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Abstract. There are introduced two new steganalytic methods not depending on the sta-
tistics of the cover objects, namely side attacks stegosystems. The first one assumes that
the plaintext, encrypted before embedding, is partly known by the attacker. In this case,
the stegosystems detection is based on the calculation of mutual information between mes-
sage and extracted encrypted data. For this calculation, a notion of the k-nearest neighbor
distance is applied. The second method is applied to HUGO, one of the most efficient
steganographic algorithms. In this case the stegosystems detection is based on a verifica-
tion of the NIST tests to the extracted encrypted messages. Moreover, we show that the
problem to find a submatrix of the embedding matrix determining a trellis code structure
in the HUGO algorithm provides a search of the stegokey by the proposed method.
Keywords: Stegosystem, mutual information, entropy, relative entropy, encryption,
decryption, NIST tests

1. Introduction. Steganalysis (SGA) is an important part of steganography (SG) that
is in its turn a technology to hide some confidential information into innocent (at a single
glance) cover object (CO). CO can be presented as digital motionless and video images,
files containing digital audio signals (like speech and music) and so on. The main goal of
SG (Information Hiding (IH) in a wider sense) is to provide such transform of CO into
SG that a detection of SG against CO is either at all impossibly or it entails a very hard
procedure even for the case of completely known embedding and extraction algorithms
of messages, except perhaps of the stegokey. (Here, the Kerckhoff’s principle is extended
from cryptography to steganography.)
There is a great collection of well-known steganographic algorithms and many of them

were described in an excellent monograph [1]. For simplicity reasons, we will consider here
only motionless gray scale images, although our methods can be applied also to video or
audio CO.
It is obvious that SGA is a very important part of IH due to two main reasons.
Firstly, SGA should be taken into account during the design of any steganographic

algorithm because such algorithm is useless if it can be easily detected by some SGA.
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Secondly, SGA is very important to prevent a leakage of sensitive information outside
of some contour because otherwise it can be arranged by SG with innocent CO. (See for
the thing the well-known “Data Leakage Prevention (DLP) system” [2].)

An important aspect of SGA was stroked in a special chapter of the monograph [1],
and it is a subject of many scientific papers. But not all problems of SGA are already
solved. It is obvious that if stegokey is known or can be found easily [3, 4, 5] then an
attacker can be able to detect the SG presence after extraction of meaningful messages if
they were not previously encrypted by sufficiently strong cipher. We assume in our paper
(as it is common in the majority of scientific papers) that such previous encryption of
messages is used. We consider the attacks that execute some side information about SG
and, in particular do not use the statistics of CO for the detection procedure, a situation
that is atypical for conventional SGA.

In the next section such side information is known as messages before encryption and
may be embedded in CO. In section 3, we have side information as a fact that HUGO
algorithm could be used with very strong cipher for message encryption and maybe with
an unknown stegokey. Section 4 concludes the paper.

2. Detection of the stegosystem with partly known plaintext that was en-
crypted previous to embedding. In this section let us consider the following scenario:

1. Any stegosystem can be used for embedding but the steganalyst does not know
which one has been used.

2. The extraction algorithm is known or can be found by the steganalyst.
3. The message is encrypted before embedding in CO by a not very strong ciphering

procedure.
4. Part of the plain-text message is known by steganalyst.
We claim that under the conditions provided above, it is possible to create a general

stegoanalytic algorithm that can be executed for any stegosystem.
This scenario is comparatively uncommon, however information security is very impor-

tant even in rare situations. Even more, it is very common to consider in cryptography the
so called chosen-plaintext attack that tries to break semantic security. In steganography
this scenario assumes that the embedded message is encrypted by some block cipher and
that the message is known (even partly) but there remains an open problem: to decide
whether this message was embedded or not in a given testing object. It is important
to strike that we are not going to extract the embedded information because it can be
encrypted by cipher, but to detect only a fact of embedding.

In Figure 1, the Heye’s substitution-permutation cipher (SPC) [6] is presented, and
in Table 1 and 2, the S-box and the permutation mapping transforms are presented.
Although this cipher has 280 ≈ 1.2 × 1024 secret keys, hence a brute force attack by key
exhaustion is intractable, it can be easily broken, by linear or differential cryptanalysis.

