with Changeable-parameter, Chaos, Solitons &
Fractals, 24(1), 65–71, Elsevier, 2005.

[25] Lorenz, Edward N, Predictability: A problem partly solved, Proc. Seminar on pre-
dictability, 1(1), 1996.

[26] Elshoush HT, Al-Tayeb BM, Obeid KT. 2021. Enhanced Serpent algorithm using
Lorenz 96 Chaos-based block key generation and parallel computing for RGB image
encryption. PeerJ Comput. Sci. 7:e812 http://doi.org/10.7717/peerj-cs.812

[27] Diedon Bujari and Erke Aribas. Comparative Analysis of Block Cipher Modes
of Operation. International Advanced Researches & Engineering Congress, 2017
http://iarec.osmaniye.edu.tr/. Osmaniye/TURKEY 16-18 November 2017.

[28] Hassan Rahmah Zagi , Abeer Tariq Maolood, A Novel Serpent Algorithm Improve-
ment by the Key Schedule Increase Security, Tikrit Journal of Pure Science.

A Novel Approach to Improve the Performance of Serpent Algorithm 63

