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Abstract. In this modern era there is rapid increase in use of internet to exchange
sensitive information. However, communication via the internet is unsecure and unre-
alible. Due to these factors, data hiding techniques has been proposed to increase the
confidentiality and security of sensitive information. Moreover, Crandall[14] introduced
Code Based Steganography, which merges steganography with coding theory. It imple-
mented matrix encoding using linear codes to increase the visual quality of stego image
by preserving high embedding capacity. Molaei et al[3] proposed a steganography scheme
which implemented Reed Muller codes and modulus function in attempt to increase em-
bedding capacity. These fault tolerant schemes have ability to recover secret messages
from attacks using error detection and correction. However, existing schemes have low
embedding capacity (150%) and low PSNR value (48dB). To overcome this problem, this
paper proposed a multiple embedding method that aims to re-embed secrets bits on the
same LSBs of the selected pixels based on a secret key. The experiments results shows
that the proposed method achieved higher embedding capacity (450%) three times more
than Molaei’s method. The proposed method obtained a higher PSNR value of 51dB and
higher error correction capability.

Keywords: Data hiding, Reed Muller codes, Secret Sharing, Re-embedding, Em-
bedding Capacity

1. Introduction. In this modern era the protection of digital data for confidentiality
has increasingly emerged as a major concern and top priority. Data hiding is therefore a
method of facilitating covert communication in the form of concealing information in a
host media called a cover and then being able to extract the message from the cover[6].
The secret data that are applicable include text, images, videos and audio and so as is
the cover media. There are two main types of data hiding techniques used for protecting
sensitive data from unauthorised access and or tampering these are Watermarking and
Steganography[8].

In Watermarking, the hidden or embedded data has a relation with the host or cover
media. In Steganography the concealed secret data (e.g text, image etc) and the cover
media (e.g text, image, audio, video etc) have no relation, the secret data hidden in
stego image is required to be undetectable. Coding Theory is responsible for recovering
messages sent via a noisy channel. It extends the message by adding redundant bits which
enables error detection and correction[10]. Currently in Steganography, Coding theory
serves a major part. Its main objective is to recover hidden messages from the attacked
stego images.
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A good steganography scheme consist of three characteristics: high embedding capac-
ity, high embedding efficiency and security[19]. The embedding capacity describes the
size of hidden secret message that can be transmitted. Embedding efficiency refers to the
visual quality of the scheme and less image distortions are more secure because it does
not raise any suspicion to adversaries. Highly secure and robust steganographic schemes
have ability to resist against attacks. Current code based steganography scheme proposed
by Molaei[3] have low embedding capacity (150%) and low embedding efficiency of PSNR
value of 48dB. This is due to the adopted LSB embedding method of higher order signif-
icant bits of the cover pixels. The proposed encoder with code rate of 1

2
, extended the

secret data by 2. The number of cover pixels to be embedded is increased by 2 also and
because of that, the image quality reduces significantly. Therefore an introduction of data
hiding techniques that improves the embedding capacity and at the same time assuring
invisibility of embedded data are preferable.

This paper proposes a high capacity data hiding mechanism for gray scale images that
maintains the invisibility of embedded data. It is based on multiple embedding of secret
data into few randomly selected pixels to solve the low embedding capacity problem.
The proposed method randomly selects a maximum of 3

4
of the cover image pixels for

multiple embedding to guarantee a highly imperceptible stego image. The secret data is
encoded using Reed Muller error correction codes before embedding process to increase
the robustness of the scheme.

A cryptographically secure pseudo-random number generator(CSPRNG) called Blum
Blum shub [13] was adopted to randomly select cover pixel to be embedded. The seed
used to initialize the CSPRNG and the number of embedding cycles was communicated
between sender and receiver using a (2,2) secret sharing scheme[16]. This increases the
security of the hidden data. The senders’ secret share is encoded with Reed Muller codes
before embedding into the stego image to increase its resistance against attacks. Further-
more, the Modulus function proposed in [5] and LSB embedding were adopted during
embedding process to ensure good visual quality stego images. Experiment results shows
that proposed method benefits the scheme by preventing burst errors which are common
in existing methods. The proposed method provides high PSNR, high embedding capac-
ity (450%) and significant error correction capabilities. The error correction capability of
the proposed scheme increases as the size of the secret image increases.

2. Reed Muller Codes. In this section the Reed Muller error correction codes are
discussed. In Coding theory, error correction codes is a function that expresses numbers
in a sequence such that error detection and correction is performed based on the remaining
numbers after introduction of errors[15]. There are two categories of Error correction codes
and these are Block and Convolution codes. Block codes encodes a message block of k
bits to generate N fixed output data bits, where N ≥ k. In this proposed method, a linear
block code called Reed Muller codes are employed because of their simplicity in encoding
messages and decoding received data.

Definition 2.1. Based on [15], m and r are two positive integers and 0 ≤ r ≤ m. An rth-
order Reed-Muller code, RM(r, m) has a message size, k, a code length, N and minimum
distance, dmin, where

k =
r∑

i=0

(
m

i

)
(1)

N = 2m (2)
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dmin = 2m−r (3)

and the notation is written as: [
2m, k, 2m−r]− code

The Reed Muller code can correct a maximum number of errors t given by

t =

⌊
2m−r − 1

2

⌋
(4)

The choice of m and r values determines the message size of k of the Encoder, the block
size of N , minimum distance of the code and these have impact on the error correction
capability of the code.

For example, given m = 4 and r = 1, then k = 5, N = 16, dmin = 8 and t = 3.

2.1. Construction of Reed Muller Codes. There are several ways that can be used
to construct Reed Muller codes. In this study we define Reed Muller codes recursively. To
define Reed Muller codes inductively, let the 0th order, RM(0, m) defined by two vectors
0,1 over Galois field, FN

2 that are repetition codes[4]. For 0 ≤ r ≤ m, the rth order
Reed-Muller code R(r,m) is defined recursively by

RM(r,m) = (u, u+ v) : u ∈ RM(r,m− 1), v ∈ RM(r − 1,m− 1) (5)

where u and v represent the code words of the previously constructed codes. For
example, if r = 1 and m = 2 i.e RM(1,2), the (u, u+ v) construction results in:
u ∈ RM(1,1) and v ∈ RM(0,1). Note that RM(1,1) = 00 01 10 11 and u0 = 00, u1 = 01,
u2 = 10, u3 = 11. Also note that RM(0,1) = 00 11 and v0 = 00, v1 = 11. Therefore
the resulting code of RM(1,2) is:

RM(1, 2) =

{
0000 0100 1000 1100
0011 0111 1011 1111

}
2.2. Encoding Reed Muller Codes. This section describes how a binary message is
encoded using Reed Muller Encoder. Firstly, determine the dimensions of the Generator
matrix Gr,m of an rth-order Reed Muller code RM(r, m) with block length of 2m. The
Generator matrix of RM(r, m) is expressed in [4] as follows:

Gr,m =

[
Gr,m−1 Gr,m−1

0 Gr−1,m−1

]
(6)

where G0,m is a vector of length 2m with all ones and Gm,m is an identity matrix I2m .
To encode a message, u ∈ F k

2 , a binary multiplication of the message and the Generator
matrix is performed to form a code word, c ∈ FN

2 using equation (7) in [4]:

c = u ∗Gr,m (7)

For example, assuming a message u = (u0, u1, u2, u3, u4) = (10101) is encoded using
RM(1,4), the Generator Matrix G1,4 is calculated using equation (6)

G1,4 =

[
G1,3 G1,3

0 G0,3

]
=


0000000011111111
0000111100001111
0011001100110011
0101010101010101
1111111111111111


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The code word c = (c1, c1, ..., c15, c16) ∈ RM(1, 4) is then calculated using equation (7):

(c1, c1, ..., c15, c16) = [u4, u3, u2, u1, u0] ∗


0000000011111111
0000111100001111
0011001100110011
0101010101010101
1111111111111111



c = u ∗Gr,m = [10100] ∗


0000000011111111
0000111100001111
0011001100110011
0101010101010101
1111111111111111

 = [0000111001101011]

2.3. Decoding Reed Muller Codes. There are different techniques used for decoding
Reed-Muller codes, the most common and easily implementable is majority logic decoding.
The decoding process converts a code word c to message u. The process consist of 2 steps
which are majority logic decoding and converting c to u, these steps are described in [17]
as follows:

1. Majority decoding: This process is responsible for error correcting of the received
vector[17]. To perform majority decoding, first consider the code word, c formed
from encoding an input message, u = (u0, u1, ..., uk−1) represented in [17] as:

c = (c0, c1, ..., cN−1) = u0v0 +
∑

1≤i1≤m

ui1vi1 +
∑

1≤i1≤i2≤m

ui1ui1vi1vi1

+...+
∑

1≤i1≤i2≤...≤ir≤m

ui1,i2,...,irvi1vi1 , ..., vir
(8)

if x = (x0, x1, ..., xN−1) is the received vector, then there are r + 1 stages of the
decoding process. For 1 ≤ i1 ≤ i2 ≤ ... ≤ ir−l ≤ m where 0 ≤ l ≤ r, the following
index set described in [17], is formed as:

S = {ai1−12i1−1 + ai2−12
i2−1 + ...air−l−12

ir−l−1 : aij−1 ∈ 0, 1for1 ≤ j ≤ r − l} (9)

S is a set of 2r−l non negative integers that are less than 2m. Assuming E is a set of
integers 0, 1, ...,m− 1 not in i1 − 1, i2 − 1, ..., ir−l − 1 , such that

E = {0, 1, ...,m− 1}\{i1 − 1, i2 − 1, ir−l − 1} = {j1, j2, ..., jm−r+l} (10)

where 0 ≤ j1 ≤ j2 ≤ ... ≤ jm−r+l ≤ m−1. Then a set of integers Sc in [17] is formed
as

Sc = {dj12j1 + dj22
j2 + ...djm−r+l−12

jm−r+l : djt ∈ 0, 1for1 ≤ t ≤ m− r + l} (11)

And then the set of indices, B is formed for each q ∈ Sc such that:

B = q + S = {q + s : s ∈ S} (12)
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Then the following equation, (14) will determine the decision equations in l-th de-
coding stage:

A(l) =
∑
t∈B

x
(l)
t (13)

Relation (13) consist of 2m−r+l equations at each stage and follows a binary ad-
dition rule. The input message ui1i2...ir−l

is decoded as u∗i1i2...ir−l
= 0 if the decision

equations results in zero. And it is decoded as u∗i1i2...ir−l
= 1 if the decision equations

results in one. When decoding process has finished l stages, a modified received
vector is formed as follows:

x(l) = x(l−1) −
∑

1≤i1≤...≤ir−l+1≤m

u∗i1,i2,...,ir−l+1
vi1vi1 , ..., vir−l+1

(14)

x(l−1) is the modified received vector in the l-th stage of decoding process and
x(0) = x. Then proceed to the next stage and repeat the above process until the end
of the r + 1 stage to decode all received bits.

2. Converting r′ to u: In this process, the modified received code word is converted to
message vector. The following equation is used to determine the message vector:

u = r′ ∗GT
r,m (15)

The following example illustrate the decoding process. From equation (8) a code word
can be expressed in terms as (9) in [17]:

(c1, c1, ..., c15, c16) = (u0, u1 + u0, u2 + u0, u2 + u1 + u0, u3 + u0, u3 + u1 + u0, u3 + u2 +
u0, u3 +u2 +u1 +u0, u4 +u0, u4 +u1 +u0, u4 +u2 +u0, u4 +u2 +u1 +u0, u4 +u3 +u0, u4 +
u3 + u1 + u0, u4 + u3 + u2 + u0, u4 + u3 + u2 + u1 + u0).

Using equation (11) in [10] to decide a set of indices of u and equation (12) to decide
a set of indices of c for each corresponding u. Then the check sums for u1, u2, u3 and u4
are created using (14):
u1 = c1 + c2 = c3 + c4 = c5 + c6 = c7 + c8 = c9 + c10 = c11 + c12 = c13 + c14 = c15 + c16

u2 = c1 + c3 = c2 + c4 = c5 + c7 = c6 + c8 = c9 + c11 = c10 + c12 = c13 + c15 = c14 + c16
u3 = c1 + c5 = c2 + c6 = c3 + c7 = c4 + c8 = c9 + c13 = c10 + c14 = c11 + c15 = c12 + c16
u4 = c1 + c9 = c2 + c10 = c3 + c11 = c4 + c12 = c5 + c13 = c6 + c14 = c7 + c15 = c8 + c16

So if the received code word is: [1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1], then the check
sums for u1, u2, u3 and u4 calculated using equation (15) are
u1 : {0, 1, 0, 0, 1, 0, 1, 0}, u2 : {0, 1, 1, 1, 0, 1, 0, 1}, u3 : {0, 0, 1, 0, 0, 0, 0, 0}, u4 : {0, 1, 0, 1, 0, 1, 1, 1}

Considering the majority of each u1, u2, u3 and u4, we conclude that u1 = 0, u2 = 1, u3 = 0
and u4 = 1. To determine u0, use equation (15) to calculate the modified received vector:

x = [1110110010111011]− [10100] ∗


0000000011111111
0000111100001111
0011001100110011
0101010101010101
1111111111111111


= [1110110010111011]− [0011001111001100] = [1101111101110111]

Using value of x, we decide that u0 = 1. The corrected vector cc is calculated as:
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cc = [0011001111001100]− [1111111111111111] = [1100110000110011]

The equation (15) is used to decode the code word cc, to form the message vector uu:

uu = r ∗GT
1,4

= [0000111001101011] ∗


10000
...

11001
...

11111

 = [10101]

3. Molaei’s Method. In this section, Molaei’s method is described. It consist of two
phases: Embedding and Extraction Phase. The Embedding phase conceals a secret mes-
sage into a cover image to form a stego image while the Extraction phase retrieve the secret
message from the stego image. Molaei’s method implements coding theory concepts, mod-
ulus function and steganography to improve embedding capacity and robustness against
different kinds of noise attacks[3]. However, this method has low embedding efficiency
(PSNR) and embedding capacity because it embeds secret data into the first and second
LSBs of all pixels of the cover. It implements the LSB embedding using modulus function
described in section (3.1).

3.1. Modulus Function. A steganographic technique to increase the visual quality of
the stego image using modulus functions was proposed by Thien and Lin [5]. A modulus
function is defined as c = a mod b, where a is the dividend, b is the divisor, and c is
the remainder. For example, 5 mod 4 equals 1, that is, the division of 5 by 4 leaves a
remainder of 1. Let x be a pixel used to hide data in the cover, z be the decimal value of
the block/unit bits in the range 0 to 2n− 1. The embedding process of modulus function
is employed to hide zi unit in the ith pixel of cover xi. The difference ddi between the two
values is computed using the following equation in [5]:

ddi = zi − (xi mod 2n). (16)

where n is the index of the low order bit of each pixel to be embedded. From ddi the
minimum variance is determined using the following equations in [5]:

ddi
′ =


ddi if −

⌊
2n−1
2

⌋
≤ ddi ≤

⌈
2n−1
2

⌉
ddi + 2n if −2n + 1 ≤ ddi ≤ −

⌊
2n−1
2

⌋
ddi − 2n if

⌈
2n−1
2

⌉
≤ ddi ≤ 2n

 (17)

However, the value of dd′i can exceed the range 0 to 255, so equation (18) in [5] is used
determine the final pixel value xi after embedding as follows:

x′i =


xi + ddi

′ if 0 ≤ xi + ddi
′ ≤ 255

xi + ddi
′ + 2n if xi + ddi

′ ≤ 0

xi + ddi
′ − 2n if xi + ddi

′ ≥ 255

 (18)
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The extraction of the embedded data from the n order bits is done using the following
equation in [5]:

zi = x′i mod 2n (19)

3.2. Overview of Embedding phase. The embedding phase is responsible for hiding
secret data into cover media. It hides a secret binary data SD in a gray-scale cover image
C of height H and width W and generates a stego image C ′. The block diagram of the
embedding process is shown in Fig 1.

Figure 1. Embedding process of Molaei’s Method

The embedding process is done using the following process:

1. Dividing the pixels of I: The secret data is divided into blocks that will enable
easy encoding of the secret data. The first B bits are divided into nb0 blocks b =
(b0, b1, ..., bk0−1) of equal sizes equal to k0, where 1 ≤ B ≤ H x W

2
, k0 is the message

block size of the RM(1,3) code computed using equation (1). The number of blocks
nb0 to be embedded into first LSBs is calculated using equation (20):

nb0 =

⌈
B

k0

⌉
(20)

Considering SD > B, the remaining (SD − B) bits are also divided into nb1
blocks bb = (bb0, bb1, ..., bbk1−1) of sizes k1, where 1 ≤ (SD − B) ≤ H x W

4
, and k1

is the message block size of RM(2,5) computed using equation (1). The number of
blocks nb1 is calculated using equation (21):

nb1 =

⌈
(SD −B)

k1

⌉
(21)

2. Encoding the secret blocks: The blocks b and/or bb are encoded to enable error
detection and correction to be performed from attacked stego images. Consider
all nb0 blocks, encode each block b using RM(1,3) code to form code word c =
(c0, c1, ..., cN0−1) of size N0, where N0 is block size of RM(1,3) code calculated using
equation (2). Consider all nb1 blocks, encode each block bb using RM(2,5) codes
to form code word cc = (cc0, cc1, ..., ccN1−1) of size N1, where N1 is block size of
RM(2,5) code calculated using equation (2).

3. LSB embedding using Modulus Function: In this process the encoded secret
blocks are hidden or embedded into the pixels of the cover image. The two sequence
of code words c and cc are embedded into the first and second LSB of each cover
pixel respectively. For each block of nb0 blocks, consider the decimal value of each
ci to be embedded into each pi and calculate the difference value ddi using equation
(16) where n = 1. Determine dd′i using equation (17). The modified pixel value ppi
is calculated by equation (18).