However, sometimes in stegosystems sufficiently simple encryption algorithms can be
used. Moreover, we use as well some extension of substitution-permutation cipher with
block length 32. For this case, we extend the 16-bit cipher with addition of the second half
to the first one and keeping previous transforms in S-boxes. The Table 2 for permutation
mapping is changed to Table 3 shown below.
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Figure 1. SPC cipher with block length 16 and four rounds

Table 1. S-box transforms for all S-boxes (they are presented in hexadec-
imal system

Input 0 1 2 3 4 5 6 7 8 9 10(A) 11(B) 12(C) 13(D) 14(E) 15(F)
Output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Table 2. Permutation mappings for all cipher rounds

Input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Output 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

The inequality for mutual information between plaintext and ciphertext that should be
valid for any cryptosystem is well known [7, 8]:

I(MN , CN) ≥ H(MN)−H(KL) (1)

whereMN is a sequence of message symbols of the length N, CN is a sequence of ciphertext
symbols of length N (without loss of generality we may assume that these lengths are
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Table 3. Permutation mappings for 32-bit block length cipher for all rounds

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Output 1 5 9 13 17 21 25 29 2 6 10 14 18 22 26 30

Input 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Output 3 7 11 15 19 23 27 31 4 8 12 16 20 24 28 32

equal), and KL is the binary key string of the length L. We transform inequality (1) by
dividing both its sides by N :

I ′(MN , CN) ≥ H ′(MN)−H ′(KL) (2)

where the apostrophe ’ means that we consider normalized values by N :

I ′(MN , CN) ∼ H ′(MN) > 0 (3)

It follows from inequality (3) that if some message MN has been encrypted into the ci-
phertext CN with any unknown keyKL of the limited length L then for very large message
length N we get nonzero mutual information I ′(MN , CN). But this value approaches to
zero if MN is not encrypted as CN with some key. Hence, we can take a decision about
a choice of the message that is encrypted into the given ciphertext just by comparing the
value I ′(MN , CN) with some threshold.

But the following problem appears - how to calculate a mutual information I ′(MN , CN)?
A solution of this problem, based on “binning” design, is very hard, generally speaking,
but in [9], a method based on the notion of k-nearest neighbor distance was used. This
approach can be termed as fast mutual information calculation (FMIC) between two N -
dimension random vectors X and Y. It has been proved in [9] that FMIC can be performed
by the following algorithm:

I(X, Y ) = ψ(1)− ⟨ψ(nx + 1) + ψ(ny + 1)⟩+ ψ(N) (4)

where X = {x1, x2, ..xN} and Y = {y1, y2, ..yN} are vectors corresponding to MN and
CN , ψ is the digamma function,

∀x ∈ C : ψ(x) =
1

Γ(x)

dΓ

dx
(x)

ψ satisfies the recursion ψ(x+ 1) = ψ(x) + 1
x
and ψ(1) = C, where C = 0.5772156 is the

Euler-Mascheroni constant. For large x ∈ R+, ψ(x) ≈ log(x)− 1
2x
.

The value nx(i) is the number of points xj whose distance to xi is strictly less than
ε(i)/2 and, similarly for y instead of x. Here ε(i)/2 is the distance from zi = (xi, yi) to
its neighbor and εx(i)/2, εy(i)/2 are distances between the same points projected into the
X and Y subspaces. Obviously, ε(i) = max (εx(i), εy(i)). ⟨..⟩ is symbol that denotes an
averaging over all i ∈ {1, 2, .., N} and over all realizations of random samples. But in our

case, we average only on all samples of integers i ∈ [1, 2, .., N ], namely ⟨..⟩ = 1
N

∑N
k=0(. . .).

In order to implement the relation (4) to estimate the left side of inequality (3), we
map each of the plaintext blocks Mi = (mi1,mi2, ..min) into an integer Xi and each of
the ciphertext blocks Ci = (ci1, ci2, ..cin) into an integer Yi according to trivial relations,
respectively:

Xi =
n−1∑
j=0

xij2
j;Yi =

n−1∑
j=0

yij2
j, i = 1, 2, .., N (5)

where n is the block cipher length; xij, yij are binary symbols of the plaintext MN and
the ciphertext CN , respectively. (We assume of course that the block cipher is binary and
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that it has the same length of input and output blocks.) The experimental investigation
of the technique described above can be presented as follows.
There are produced two pseudo randomly generated binary sequencesMI andMII both

of length n · N , where n=16 is the cipher block length and N is the number of tested
blocks. One of these sequences, sayMI is encrypted by Heye’s block cipher that gives n.N
ciphertext bits. (It is worth to note that in the case of meaningful plaintext, the entropy
H ′(MN) in (2) can be lesser than for truly random binary sequence but it still is not zero.
Next, the mutual information I(MI , C) is calculated by (4) and (5), where the values
Xi are integers corresponding to MI and Yi are integers corresponding to C = f(MI , K),
where f(.) is the encryption function for Heye’s 16-bit block cipher with 80-bit key chosen
pseudo randomly. After that it is calculated also by (4) and (5) the mutual information
between ciphertext C obtained after encryption of plaintext MI and independent on it
another plaintext MII . The results of such calculations against the number of message
bits N are presented in Table 4.

Table 4. Mutual information between ciphertext and plaintext corre-
sponding and no corresponding to given ciphertext against the plaintext
bit length N

N 102 103 104 2× 104 4× 104 8× 104 3× 105 106

I ′(MI , C) 0.3 1.200 5.52 7.057 8.77 10.30 12.650 14.24
I ′(MII , C) −0.09 0.053 0.03 0.040 0.08 0.13 0.373 0.89

Within this table it can be seen that, in fact, the mutual information I ′(MI , C) for
valid plaintext MI encrypted into C increases with N and it approaches to a normalized
entropy of truly random binary string of length 16. The mutual information I ′(MII , C)
between ciphertext (obtained for plaintext MI) and the plaintext MII is close to 0. It
is sufficient to select some threshold in order to distinguish between valid and invalid
plaintexts for the already given ciphertext, for N ≥ 103.
In Table 5 there are presented the results of calculation for cross correlation R(M,C)

between sequence C and sequencesMI andMII showing that such criteria cannot be used
for a breaking the block cipher semantic security. (This is an obvious consequence of the
presence of nonlinear transforms in the algorithm of Heye’s block cipher contained into
its S-boxes.)

Table 5. Cross correlation between ciphertext C and plaintexts MI ,MII

against the plaintext bit length N

N 4× 104 8× 104 3× 105 106

R(MI , C) −0.00068 −0.038000 0.011 −0.000977
R(MII , C) −0.00190 −0.000556 0.003 −0.000160

Next, a block cipher is considered with the same structure as Heye’s cipher but with
block length 32 and with round keys consisting from 32 bit each. The S-box transforms
are shown in Table 1 and the permutation mapping is shown in Table 3. The experiment
with such “extended cipher” was arranged similarly as for ordinary cipher described before
with the only differences that two plaintext boxesMI andMII have the length 32 bits and
the same length has ciphertext C. The results of simulations are presented in Table 6.
We see from Table 6, that despite the fact that mutual information I ′(MI , C) grows

much slower with respect to N than the similar value for 16-bit block cipher (see Table 4),
it is still exceeding the value I ′(MII , C) when N ≥ 104. This means that after a choice
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Table 6. Mutual information between ciphertext and plaintext corre-
sponding and not given ciphertext against the plaintext bit length N for
block cipher of the length 32

N 103 104 2× 104 4× 104 8× 104 3× 105 106

I ′(MI , C) −0.065 0.025 0.0380 0.078 0.0830 0.3626 0.9760
I ′(MII , C) −0.030 −0.007 0.0025 −0.012 0.0055 0.0014 0.0017

of an appropriate threshold, it is possible to distinguish “valid” plaintext from “invalid”
one for a given ciphertext. Thus, the proposed approach can break semantic security of
at least for block ciphers with limited block length n ≤ 32.

Our experiments with DES block cipher having block length 64 bits showed that this
problem is unfortunately rather untractable, at least with the use of currently ordinary
personal computer.

Finally, we can conclude that if steganalyst knows a part of plaintext that is expected
to be embedded into some testing object and the length of plaintext/ciphertext are suffi-
ciently to calculate mutual information, then comparing this value with some threshold,
he/she be able to take a decision that the testing object belongs to SG, otherwise to CO.

It is worth to note that an opinion that part of plaintext knowledge is unrealistic seems
to be naive. (We remember that namely similar situation, but of course connected with
cryptography but not with steganography, was executed by US navy to break Japanese
“purple cipher” during the War at Pacific’.)