4. Repeating procedure 3 to embed the nb1 blocks of cc into sequence of modified pixel
blocks pp where n = 2. The output of the embedding process are modified pixel
values pp′ which forms the stego image C ′.



Improving Data Hiding Capacity in Code Based Steganography 21

The equations (16), (17) and (18) were implemented to reduce the difference be-
tween the original pixel values and modified pixel values. This increases the visual
quality of the stego. The embedding process only hides secret data in both first and
second LSBs of the cover.

3.2.1. Determining the Embedding Capacity of Molaei’s Method. The max-
imum size of secret data Dmax that can be embedded is calculated using equation
(22) in [3]:

Dmax =
n∑

i=0

⌊
H ∗W

2m
i

⌋
∗ ki (22)

where k is the message block size of RM(r, m) encoder and n is the number of
LSBs used for embedding. The embedding capacity EC is then determined using
equation (23):

P =
Dmax

H ∗W
(23)

3.3. Overview of Extraction phase. In this section the extraction process is discussed.
The extraction phase aims to retrieve the hidden data successfully. The secret data SD is
retrieved from the Stego image C ′. The block diagram of the extraction process is shown
in Fig 2.

Figure 2. Extraction process of Molaei’s Method

1. Modulus Function: The process aims to extract the secret encoded bits first.
Equation (19) is used to extract the decimal values zii of the secret data, for 1 ≤
ii ≤ H x W and n = 1. Each decimal value in zii is converted to binary to form a
sequence of extracted bits Ez.

2. Dividing extracted data into blocks: The extracted bits Ez is divided into
blocks of size equal to block size of the RM(r, m) Decoder. The first Fb bits of Ez
are divided into nc0 blocks c = (c0, c1, ..., cN0−1) of equal sizes equal to N0, where
1 ≤ Fb ≤ H x W , N0 is the block size of the RM(1,3) code. The number of blocks
nc0 is calculated as follows:

nc0 =

⌈
B

N0

⌉
(24)

3. Decoding the extracted blocks: The blocks are decoded to recover the secret
data. For all the nc0 blocks, each code word block c is decoded using RM(1,3)
decoder to form a secret block b = (b0, b1, ..., bk0−1).

4. Increase n to extract data in second LSB and repeat step (1) to (3) using 1 ≤ ii ≤
H x W

2
, number of blocks nc1 =

⌈
H x W
2∗N1

⌉
, where N1 is the block size of the RM(2,5)

code. Decode using RM(2,5) decoder as described in section (2.3).
5. Output: The output of the process is a sequence of bits from the Decoder which

represent the secret data.
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4. The Proposed Method. This section discusses about a steganographic technique
that offers high embedding capacity, high error correction capabilities and high visual
quality. The proposed method is discussed in detail. It consist of two main processes,
embedding process and extraction process. The proposed method introduced a PRNG
called Blum Blum Shub to generate random sequence of integers that represent pixel
positions of the Cover image. The secret message was embedded and extracted into and
from pixels on these positions orderly. The seed of the PRNG was communicated using
(2,2) Visual Cryptography scheme. The concepts of Blum Blum Shub and (2,2) Visual
Cryptography scheme are discussed in [13] and [16] respectively.

4.1. Overview of Embedding Process. In this section, the embedding process is de-
scribed. The process is responsible for embedding secret data securely. There are three
input images to this process, the cover image CI, agreed image A and secret image SI.
The Sender and Receiver agree on an image A before the embedding and extraction pro-
cesses begins. Fig 3 shows how a secret message is embedded into a cover using an agreed
image to generate Agreed and Stego image.

Figure 3. Embedding Process of Proposed Method

The secret image pixels are first decomposed into bits and are encoded with Reed Muller
error correction codes. First order Reed Muller RM (1, 4) codes have been introduced
because of their high Error Correction Capacity, efficiency and relatively easy to decode.
To increase the security of the secret data, a pseudorandom number generator (PRNG)
was introduced to randomly generate pixels to be embedded from the cover. If the seed
of the PRNG is not known then the hidden secret data cannot be extracted correctly.

The scheme implements LSB embedding using modulus function to embed the encoded
secret data into 3

4
of the cover image pixels. Only 3

4
of the cover image pixels were used

to increase the visual quality of the final Stego image. In other words, if the size
of the cover image is H * W , where H is the height and W is the width of
the cover image then the number of pixels used to embed the secret image
is 3

4
∗H ∗W . If the size of the encoded secret data exceeds 3

4
of the cover image pixels,

the data is re-embedded into the same randomly generated pixels using a key. The key
contains Seed and number of cycles. The Key is securely distributed to the receiver using
(2,2) VCS mentioned in [16]. This further increases the security of the embedded secret
data.

The following definition discusses how the embedding capacity is determined using the
proposed method.
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Definition 4.1. Given p pixels of a Cover image CI of height H and width W where
p ≤ 3

4
∗ H ∗W . If n secret bits are re-embedded into each LSB of the p pixels, then the

total secret bits ST that can be embedded into the cover image CI is:

ST = p . (n+ 1) (25)

and the Embedding Capacity EC expressed as a percentage is determined by

EC =
ST

H ∗W
=
p . (n+ 1)

H ∗W
(26)

For example, consider a Cover image of size H = 512 and W = 512. Assuming n =
5 secret bits are re-embedded on the LSBs of p = 3

4
* H * W = 3

4
* 512 * 512 = 196608

pixels. The total secret bits ST that can be embedded into the cover image is calculated
as:

ST = 196608 . (5 + 1) = 1179648 bits (27)

and the Embedding Capacity EC is calculated by

EC =
1179648

512 ∗ 512
= 450% (28)

The following sections describes each sub process of the embedding process in detail as
follows:

4.1.1. Encoding Process. In this process the encoding process is discussed. Reed Muller
encoder discussed in section(2.3) is responsible for encoding secret data before embedding
such that the secret data is recoverable using error correction if the stego image encounters
attacks. The encoding process consist of the following sub processes as shown on Fig 4.

Figure 4. Encoding Process

The secret image SI with height H0 and width W0 is decomposed into bits and encoded
by RM(1,4) Encoder to generate sequence of code words C using the following three sub-
processes:

1. Decomposing pixels into Constituent Bits : The pixel values of the secret image are
converted into bits because of the binary Reed Muller codes that has been introduced.
Each pixel of SI (si, 1 ≤ i ≤ H0 * W0) is converted to a byte. Each byte is
broken down into bits and the output of the process is a sequence of all bits sb =
(sb0, sb1, ...., sbY ) where Y = 8 * H0 * W0.

2. Dividing bits into blocks : The process divides secret bits into equal sized blocks as
required by the Encoder such that the encoding process is more efficient. The input
to the process is a sequence of secret bits sb and message length k2 of the RM(r1,m1)
encoder.

Definition 4.2. Let Y - k2, and the secret bits sb being divided into n blocks mb(q) =

(mb
(q)
0 ,mb

(q)
1 , ...,mb

(q)
k2−1) of length k2 where n =

⌈
Y
k2

⌉
and (1 ≤ q ≤ n).

The number of zero bits Zn to be added to the nth block are:

Zn = Y mod k2 (29)
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For example, consider secret bits sb = [1010111100110] are to be encoded by
RM(1,4) encoder. Using equation (1), the message length k2 = 5. The secret bits
size Y = 13. Therefore 13 - 5. The number of blocks n is calculated as follows:

n =

⌈
Y

k2

⌉
=

⌈
13

5

⌉
= 3

The number of zero bits Zn added to 3th block are determined by:

Zn = (3 ∗ 5)− 13 = 15− 13 = 2. (30)

Therefore the blocks to be encoded are : mb(1) = [10101], mb(2) = [11100] and
mb(3) = [11000]

3. RM (r1,m1) Encoding : The Encoder is responsible for converting the secret message
bits into code words which will enable error detection and error correction. The
input to the process at each instance is a block mb(q). For all n blocks, encode each
mb(q) using RM(r1,m1) error correction code using equation (7) to form codewords

cw(q) = (cw
(q)
1 , cw

(q)
2 , ..., cw

(q)
N2

) where N2 = 2m2 . Decompose the code words cw(q) into
constituent bits, for (1 ≤ q ≤ n). Therefore the output of the Encoder is a sequence
of bits, eb = eb0, eb1, ..., ebET

formed from decomposing all code words, where the
total encoded bits size ET after encoding process is: ET = 8∗H0∗W0∗N2

k2

4.1.2. Generating Key Trace. This segment discusses about how the Key Trace is gener-
ated. Key Trace are the sequence of bits generated from XORing the encoded bits and
the chosen Reference Key bit value. The main purpose of this process is to increase the
overall hiding capacity of the scheme by re-embedding secret bits on the pixels of the
cover image. Fig 5 shows how the Key Trace bits are generated.

Figure 5. Key Trace Generation

This process is executed if and only if the size of the encoded bits ET is greater than
3
4

* H1 * W1, where H1 and W1 are the height and width of the cover image I. The key
trace KT is generated from the encoded bits eb using the following 4 steps:

Step 1 . Inputting sequence of encoded bits eb and Reference Key. A reference key R is
any binary value of choice ie R ∈ 1, 0.
Step 2 . Determining how many bits are to be embedded into each pixel of the cover, called
number of cycles Nc defined as follows:

Theorem 4.1. Given the total number of encoded bits ET embedded on maximum capacity
of single LSB which is equal to 3

4
∗H1 ∗W1 (based on definition on page 12). The number
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of cycles Nc is:

Nc =
ET

3
4
∗H1 ∗W1

(31)

Proof. The number of cycles is a function of the total number of encoded bits ET . Since
the total number of encoded bits ET can be greater than the maximum capacity of single
LSB (3

4
∗ H1 ∗W1). This results in more than 1 bit to be re-embedded into each pixel.

Therefore, in the case ET ≥ (3
4
∗ H1 ∗W1), the number of cycles re-embedded into each

pixel Nc is a equal to the number of encoded bits ET divides by the maximum capacity
of single LSB which is equal to 3

4
∗H1 ∗W1. Thus it is proven that:

Nc =
ET

3
4
∗H1 ∗W1

Step 3 . Dividing the encoded bits eb into block with the length of dNce and the remainder
is divided into length of bNcc. The following theorem defines the number of pixels that
can be re-embedded with dNce bits h and he number of pixels that can be re-embedded
with bNcc bits h′.

Theorem 4.2. Suppose the number of secret bits eb and the number of cycles Nc is an
integer which cannot divide eb, in other words Nc - eb. Thus there are pixels which are
re-embedded with length dNce bits and others with bNcc bits. So the number of pixels that
can be re-embedded with dNce bits is:

h =
3 ∗H1 ∗W1 ∗ (Nc − bNcc)

4
(32)

and the number of pixels that can be re-embedded with bNcc bits is:

h′ =
3 ∗H1 ∗W1

4
− h (33)

Proof. From Theorem 4.1, each pixel from the (3
4
∗ H1 ∗ W1) of the cover pixels is re-

embedded with Nc cycles then it means that the number of bits that can be embedded is
(Nc∗ 3

4
∗H1∗W1). Since Nc may not be an integer i.e Nc /∈ Z, there is a set of pixels that is

re-embedded dNce times and another bNcc times. In case of db where the size is dNce then
the number of pixels re-embedded with dNce secret bits is equal to the difference between
Nc and the float of Nc multiplied by the maximum capacity of single LSB (3

4
∗H1 ∗W1).

In other words, the number of pixels that can be re-embedded with dNce bits is equal to:

h =
3 ∗H1 ∗W1 ∗ (Nc − bNcc)

4

The number of pixels that can be re-embedded with bNcc bits is the difference between
maximum capacity of single LSB and he number of pixels that can be re-embedded with
dNce bits h which is:

h′ =
3 ∗H1 ∗W1

4
− h



26 K. A Katandawa, A. M Barmawi

Step 4 . Considering each of the blocks db and db′ , the Key Trace block CK and Cover
embeddable bit E are determined using algorithm 1:

Algorithm 1: Generation of Key Trace block and Cover Embeddable Bit

Input: Blocks db or db′, Number of cycles Nc, Reference Key R
Output: KeyTrace block CK and Cover Embeddable bit E

1 t← NC

2 CKt−1 ← dbt ⊕R
3 while t > 0 do
4 if t == 1 then
5 E ← CKt ⊕ dbt
6 Append E to Em

7 else
8 CKt−1 ← dbt ⊕ CKt

9 t← t− 1

For each block of size n, the process creates a key Trace block of size n - 1. The output
are two sequences of bits,
a). Key Trace, KT which is a decomposition of all blocks CKi into constituent bits.

Definition 4.3. Let Nc be the number of cycles per pixel as defined in Theorem (4.1).
From Theorem 4.2, the total number of bits to be re-embedded on all pixels called Key
Trace KT is:

|KT | = (h. dNce) + (h′.Nc) (34)

b). And Em bits that are embedded into the cover image.

4.1.3. Generating random pixel positions. This segment discusses how the random pixel
positions are generated. The process uses, Blum Blum Shub, a cryptography pseudo
random number generator, PRNG described in [13] to generate random sequence of bits.
The bits are grouped into 18-bit block and converted to integers between 1 and H1 *
W1. The generated integers represent pixel positions on the cover image that are used for
embedding secret bits Em.

The secret bits are embedded according to the order of the sequence generated. If the
seed of the PRNG is not known then the embedded pixel positions are not known and
the secret message cannot be extracted correctly. This process was introduced to increase
the security of the embedded secret message. To generate a sequence of random pixel
positions, pp = pp1, pp2, ..., ppL, the function inputs
a). Seed
b). Length L of pp where,

L =


ET if 1 ≤ ET ≤ (3

4
∗H1 ∗W1)

| Em | if ET ≥ (3
4
∗H1 ∗W1)

 (35)

The output is a random sequence of integers values pp = (pp1, pp2, ..., ppL) where 1 ≤
ppi ≤ H1 ∗W1 . For example: 120132 145 9987 97 103110 125 14285 92 117 197 203210.

4.1.4. Embedding secret bits into Cover Image. This segment discusses how the secret bits
are embedded into the cover image. It is responsible for efficiently hiding the encoded
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secret bits on randomly generated Cover Image pixels.
The process require two inputs :
a). The sequence of embedding bits EB, where:

EB =


eb if 1 ≤ ET ≤ (3

4
∗H1 ∗W1)

Em if ET ≥ (3
4
∗H1 ∗W1)

 (36)

b). Sequence of randomly generated integers pp
LSB embedding using modulus function described in section (3.1) was used to embed

all bits of EB on Cover pixels of index pp. It is implemented because of its simplicity in
embedding and extraction. The embedding process is done as follows:

Step 1: Considering the decimal value of each bit in EB to be embedded on each pixel
pxi on index ppi.
Step 2: For each EBi and pxi with n = 1, calculating the difference value ddi using
equation (16). Determine dd′i using equation (17). And lastly, the modified pixel value
pp′i is calculated by equation (18).
Step 3: Performing the same procedure for 1 ≤ i ≤ L. The output of the embedding
process are modified pixel values pp′ which forms the stego image I ′.

4.1.5. Embedding Key Trace into Agreed Image. In this segment, a sequence of Key Trace
bits KT are embedded into the image A of height H2 and width W2. The image A
is a grayscale image that has been agreed upon between Sender and Receiver before
communication of the secret message. To embed KT the following process was performed:

1. Determining the number of LSBs nn to be embedded: The value of nn is calculated
as follows:

nn =
| KT |
H2 x W2

(37)

If nn is a not an integer, then there are two sets of block sizes,
(a) The first (dnne ∗H2 ∗W2) bits are divided into blocks w of size dnne, such that

w = (w1, w2, ..., wdnne) and
(b) The remaining |KT | − (dne ∗ H2 ∗W2) bits are divided into blocks w of size n,

such that w = (w1, w2, ..., wn) where n ≥ 1.
But if nn is an integer, then all KT bits are divided into blocks w of size nn, such

that wi = (w1, w2, ..., wnn).

2. Performing LSB embedding using Modulus function: To embed the Key trace bits
into the agreed image, the modulus function was applied to increase the visual qual-
ity of the resulting stego. The method reduces the difference between the original
and final pixel values using equations (16) and (17). To embed the all blocks w, the
following process was performed:

(a) Considering the decimal value z of each block in w to be embedded into each
pixel pa of image A. For the first ((nn−bnnc)∗H2 ∗W2) decimal values we have
n = dnne, calculate the difference value ddi using equation (16). Determine dd′i
using equation (17).The modified pixel value pa′i is calculated by equation (18).

(b) Performing the same procedure for the last ((H2 ∗W2)− (nn−bnnc) ∗H2 ∗W2)
decimal values where n = bnnc. The output of the embedding process are
modified pixel values pa′ which forms the stego image A′.
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4.1.6. Generating Shares from Secret Key. In this segment, the process is designed to
securely communicate the seed, number of cycles Nc and height H0 and width W0 of the
secret image. Fig 6 shows how the Key Trace bits are generated.

Figure 6. Share Generation

A Key in form of binary image is generated based on these 4 parameters. (2,2) visual
cryptography was later implemented on the Key to generate shares because of its low
complexity nature in encoding and decoding. The following generation of key and shares
is described as follows:

1. Generating Key: The function of this component is to create a secret key during
the embedding process to enable easy and successful extraction of the hidden secret
image, SI. The process require 3 input texts:
(a) Seed, SE: An integer that initialize the PRNG.
(b) Number of Cycles Nc: It is the result after dividing the Total encoded secret bits

by 3
4

of the cover image.
(c) Height H0 and Width W0 of the secret image

The output of the process is a binary image consisting of SE, Nc, H0 and W0.
The three input text are converted from text to binary image using the following
process:
(a) Concatenating SE, Nc, H0 and W0 separating each with a space character to

form, Txt. Such that, Txt = SE + Nc + H0 + W0.
(b) Representing each character in Txt by (0, 1)-matrix, Tg of dimensions m′ x n′

with 0s and 1s arranged to show the character Txtg visually, where 1 ≤ g ≤ |Txt|
, m′ = 16 and n′ = 14.