3. Detection of the HUGO stegosystem with side information about the fact
of encryption with any strong block cipher of the messages previous to em-
bedding. Let us make the following assumptions:

1. Any stegosystem can be used for embedding, but steganalyst does not know which
one has been used.

2. Extraction algorithm is known or can be found by steganalyst.
3. Message is encrypted before embedding in CO by strong cipher.
In contrast with the scenario described in previous section plaintext is not required.

Next in the section we show how this steganalityc method can be implemented.
A new stegoanalytic algorithm has been proposed in [10]. It was based on the side

information to which the messages are subjected, with encryption using a strong block
cipher previous to embedding. Such assumption is not very limiting because otherwise,
if the extraction stegoalgorithm is known for an attacker (or somewhat can be found)
it is easy to decide whether in a tested object occurs SG, if the extracted message is
meaningful (see Algorithm 16.2 in [1]), and it is CO if extracted message is meaningless.

If the extracted messages consist of ciphertext got by strong encryption, then it is very
likely to think that they are close to a perfect pseudo-random bit sequence satisfying the
so called NIST-Tests [11] listed in Table 7. Otherwise, if the extracted sequence does not
pass some of the NIST tests then it is assumed to be a cover object. (In fact, it is unlikely
that a clear CO satisfies all NIST tests.) In reality by selecting some threshold, it can be
assumed that if the number of NIST tests exceeds this threshold then the testing object
is SG, otherwise it is CO.

Similarly to an approach presented in [10] we are going to consider also a method of
SVM-based classification with the use of p-values as the results of NIST tests. But in con-
trast to [10], we consider one of the most advanced steganographic algorithm HUGO [12]
and include also a search of stego key for it.
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Table 7. Titles of NIST tests on pseudo randomness

N Title of test
1 The frequency test
2 Frequency test within a block
3 The runs test
4 Tests for the longest-run-of-ones in a block
5 The binary matrix rank test
6 The discrete Fourier transform (spectral) test
7 The non-overlapping template matching test
8 The overlapping template matching test
9 Maurer’s “Universal Statistical” test
10 The linear complexity test
11 The serial test
12 The approximate entropy test
13 The cumulative sums (cusums) test
14 The random excursion teat
15 The random excursions variant test

But firstly, let us remember the HUGO SG. The core idea of HUGO’s embedding
algorithm (in line with [12, 19]) is the following: for a given bit sequence m, intended to
be embedded into CO, and a given sequence of the least significant bits (LSB) x, find the
LSB sequence y after embedding, which satisfies the equation:

H · y = m (6)

with an additional condition to minimize the following value:

△ =
n∑

i=1

ρi | xi − yi | (7)

where ρi, i ∈ {1, . . . , n} is the given weight function; xi, yi, i ∈ {1, . . . , n} are the i-th
components of vectors x and y, respectively; n = n1 · n2, for n1 × n2 sizes of motionless
image taken as CO; and H is an n×N generator matrix of some trellis code.
The matrix H can be presented as a step-matrix obtained by consecutive shifting of a

t × w submatrix Ĥ. The weight function ρi can be calculated in line with SPAM-based
functionals described in [12]. It has been shown in [12] that the solution of (6) given
condition (7) can be obtained with the use of Viterbi Algorithm (VA) (in [13] there was
proved that Generalised Viterbi Algorithm (GVA) is optimal in the considered case).
In order to provide the best security of SG it is necessary to select the matrix H (namely

the submatrix Ĥ) giving a maximum of the error probability Pe =
1
2
(Pm + Pfa), as close

as possible to 1
2
where Pm is the probability of SG missing and Pfa is the probability of

SG false alarm.
But it is an expensive time-consuming method.
A very nice idea was proposed by C. Cachin in [14]. It is based on the notion of relative

entropy D(Pw//Pc) (or Kullbach-Leibler Divergence (KLD)). This criterion asserts that
for any steganalytic method the following inequality holds:

Pfa log(
Pfa

(1− Pm)
) + (1− Pfa) log(

(1− Pfa)

Pm

) ≤ D(Pw//Pc) (8)
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Figure 2. The picture “Underwater World” of the size 12992× 6080 pixels
before embedding.

where

D(Pw//Pc) =
∑
x∈X

Pw(x) log(
Pc(x)

Pw(x)
) (9)

Pw is the probability distribution after embedding, Pc is the probability distribution of
CO, and X is the set of image luminance.

But the problem is to calculate KLD even for such CO as motionless grey scale images.
Fortunately, it has been proposed in [15] a method for KLD calculation based on the

notion of the nearest neighbor distance (NND) for given samples of both SG and CO.
(Similar approach was presented in section 2.)

Let us assume that (x1, x2, .., xn) and (y1, y2, .., ym) are vectors of random samples with
the probability distributions P and Q, respectively. Then the distance from xi to the
“nearest neighbor” xj, j ̸= i, is:

ρi = min
j=1,n,j ̸=i

(∥ xi − xj ∥) (10)

where ∥ . ∥ is L2 norm in Rd. In a similar manner, the distance from xi to the “nearest
neighbor” yj, j ̸= i,

γi = min
j=1,m

(∥ xi − yj ∥) (11)

Then KLD can be estimated as:

Dn,m(P//Q) =
d

n

n∑
i=1

log(
γi
ρi
) + log(

m

n− 1
) (12)

It was proved in [15] that under some not very strong conditions, the following asymptotic
relation holds:

lim
n,m→∞

E(Dn,m(P//Q)) = D(P//Q) (13)

We note that in application to stegosystems the above procedure has to be specified to
be valid even for a single testing image [16].

Let us take only one image and divide it into disjoint (L×L)-pixel areas arranged as a
chess board, where white areas correspond to the set X (no embedding) and black areas
correspond to the set Y embedding by HUGO algorithm.

In Figure 2 the selected grey scale image of size 12992 × 6080 pixels is presented
for the experiment. The size of disjoint areas L was selected as 32. The results of
KLD calculations are presented in Table 8. For a comparison we calculated also KLD
for LSB-based embedding algorithm. We note that the parameter p for LSB-based SG
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Table 8. The results of KLD estimation based on NND for the image
“Underwater World” with different embedding rate R = p−1 for LSB and
R = 1

w
for HUGO

R 0 0.1 0.2 0.3 0.4
HUGO −0.07 7.52 22.46 48.13 83.48
LSB −0.07 32.16 85.22 143.89 199.70

means the probability of embedding into each pixel, whereas the 1-p is the probability
of no embedding (obviously, the SG owner has a stegokey and hence he/she knows in
which pixels were the embeddings). The HUGO algorithm provides the embedding rate
determined by its trellis code structure.
It can have seen from Table 8 that although the values of KLD are very large, hence

it is useless for a calculation of the steganalytic security by (8). However, the following
qualitative conclusions can be drawn:
- the grater is the embedding rate, the lesser is the SG security, and
- the HUGO SG is much more secure than the LSB-based SG.
These facts are well known in steganography but we are able to go further and inves-

tigate the best submatrix Ĥ, that provides the most secure HUGO SG. In fact, let us

examine how the structure of submatrix Ĥ affects on the SG HUGO detectability. We
use here an image size 512 x 512 just for simplicity.

Table 9 shows a dependence between structure of the 2 × 2 submatrix Ĥ and corre-
sponding to them KLD averaged on many images.

Table 9. The dependence between 2 × 2 submatrix Ĥ and the values KLD

Submatrix Ĥ

[
1 1
1 0

] [
1 0
0 1

] [
0 1
1 1

] [
1 1
0 1

] [
0 1
1 0

] [
1 0
1 1

]
D(X//Y ) 29.50 57.65 29.30 30.31 53.68 30.41

From this table it can be seen that the security of the HUGO-based SG depends on the

submatrix Ĥ structure. In the sequel we are going to confirm these results by the use of
a new steganalytic algorithm and execute it also for a stegokey search.

Let us consider firstly a scenario where a stegokey of HUGO-SG (that is a submatrix Ĥ)
is known exactly for an attacker. This means that he/she is able to extract the encrypted
messages if the testing object was SG. If the testing object was a CO, then we extract
also some sequences but we believe that they have more worse pseudo randomness than
for the case of SG for the number are passed NIST tests. Next it is possible to select
some thresholds and to take a decision that the testing object is SG if this threshold was
exceeded, otherwise that it is CO.
We selected for our experiment 1000 grey scale images of the size 512 x 512 pixels from

database used in [17]. In order to select optimal threshold were taken 500 both SG and
CO. For testing we used 500 other images with or without embedding.
In Table 10 are presented the values of error SG detecting probabilities Pe =