(c) Combining all Ti to form one binary matrix T ′ of size m′′ x n′′, where m′′ =
m′ ∗ |Txt| and n′′ = n′ ∗ |Txt|

The binary matrix T ′ is referred to as the Secret Key.

2. Generating Share: (2, 2) visual cryptography is implemented on T ′ as discussed in
[16] to increase the security of the secret key while requiring less computation time.
The input to the process is a binary matrix, T ′ of size mm x nn. The process perform
encryption of T’ as described in [16] to generate 2 random binary matrices, T ′1 and
T ′2 of sizes mm x 2nn, referred to as Share 1 S1 and Share 2S2 respectively. S1 is
distributed securely to the receiver while S2 is embedded into the stego image.

For example, assuming the seed SE = 262139, Number of cycles Nc = 0.01,
Height of secret image H0 = 10 and Width of secret image W0 = 6. The string
Txt = 262139 0.01 10 6, and the binary image T ′ is shown in Fig 7. (2,2) Visual
cryptography creates two shares S1 and S2 shown in Fig 8.
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Figure 7. Example of Key Generation

(a) Share 1 (b) Share 2

Figure 8. The generated Shares

4.1.7. Embedding Share 2 into Stego Image. In this segment, the embedding of Share 2
S2 is described. Firstly, S2 is encoded with RM(r1,m1) code to enable error correction
of error bits. The encoded S2 is embedded into Stego I ′ such that the correct receiver,
possessing S1, can extract S2, decode and be able to stack both shares to retrieve SE,
Nc, H0 and W0. The embedding of S2 to generate a new stego image is done by the
following process:

1. Inputting the Stego image I’, T ′2 and message length k2 of RM(r1,m1) encoder.
2. Dividing S2 into linear blocks of size k2: The binary matrix, T ′2 is decomposed to

single linear block of bits, T ′′2 = t′′1, t
′′
2, ...., t

′′
n′′∗2m′′ . Divide T ′′2 to nt blocks, tb =

(tb0, tb1, ..., tbk1−1) of size k1, where nt =
⌈
n′′∗2∗m′′

k1

⌉
.

3. Encoding each tb with RM(r1,m1) error correction code to form code words ct =
(ct1, ct2, ..., ctN1) where N1 = 2m1 .

4. Outputting is a sequence of bits CT of size ETT = n′′∗2∗m′′∗N1

k1
formed after decom-

posing all code words ct.
5. LSB embedding using modulus function: The method described in section (3.1) was

used to embed all bits of CT into Stego I ′ pixels. The embedding process is per-
formed as follows:

(a) Considering the decimal value of each bit in CT to be embedded into each pixel
pp′. For each CTf and pp′f with n = 1, calculate the difference value ddf using
equation (16). Determine dd′f using equation (17). The modified pixel value pp′′f
is calculated by equation (18).

(b) Performing the same procedure for 1 ≤ f ≤ ETT . The output of the embedding
process are modified pixel values pp′′ which forms the final stego image I ′′.

4.2. Overview of Extraction Phase. In this section the extraction process is discussed.
The process aim to retrieve the embedded secret message. It requires a stego image,
Share 1, share 2 and the Key Trace to successfully recover the secret message. Fig 9
shows how the extraction process is conducted. To begin the extraction process Share
1 is overlapped/stacked with Share 2 to construct the Key. Once the key is successfully
constructed the Seed and the number of cycles becomes visible i.e the stacked image
will show the seed and Number of Cycles. The pseudo random number generator with
the correct seed produces integers that represent positions on the stego to extract the
secret message using the key trace. Each of the sub processes of the extraction process is
discussed in detail as follows:

4.2.1. Generating Key. This segment discusses how the key image is regenerated using
(2,2) VCS. To extract a secret message successfully, a key should be reconstructed first
because it possesses the seed and number of cycles used in embedding process.To recon-
struct the key we overlap the extracted Share 2 and Share 1 S1 that the receiver already
possess. To extract S2 from input Stego image I ′′, the following process is performed:
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Figure 9. Extraction Process of Proposed Method

1. Extracting encoded Share 2: To extract S2 consider all stego pixels, sp = spq, spq+1, ..., spG
where q is the marker for starting point of embedded S2 and G =H1 ∗W1. Apply
equation (19) to every sp to form a sequence of integers sl = (sl1, sl2, ..., slE) where
n = 1 and E = (H1 ∗W1)− q and sli = 1 or 0.

2. Converting each sl element to binary to form a sequence of bits sl′ = (sl1, sl2, ..., slE∗8).
3. Dividing sequence st′ to nt′ blocks ct = (ct1, ct2, ..., ctN1) of length N1 where nt′ =

(H1∗W1)−q
N1

4. Decoding each block ct with RM(r1, m1) as shown in section (2.2) to form message
blocks tb′ = tb′1, tb

′
2, ..., tb

′
k1

.
5. Decomposing all message blocks tb′ to form a single linear block B.
6. Using dimensions of Share 1, n” x m”, create a binary matrix/image, S2 from se-

quence B.
If S2 and S1 are stacked and aligned correctly as described in [16], the Seed SE,
number of cycles N ′c, and dimensions of secret image, H ′0 x W ′

0 becomes visible.

4.2.2. Generating random pixels. The purpose of this function is to generate same integer
values as in embedding process. The generated integers represent the indices/positions
of the pixels embedded with secret bits. The seed S ′ initializes Blum Blum Shrub to
generate the random sequence of integers, pp = pp1, pp2, ..., ppL as discussed in [13].

4.2.3. LSB Extraction. The purpose of this component is to extract the encoded secret
bits that were embedded into less or equal to of the cover image. If the encoded bits
ET are greater than 3

4
∗ H1 ∗W1 then the extracted bits act as a reference to the other

bits embedded into that same pixel. But if ET are less or equal to 3
4
∗H1 ∗W1 then the

extracted bits represent the encoded bits E ′. The extraction of LSBs is done as follows:

1. Inputting the randomly generated pixel positions pp from stego image I ′′.
2. Retrieving the pixels px′ on indices pp in same order. Consider all stego pixels
ps′ = ps′1, ps

′
2, ..., ps

′
L. Extracting the hidden bits by applying equation (19) to every

px′ to form a sequence of integers eb = eb1, eb2, ..., ebL where n = 1 and ezi = 1 or 0.
3. Converting each eb′ to binary to form a sequence of bits eb′ = eb′1, eb

′
2, ..., eb

′
L

4.2.4. Key Trace Extraction. The purpose of this component is to extract bits that were
embedded into Agreed image A′. These bits are called the Key trace KT . This process is
executed if and only if ET ≥ (3

4
∗H1 ∗W1). In this section, a sequence of Key Trace bits

KT , is extracted from image A′ of size H2 x W2. To extract the KT bits the following
process was performed:
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1. Determining the block size value of ns by: ns = |KT |
H2xW2

. If ns is a not an integer,
then there are two sets of block sizes:

(a) Applying equation (19) to the first dnse pixels of A′, to retrieve a sequence of
integers w′ = w′1, w

′
2, ..., w

′
dnse where ns = dnse.

(b) if ((H2 ∗W2) − dnse) ≥ 1, apply equation (19) to the last ((H2 ∗W2) − dnse
pixels of A′, to retrieve a sequence of integers w′′ = w′′1 , w

′′
2 , ..., w

′′
((H2∗W2)−dne)

where ns = ns.
2. Appending sequence w′′ to w′ such that ww = w′′ + w′.
3. Converting all ww to binary to produce a combined sequence of bits wb = wb1, wb2, ..., wbET

called Key Trace KT .

4.2.5. Extraction process. In this component, the bits that were re-embedded on each
pixel are retrieved. This process is only executed if the secret message embedded was
greater than the 3

4
of the cover image. The process inputs Key Trace bits wb, the LSBs

extracted from the stego ez′ and reference key R. Extract the re-embedded bits as follows:

1. Dividing the Key Trace bits wb to h blocks kb = (kb1, kb2, ..., kbbNcc) and/or h′ blocks
kb′ = (kb′1, kb

′
2, ..., kb

′
Nc

), where h and h′ are defined in Theorem 4.2.
2. To each created block kb, inserting wbl on first index and R on last index of the block

such that kb = (wbl, kb1, kb2, ..., kbbNcc, R) and/or kb′ = (wbl, kb
′
1, kb

′
2, ..., kb

′
Nc
, R), for

1 ≤ l ≤ ET

3. Considering each of the blocks kb and kb′ , the sequence of encoded bit block Eb is
determined using algorithm 2:

Algorithm 2: Generation of Encoded bit block

Input: Blocks kb or kb′, dNce, Number of blocks h, h′

Output: sequence of Encoded bit blocks EB
1 EB ← [ ]
2 j ← 1
3 H ← h+ h′

4 for l← 1 to H do
5 while j < dNce do
6 ebblj ← kblj ⊕ kblj+1.

7 Append ebblj to EB

4. Outputting a sequence of bits EB formed after decomposing all message blocks ebb
to constituent bits. The sequence EB is similar to the encoded sequence bits.