1
2
(Pm+Pfa)

for different submatrix Ĥ of HUGO SG and for optimally chosen thresholds. (For a save

of simplicity we denote each submatrix Ĥ by vector, where each integer is representation
of columns in binary form.)
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Table 10. The probabilities of error Pe of SG detection based on threshold

method for different submatrices Ĥ

Ĥ R D(X//Y) Pe based on Threshold method
1 [1 2] 1/2 57.65 0.291
2 [2 1] 1/2 53.68 0.318
3 [3 2] 1/2 30.41 0.335
4 [1 3] 1/2 30.31 0.336
5 [2 3] 1/2 29.30 0.354
6 [3 1] 1/2 29.50 0.351
7 [15 6] 1/2 28.63 0.367
8 [15 4] 1/2 25.22 0.368
9 [11 5] 1/2 23.82 0.376
10 [11 15] 1/2 22.33 0.388

We can see from Table 10 that the best submatrix

Ĥ =
[
11 15

]
=


1 1
1 1
0 1
1 1

 (14)

gives maximal value Pe = 0.388. This fact is very reasonable because it has the smallest
D(X//Y ).

In order to improve SG HUGO detecting was used SVM. Such approach has been
proposed before in the paper [16] but only against LSB-based SG. We will assume that
each of NIST tests is presented by its p-value (A small p-value is an indication that the
null hypothesis is false). The vector of p-values corresponding to all 15 NIST tests is used
both at the training and detecting stages of SVM. We apply the most effective version of
SVM known as nonlinear kernalized weighted one, where the kernel function is Gaussian:
K(x, x′) = exp(−γ ∥ x − x′ ∥2) with γ > 0 being a parameter controlling the kernel
width and ∥ x ∥ is the Euclidean norm of x. After an optimization of both γ and the
penalization coefficient C (similar to the same procedure considered more detail in [16])
we get the results presented in Table 11.

Table 11. The error probabilities Pe of SG detection based on an execution
of optimized procedure for SVM

Submatrix Ĥ [1 2] [2 1] [3 2] [1 3] [2 3] [3 1] [15 6] [15 4] [11 5] [11 15]
Pe 0.255 0.274 0.307 0.308 0.321 0.327 0.322 0.335 0.34 0.35

It can be seen from this table that the error detecting probability Pe occurs slightly
lesser than Pe after the procedure when using the threshold presented in Table 10, but

the optimal submatrix Ĥ is the same. It seems that the error detecting probability occurs
still sufficiently large in comparison with the best known cryptanalytic methods [17], but
nevertheless, such approach opens a new direction in a stegokey searching (we remember

that for HUGO-SG, a submatrix Ĥ plays the role of stegokey). Then we assume that

some submatrices Ĥ were used for HUGO embedding procedure but in the detection

procedure, the submatrix Ĥ is unknown.
Let us consider two classification procedures to recognize a stegokey. The first procedure

is based on a threshold technique with the use of NIST tests. This means that we use
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Table 12. The number of images that was classified by different subma-

trices Ĥ by threshold method given different embedding submatrices

Submatrices for extraction

[1 2] [2 1] [3 2] [1 3] [3 1] [2 3] CO

Submatrices
for

embedding

[1 2] 236 218 226 212 217 217 0
[2 1] 144 265 235 217 268 252 0
[3 2] 172 183 283 211 253 238 0
[1 3] 163 182 222 284 208 233 4
[3 1] 157 190 207 196 286 219 3
[2 3] 149 178 213 198 230 256 1
CO 130 154 164 166 184 182 136

Table 13. The error probabilities Pe of classification given different sub-
matrices and CO

H1=[1 2] H2=[2 1] H3=[3 2] H4=[1 3] H5=[3 1] H6= [2 3] CO
Pe 0.4165 0.419167 0.428167 0.416 0.440667 0.4675 0.365333

one by one all different submatrices for extraction and we take a decision about those

submatrix Ĥ providing the greatest number of images passing all NIST tests.
In Table 12 are presented the results of stegokey searching after testing of 500 different

images.
We note that a decision about CO instead of some SG was taken if the number of

passed tests was less than 13. The probabilities of error (a falsification of submatrices)
are presented in Table 13. From Table 13 it can be seen that Pe is sufficiently large. In
order to make a submatrix recognition more reliable we try to improve the results using
multi-class SVM for submatrix recognition. In line with proposal in [17], we execute the
so-called Max-Wins algorithm considered in [18]. We explain this idea briefly for the case
with 6 submatrices plus one (the 7th class corresponds to CO). The number of pair-wise
combinations taken from 7 outcomes

(
7
2

)
= 21. Each pair out of 21 can be classified by 2

classes SVM as usually. A possible result of such classification is presented in Table 14.