4.2.6. Decoding process. In this process, the encoded bits are decoded. The decoder is re-
sponsible for performing error detection and correction to each of the input bits as stated
in section 2.2 .The inputs to this process are the encoded sequence bits EB, and block
length N1. The decoding process is performed as follows:

1. Determining if 1 ≤ ET ≤ (3
4
∗ H1 ∗ W1) then divide sequence EB to n′′ blocks

cw = (cw1, cw2, ..., cwN1) of length N1 where n′′ = (H1∗W1)−q
N1

.

2. Decoding each block of cw with RM(r1, m1) Decoder as shown is section (2.2) and
use equation (15) to form message blocks mb′ = mb′1,mb

′
2, ...,mb

′
k1

.
3. Outputting a sequence of decoded bits sb = (sb0, sb1, ..., sbY ) formed after decom-

posing all message blocks mb′ to constituent bits, such that Y = 8 ∗H0 ∗W0.
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4.2.7. Reconstructing Image. In this segment, the decoded bits are reconstructed to form
secret image SI. The process inputs the decoded bits sb and the secret image dimensions,
H0 x W0 from the generated Key to generate the secret image using the following process:

1. Dividing the sequences of bits sb to bytes i.e mb = mb1,mb2, ...,mb8.
2. Converting each bytemb to decimal to form a sequence of integer s′ = s′1, s

′
2, ..., s

′
H0 x W0

where (0 ≤ s′i ≤ 255).
3. From the sequence of integers s’, creating a H0 x W0 matrix that is the representation

of the secret image.

5. Security Model. In this section, the security model of the system is discussed. It
demonstrates how the information is exchanged between the sender and recipient. The
assumption in this model is that the Agreed image A′ is communicated earlier between the
sender and the receiver via a private/secure channel. The security model is divided into
3 phases, Registration, Authentication and Stego exchange and are discussed as follows .

1. Registration Phase: It is the first phase of the security model. The purpose of
this phase is to communicate S1 to receiver securely between Sender and Receiver.
The Sender generates two shares S1 and S1 from the Secret Key using (2, 2) VCS as
discussed in section (4.2). The Sender possesses S2 and transmit S1 to the Receiver
via a secure channel. Upon receiving S1, the Receiver sends back a confirmation
message ”RECEIVED”.

2. Authentication Phase: It is the second phase of the security model. In this phase,
communication is done via public channel. Its function is to verify the validity of
the Receiver. The Sender transfers S2 to the Receiver, and upon receiving S1, the
Receiver superimpose the two shares and extract the seed visually as discussed in
section (2.3.1). The extracted seed is hashed using SHA 512 algorithm to form H1.
The Receiver transmits H1 to Sender so that the validity of the Receiver is verified.
The Sender uses the same Hash algorithm (SHA 512) to hash the seed that he/she
possesses to form H2. Upon receiving H1, the Sender verifies if H1 and H2 are the
same. If the two hash values are equal then the Receiver is valid and if not then
he/she is not.

3. Stego exchange: It is the last phase of the security model. The purpose of this
phase is to communicate a Stego image between two users. It only occurs if and only
the Receiver has been authenticated in phase 2. It involves all the steps as described
in sections 4.5 and 4.6.

6. Experiments and Discussion. This section discusses the result of the experiments
that were conducted for evaluating the capacity, robustness and imperceptibility as well
as the analysis of results.

6.1. The Experiment result for Capacity Evaluation. The objective of the experi-
ment was to determine the embedding capacity of the cover images for both Molaei’s and
proposed methods. The experiment was conducted to 30 grayscale cover images of size
(512 x 512) of different histograms. Both methods were used to embed 20 grayscale secret
images of different sizes on each cover image. The embedding capacity EC is expressed
as percentage and is calculated using equation (38) in [12]:

EC =
|S|

H ∗W
(38)

where |S| is the number of secret bits embedded on a cover image of height H and width
W. Table 1 summaries the results of the experiment.
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6.2. The Experiment result for Imperceptibility Evaluation. The objective of the
experiment was to evaluate the visual quality of the stego images for both Molaei’s and
proposed methods.

Table 1. A Capacity Comparison between Proposed Method and Previous
method

Capacity (%) PSNR(dB)
Cover Image Secret Image

size(bits)
Molaei’s
Method

Proposed
Method

Molaei’s
Method

Proposed
Method

480 0.37 0.59 75.58 62.64
196608 150 240 48.13 52.09
368640 450 52.08
480 0.37 0.59 75.61 62.36
196608 150 240 48.12 52.03
368640 450 52.04
480 0.37 0.59 75.62 62.29
196608 150 240 48.10 52.02
368640 450 52.01

The experiment was conducted similarly to section 6.1. PSNR criterion was used to
evaluate the visual quality, and is calculated using equation (39) in [12]:

PSNR = 10log10
2552

MSE
(39)

where MSE refers to the difference between the pixel values of Cover and stego images.
It is calculated using equation (40) in [12]:

MSE =
1

H ∗W

H∑
i=1

W∑
j=1

(Iij − I ′ij)2 (40)

where Iij and I ′ij are the pixels values of cover and stego image respectively. The lower
the MSE value means the difference between the stego and cover is lower and as a result,
the higher the PSNR value which is more desirable in steganography. Table 1 summaries
the results of the experiment.

6.3. Experiment result for robustness against attacks. In this experiment a set of
20 different images were used as the cover images and another set of 20 different images as
secret images. Each cover image was embedded with 33 different sizes of each secret image.
The stego image formed at each experiment was subjected to noise, (Gaussian Noise, Salt
and Pepper Noise, and Speckle Noise), Cropping, Scratching(Single and Multiple), JPEG
compression. The experiment was performed to recover the hidden secret image from the
attacked stego image. The results of the experiments are shown in Table 2, 3, 4 and 5
respectively.
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Table 2. Experiment Result of robustness against noise attack

Proposed Method Molaei’s Method
Secret

Image and

Size

Stego

Image

Noise

Attacks

PSNR

Attacked

Stego(dB)

PSNR

Secret

Image(dB)

Recovered

Secret

Image

PSNR

Attacked

Stego(dB)

PSNR

Secret

Image(dB)

Recovered

Secret

Image

Gaussian:Mean

0 Variance

0.01

20.218 9.359 20.213 9.336

20 SaltnPepper:

Density

0.05

18.353 100 18.271 28.390

15360 Speckle:

variance

0.04

21.350 9.324 21.357 9.654

Gaussian:

Mean 0

Variance

0.1

11.453 17.176 11.354 9.276

11 SaltnPepper

: Density

0.5

8. 240 28.124 8. 216 11.505

196608 Speckle:

variance

0.4

11.912 17.690 11.620 9.842

Stego Gaussian:

Mean 0

Variance

0.1

11.454 100

11 SaltnPepper

: Density

0.5

8. 240 100

368640 Speckle:

variance

0.4

11.872 100
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Table 3. Experiment Result of robustness against cropping attack

Cropping Area Proposed Method Molaei’s Method
Secret

Image

Stego

Image

Secret Size

(bits)

Height

(pixel)

Width

(pixel)

PSNR

Secret

Image(dB)

Recovered

Secret

Image

PSNR

Secret

Image(dB)

Recovered

Secret

Image

196608 0 - 512 0 - 360 39.357 15.863

3
368640 0 - 512 0 - 360 100

196608 70 - 422 80 - 422 14.834 6.754

4
368640 70 - 422 80 - 422 100

196608 20 - 435 40 - 452 16.009 4.998

7
368640 20 - 435 40 - 452 100

Table 4. Experiment Result of robustness against scratching attack

Proposed Method Molaei’s Method
Secret Image Stego

Image

Secret Size

(bits)

Scratches PSNR Secret

Image(dB)

Recovered

Secret Image

PSNR Secret

Image(dB)

Recovered

Secret Image

131072 Multiple 15.256 6.850

1
196608 Single 59.571 20.482

131072 Multiple 20.957 3.478

2
196608 Single 100 18.243

131072 Multiple 17.717 3.390

4
196608 Single 100 21.543
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Table 5. Experiment Result of robustness against JPEG compression

Proposed Method Molaei’s Method
Secret

Image

Stego

Image

Secret Size

(bits)

PSNR

Attacked

Stego(dB)

PSNR

Secret

Image(dB)

Recovered

Secret

Image

PSNR

Attacked

Stego(dB)

PSNR

Secret

Image(dB)

Recovered

Secret

Image

92160 42.699 11.176 42.351 8.175

5
196608 42.696 15.382 42.340 8.157

92160 42.680 12.119 42.455 9.156

3
196608 42.675 17.831 42.465 9.108

92160 43.388 11.820 44.279 8.909

2
196608 43.391 18.565 44.598 8.779

Table 6. Experiment Result of Steganalysis

Molaei’s Method Proposed Method
Cover

Image

Secret Size

(bits)

True P

value

Estimated

P value

True P

value

Estimated

P value

15360 0.058594 0.053251 0.128125 0.10145
4

196608 0.75 0.47209 0.409375 0.395543

368640 0.405469 0.39146

15360 0.058594 0.053862 0.128125 0.10089

196608 0.75 0.4199 0.409375 0.392145

368640 0.405469 0.38146

15360 0.058594 0.052611 0.128125 0.09089

196608 0.75 0.4012 0.409375 0.38795

368640 0.405469 0.38001

6.4. Experiment Results for Steganalysis. In this experiment a set of 20 different
images were used as the cover images and another set of 20 different images as secret
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images. Each cover image was embedded with 33 different sizes of each secret image.
Each stego image formed at each experiment was subjected to steganalysis attacks to
detect and estimate the embedded secret message size. The proposed steganalysis method
(Triples) estimated the value of p (fraction of the secret message hidden in a given cover
image). The results of the experiment is shown in the Table 6.