Table 14. Example of pair-wise recognition for 7 classes

Results for binary classifiers

Pair 1-
2

1-
3

1-
4

1-
5

1-
6

1-
7

2-
3

2-
4

2-
5

2-
6

2-
7

3-
4

3-
5

3-
6

3-
7

4-
5

4-
6

4-
7

5-
6

5-
7

6-
7

Classified
result

2 3 4 1 6 1 2 2 5 2 2 3 5 3 3 5 4 7 6 5 7

After a perform of the first step (see above) it is necessary to arrange a “voting proce-
dure”. Namely, to count how many times is presented every element in Table 14. Finally,
we take a decision about class with maximal vote. The results of the last procedure are
presented in Table 15.
(It is obvious that the above presented algorithm can be extended for any number of

classes.) Following to “Max-Wins” procedure we realized multi-class recognition for 6
submatrices and plus CO presented in Table 16.
It can be seen from this table that results of submatrix recognition for Max-Wins

method are better than for the case of threshold procedure (See Table 12.)
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Table 15. Results of “voting” on the Table 14. The maximal element is
shown by hatching

Class 1 2 3 4 5 6 7

Classified quantity 2 5 4 2 4 2 2

Table 16. The number of images that were classified by SVM following
Max-Wins recognition for different embedding and extracted submatrices

Submatrices for extraction

[1 2] [2 1] [3 2] [1 3] [3 1] [2 3] CO

Submatrices
for

embedding

[1 2] 257 30 44 56 39 72 2
[2 1] 107 147 63 69 25 89 0
[3 2] 82 49 141 79 60 85 4
[1 3] 96 43 55 187 43 70 6
[3 1] 86 49 70 72 132 80 11
[2 3] 89 53 56 72 52 176 2
CO 70 31 43 66 49 80 161

To be more precisely we present in Table 17 the results of such recognition error prob-
abilities Pe for different embedding submatrices.

Table 17. The values of error probabilities Pe for submatrix recognition

H1=[1 2] H2=[2 1] H3=[3 2] H4=[1 3] H5=[3 1] H6= [2 3] CO
Pe 0.331333 0.3955 0.414167 0.382 0.412667 0.403333 0.343167

Comparing Table 13 and 17 we can see that SVM-based method is slightly better than
threshold-based approach.

Although the size of submatrix was chosen as 2 x 2, it is not a problem to extend
it to more sizes of such submatrices. (But it worth to note that very large sizes for
HUGO-based SG result in a growing of the embedding complexity.)

4. Conclusions. A very common situation arises when encryption of messages is per-
formed before embedding them into cover objects. We have considered two scenarios that
are very natural under this condition and can be termed as side attacks on stegosystem
because they work only under message encryption and known (or easily found) extraction
algorithm. For the first scenario it is assumed that the embedded message is at least
partially known for a steganalyst, but it is unknown whether this message was embedded
or not into given cover object. Detection algorithm based on fast calculation of mutual
information was investigated in the current paper. Such attack is typical for cryptography
as known plaintext attack but although on that context it is used to find the cryptographic
key, in stegography it is required to prove a fact of embedding the given message into given
encrypted text. We show that this problem can be solved but not for very strong block
ciphers having large block lengths. Justification of the last condition may be a fact that
in steganography often not very strong ciphers can be used in a hope that messages are
hidden already by steganographic algorithm.

By the way, similar condition was taken in the paper [23] but it executed there by
completely another way.

The second scenario apply on the contrary to sufficiently strong cipher with unknown
messages but known (or computable) stegokey. If total search of stegokey is tructable
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problem then it be also found by our approach. As an example, we considered search of
submatrix for HUGO stegosystem that plays there the role of stegokey.
We considered the use of GOST algorithm for encrypted messages but our approach

can be easily extended to any strong cipher like 3DES or AES.
In the near future we aim to investigate an approach with a modification of strong

ciphers to such ones that keeping a good protection against cipher breaking but simulta-
neously does not satisfy to NIST tests on pseudo randomness that allows to protect SG
against the proposed attack.
We are going also to try our universal approach as method of SGA for more contem-

porary SG [20, 21, 22].
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