7. Analysis of Experiment Results. In this section the analysis of experiment results
is done. Analysis is performed on Capacity, Imperceptibility, robustness and steganalysis.

7.1. Analysis of Capacity and Imperceptibility between proposed and Molaei’s
Methods. According to the experiment results of capacity obtained, Fig 10 shows that
for each secret message size the proposed method achieves a greater embedding capacity
than Molaei’s method. This occurred because of the error correction code and the multiple
embedding method adopted in the proposed method. Reed Muller code (1, 4) used in
proposed method encodes a message block of size 5 into a code-word of size 16 therefore
encoding expansion is 16

5
= 3.2. Molaei’s method implemented Reed Muller (1,3) and

Reed Muller (2,5) codes which encodes a message block of size 4 or 8 into a code-word of
size 8 or 16 and its encoding expansion is 8

4
= 2. Clearly the expansion of the proposed

method is higher than Molaei’s method. For any given secret message size the proposed
method encodes a message to code-words of greater size than the previous method by an
expansion factor of 3.2

2
= 1.6.

The proposed method introduced multiple embedding method which only embeds mes-
sage into the first LSB of some pixels unlike Molaei’s method which is limited to embed-
ding data only on the first and second LSBs of the cover’s pixels. In multiple embedding
method the LSB of each pixel of the cover image is embedded more than once. The em-
bedding capacity is increased because the LSB of each pixel can be embedded more than
1 message bit. The proposed method achieved maximum embedding capacity of 450(%),
while Molaei’s method has a maximum capacity of 150(%) which is 450

150
= 3 times less

than the Proposed Method. Its maximum embedding capacity of 150(%) is achieved by
embedding both the first and second LSB of each pixel of the cover image.

Figure 10. The experiment result of embedding capacity comparison be-
tween Molaei’s Method and the Proposed Method
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Embedding into the second LSBs as suggested by Molaei increases the Mean Square
Error between the cover and the resulting stego image. This decreases the overall image
quality (PSNR value) of the final stego to (48dB). However, the proposed method used 3

4
of the pixels of each cover image and re-embedded the remaining secret bits into the same
pixels that were embedded before. This guarantees that a maximum of (3

4
∗ 512 ∗ 512) =

196608 LSBs of the cover pixels will only be changed after embedding any secret message
size. These small changes leads to a low Mean Square Error therefore multiple embedding
method achieves high capacity accompanied with a good visual quality ≥51dB. While
Molaei’s method has ≤48dB.

7.2. Analysis of Robustness against Attacks between Proposed and Molaei’s
methods. Tables 2, 3, 4 and 5 shows that the proposed method has better error correction
capability as compared to Molaei’s method. This occurred because of the different error
correction codes implemented in proposed and Molaei’s method. The proposed method
implemented Reed Muller (1,4) codes.

From definition (2.1), Reed Muller (1,4) code encode a message of size (k): k =∑r
i=0

(
m
i

)
=
∑1

i=0

(
4
i

)
=
(
4
0

)
+
(
4
0

)
= 5 bits. And a code word of size,N = 2m = 24 = 16

bits. The maximum number of error bits this code can correct: t =
⌊
24−1−1

2

⌋
= 3 bits.

Error Correction capability, Ec = number of corrected bits
total bits

= 3
16

= 18.75(%). While Molaei’s
method implemented Reed Muller (1,3) codes for first LSB embedding and Reed Muller
(2,5) codes for second LSB embedding. The code has message sizes (k), 4 and 16 bits
respectively. These are encoded to codewords of sizes, N, 8 and 32 bits. These codes can

correct a maximum of t1 =
⌊
23−1−1

2

⌋
= 1 error bit and t2 =

⌊
25−2−1

2

⌋
= 3 error bits for

RM(1,3) and RM(5,2) respectively.Therefore the error correction capacity for each of the
codes is 12.5 (%) and 9.38 (%) respectively. Therefore the proposed method suggested an
error correction code that outperforms the one suggested in Molaei’s method.

The Key Trace embedded into the Agreed image play a major role in error correction.
The Key Trace is free from any attacks and helps increasing the error correction capability
during extraction process. The secret data size increases as the key trace data also

increases, KT = |S|∗N
k
− 3

4
∗ H ∗ W , where |S| is the size of secret in bits, N is the

block size, H and W is the Height and Width of the cover image.

7.2.1. Analysis of Robustness against Noise Attacks between Proposed and Molaei’s meth-
ods. The experiment results shows that the secret size and contrast are two main factors
that affects the recovering of secret images. The Proposed Method out performs Mo-
laei’s method and successfully recovers the secret image from stego images under Salt
and Pepper: Variance 0.04 for smaller secret message sizes. This occurred because Salt
and Pepper has a smaller variance hence makes fewer distortions on the stego such that
each retrieved codeword has number of errors t ≤ 3 bits. These are easily correctable
by the proposed Reed Muller code. While Molaei’s method recovered poor quality secret
images because the implemented code, Reed Muller (1,3), can correct only 1 error on each
codeword block yet the recovered code words have ≥ 1 errors and are not correctable.

Under Gaussian and Speckle attacks, these small secret sizes cannot be retrieved (not
visible) even at any level of contrast for both Molaei’s and Proposed Methods. This is
caused by the large number changes on pixel values of the stego which results in retrieved
codewords with a number of errors greater than t. However, for the secret images with
low contrast, the proposed method has better PSNR values than Molaei’s method because
it has a (18.75(%) - 12.5(%)) = 6.25(%) better error correction capability than that of
Molaei’s.
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Considering secret images of size ≥ 107520 bits, the Proposed method out performs
Molaei’s method for all Noise attacks. The Proposed method can fully recover the secret
messages (100dB) of any level of contrast under Salt and Pepper: Variance 0.04 while
Molaei’s method cannot ≤ 40dB. This occurred because for each block of the message
to be re-embedded into each LSB of the pixel, only 1 bit of the block is embedded and
the remaining block is represented as Key Trace and this Key Trace cannot be corrupted
by any kind of attack. This increases the error correction capability of the code since
fewer bits will be corrupted as the message size increases. This causes t to approach 3
correctable bits rapidly. However both Methods cannot recover fully the secret image
under Salt and Pepper: Variance 0.4 and Gaussian Noises and Speckle Noise but the
Proposed method recovers secrets with better visibility than Molaei’s method.

Considering secret images of size ≥ 368640 bits, the Proposed method performs best for
all Noise attacks. It can successfully retrieve any secret image ≥ 368640 bits of any level
of contrast. In this case the code is able to correct all corrupted blocks. At this size the
number of errors in each block of code word is exactly t ≤ 3 and is therefore correctable
successfully.

As the size of the secret image increases, the error correction capability of the pro-
posed error correction code increases thereby increasing the recovered secret image qual-
ity, PSNR. The Key Trace embedded into the Agreed image is free from any Noise attacks
and helps increasing the error correction capability during extraction process. The quality
of the retrieved secret image increases as the size of secret image increases.

7.2.2. Analysis of Robustness against Cropping Attacks between Proposed and Molaei s
methods. For reduced cropping regions, the proposed method achieves better results than
Molaei s method. Although it cannot recover the secret images fully but the secret image
is quite visible compared to Molaei s method. This occurred because the number of errors
in most retrieved codewords caused by the cropping approaches t ≈3. There are greater
than the minimum number of correctable errors for each codeword, therefore cannot be
fully correctable.

Considering medium sized secrets within [46080 − 353280] bits, the Proposed method
retrieves better quality secret images as compared to Molaei s method. Molaei s method
struggled to recover low contrast secret images, most of which are highly noisy, not visible
and contains large black regions. As the size of the secret image increases, the error
correction capability of the proposed error correction code increases thereby increasing
the recovered secret image quality, PSNR.

Considering large secret sizes within [368640 − 384000] bits, the Proposed Method
successfully recovers the hidden secret image under and any cropping region size attack.
As the secret image size increases the retrieved secret image quality drastically increases
under any of the applied cropping region attacks. This occurred because of the PRNG
adopted to randomly embed and extract the secret images to avoid burst error which are
more common in Molaei s method.

7.2.3. Analysis of Robustness against Scratching Attacks between Proposed and Molaei
s methods. Based on Table 5, the proposed method can successfully recover the secret
message on Single Scratching attacks for all high contrast secret image of any size. This
because a single scratch alters few pixels on the stego and since the secret data was
embedded randomly, therefore the errors does not belong to a single code word. Therefore
burst errors are not encountered in the proposed method than in Molaei s method which
embedded data serially. The number of errors in each retrieved codeword is t ≤3 which is
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correctable. Molaei s method cannot recover fully secrets because as the embedded area
on the cover increases, the number of alterations caused by scratching also increases. The
possibility of retrieving code words with increased errors t ≥1 and burst errors increases.

Considering Multiple scratch attacks, the Proposed Method cannot successfully retrieve
all smaller secret image (≤ 353 280) bits. This is because all of the secret data is embedded
into the cover and scratching alters a larger part if not all of the data thereby increasing
the value of t error bits. And if t is greater than 3 then the code words cannot be
corrected successfully. The quality of the retrieved secret image increases as the size of
secret image increases. This is because as the secret data size increases the key trace data
also increases.

However, large secret sizes (≥ 368640 bits) can be retrieved by the Proposed Method.
This is because the size of Key trace bits in each retrieved codeword increased and t ≤
3. When t ≤ 3 the codeword is correctable. Molaei s method cannot retrieve any secret
images under Multiple Scratches because the scratches caused many alterations such that
for every retrieved code word the number of errors t1 ≥ 1 , t2 ≥ 3 and are not correctable.
It also causes large burst errors which are not correctable with the suggested error cor-
rection code.

7.2.4. Analysis of Robustness against JPEG compression Attacks between Proposed and
Molaei s methods. :
Table 6 shows that Molaei s method cannot successfully recover any secret message size
of any level of contrast under JPEG compression attacks. The recovered secret images
have low PSNR values and not not visible. This was caused by the large changes in pixel
values caused by JPEG compression which affect the embedded pixel values. They result
in many alterations of the stego pixels such that for every retrieved code word the number
of errors t1 ≥ 1 , t2 ≥ 3 and are not correctable. It also causes burst errors which are not
correctable with the suggested Reed Muller codes.

On the other hand, the Proposed method can only retrieve successfully large secret
images of sizes ≥ 368640 bits. This occurred because the size of Key trace bits in each
retrieved codeword increased and t ≤ 3. When t ≥ 3 then the codeword is correctable.
However, the proposed method performs poorly for smaller secret images. This occurred
because the value of Key trace for smaller secret data is zero which means error correction
will rely only on the data retrieved from the stego. And this data is highly altered or
distorted by JPEG compression, therefore the number of errors t ≥ 3 and is not cor-
rectable. The retrieved secret images of size (≥ 92160) bits are quite visible and the noise
on the images decreases as the size of the secret image increases. Therefore, the retrieved
secret image PSNR value under proposed method increases as the size of the secret image
embedded increases.

7.3. Steganalysis for Proposed and Molaei’s method. An improved Steganalysis
method proposed by Andrew D. Ker[1], called Triples Analysis. It is a detector used for
simple LSB steganography in digital images. It uses the structural and combinatorial
properties of the LSB embedding method to detect and estimate the length of the hidden
messages. Triples has proved to be a more powerful and sensitive detector than other
structural detectors such as RSA, SPA etc. It utilizes the effects of LSB changes on
arbitrary groups of samples ie 3-tuples of pixel groups. Triples assumes that the Cover
image is fixed and a random hidden message is embedded.
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Suppose the hidden message has length 2pN , where 0 ≤ p ≤ 0.5 is unknown to the
detector, is embedded using LSB embedding of a random selection of samples independent
of the content of the cover or hidden message[1] . A trace set Cm,n is created in which
all pixel samples s1, , sN are drawn, where n, m > 0 and N is number samples. The
probability of transition from one trace subset to another is pi(1− p)(3−i), where i is the
length of the shortest path between them. The trace set and subsets are constructed using
equations (41), (42) and (43) in [1].

Cm1,...,mg−1,ng−1 = (s1, , sg) ∈ T |[
si+1

2
] = [

si
2

] +mi and [
si+2

2
] = [

si+1

2
] + nifor each1 ≤ i ≤ g

(41)

Em1,...,mg−1,ng−1 = (s1, , sg) ∈ T |si+1 = si +mi and si+2 = si+1 + ni with mi even (42)

Om1,...,mg−1,ng−1 = (s1, , sg) ∈ T |si+1 = si +mi and si+2 = si+1 + ni with mi odd (43)

When a single sample has the LSB altered a tuple transitions to either of the following
trace subsets E2m,2n, O2m,2n, E2m+1,2n−1, O2m,2n−1, E2m,2n+1, O2m−1,2n+1, E2m+1,2n, and
O2m−1,2n. Given a stego image, consider each trace set Cm,n in turn and count the trace
subsets to make a vector x′ using equations (44) in [1].

x′′ = T−13 x′ (44)

Then we can hypothesize a value of p and form estimates for the sizes of the trace
subsets of the cover image using the transition matrix, T3. The parity symmetry is
checked if it s true for both covers and also stego images when both m and n are even
or equal. Considering one case of parity symmetry, e2m+1,2n+1 = o2m+1,2n+1. To use the
generalized framework to make an estimate of p, we compute error terms for each m
and n, εm,n = e′2m+1,2n+1 − o′2m+1,2n+1. Then we find the value of p which minimizes the
sum-square of the errors. Firstly, using the transition matrix, the number of errors is
determined by

εm,n =
1

8
((d0+d1+d2+d3)+q(3d0+d1−d2−3d3)+q2(3d0−d1−d2+3d3)+q3(d0−d1+d2−d3))

(45)
Where di are the differences of various combinations of e2m+i,2n+i and o2m+1,2n+1 subsets.

Find the value of q to minimize S(q) =
∑

m,n ε
2
m,n. We have

S(q) =
1

64

∑
m,n

c20+q(2c0c1)+q
2(2c0c2+c

2
1)+q

3(2c0c3+2c1c2)+q
4(c22+2c1c3)+q

5(2c2c3)+q
6(c23)

(46)
Differentiating the above equation (47) and solving for q will give up to 5 roots for q. All
roots inside the range (−10, 10/11) are discarded because they will give wrong estimates
of p outside (−0.05, 0.55)). Substitute the remaining roots back into (47) to determine
the location of the minimum q′. Finally, the estimate of p, p′ = 1

2
(1− 1

q
).

Triples has been implemented to determine how the proposed and Molaei s method
perform under steganalysis. Triples was able to detect the presence of a hidden message
in both the proposed and Molaei s method for every Cover image used. The margin
between the estimated and true p value increases as the length of the hidden secret
message increases as shown in Table 6.

7.3.1. Analysis of Triples Results using Proportion. Proportion was used to compare the
performance of Molaei s method and proposed method under steganalysis. Using the
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results of True p value (Tp) and Estimated p value (Ep) for each secret message size
recorded on Table 7, proportion P was calculated as follows:

P =
Ep

Tp
(47)

A larger value of P means that the estimated p value is closer to the true p value. It
means that the probability of attacker to predict the true p value is high. A smaller P
value means that there is a bigger difference between the estimated p value from the true
value so the attacker cannot easily predict the true p value. A high value of proportion
means that the there is a smaller difference between the Estimated p value and the True
p value. That means the Triples estimated the p value almost accurately. For smaller
secret sizes, the proportion values of the proposed method is always smaller than Molaei
s method. This is caused by the high expansion rate of 3.2 in Reed Muller (1,4) code used
in proposed method compared to 2 in Reed Muller(1,3) code used in Molaei s method.
This means that for any given secret message size, the proposed method results in a larger
secret size to be embedded than Molaei s method. And Triples method has been proved
to be highly sensitive to smaller secret sizes than large ones, hence the proposed method
performs better than Molaei s method.

Figure 11. A comparison of Steganalysis results for Molaei s method and
proposed method based on proportion

The proportion values of the proposed method decreased rapidly for secret sizes [61440
– 368640 bits] while the proportion values of Molaei s method decreased steadily as shown
on Fig 11. This occurred because of the Multiple embedding method adopted. Multiple
embedding re-substitutes different secret bits on LSB of pixels that have already been
embedded, such that at the end of the embedding process each pixel has either 1 change
or same LSB as of the original/initial LSB. Triples method can only detect the message
length based on the last embedding cycle. Due to this, there is an increase in True p value
while the Estimated value is ≈ 0.3. It is because of this that the difference between the
proportion values of proposed and Molaei s methods is very large. Therefore the proposed
method is less detectable under steganalysis than Molaei s method.

8. Conclusions. A Multiple embedding method was proposed to achieve a high embed-
ding capacity (450%) in Code based steganography scheme. The method contributed to an
improved visual quality (≥ 51dB) of the Stego image that ensured high Imperceptibility.
Furthermore, Multiple embedding had a huge impact on the overall robustness of Code
based steganography schemes against noise, scratching, cropping and jpeg compression
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attacks. All extracted secret images had an improved visual quality reaching to 100dB
for high embedding capacity (450%) while Molaei s method achieved very low quality
extracted secret images. The security of the hidden secret message was also improved by
embedding secret message randomly across the image by using a PRNG.
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