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Abstract. The series-parallel hybrid electric vehicles (HEVs) can reduce vehicle fuel
consumption and exhaust emissions. In order to give full play to the potential in this as-
pect, this paper proposes a new method to optimize the control of a Series-parallel hybrid
power system. Firstly, through the global optimization algorithm, the energy distribution
mode under the optimal fuel economy and emission performance state under different ini-
tial conditions is obtained in a specific cycle condition. Then the parameters are extracted
from the global optimal results. As a reference, the fuzzy control rules are formulated and
the corresponding fuzzy control system is designed. Finally, the fuzzy control, global opti-
mal algorithm and traditional fuzzy control designed in this paper are compared. It shows
that the fuzzy control based on the global optimal design has a significant improvement
in fuel economy and emissions compared with the traditional fuzzy control. It is closer to
the global optimal value. The results show that the fuzzy control system designed in this
paper achieves the purpose of optimal control and is easy to implement.
Keywords: Coaxial dual-motor series-parallel; Dynamic planning; Fuzzy control

1. Introduction. In the current world, environmental pollution and energy shortage
have become a global problem. Under the background, hybrid electric vehicles, also known
as HEV, characterized below oil consumption, low emissions, strong dynamic performance,
and long mileage, have become a general research interest of worldwide auto superpowers.
In cities, large public buses provide great convenience, but their fuel consumption is high.
Thus, it is imperative to improve their fuel economy to increase sustainability of the
transportation means. The current market sells HEVs with different structures, which
can be generally divided into series, parallel, and series-parallel according to their power
transmission routes [1,2].
Compared with series and parallel, series-parallel is an optimized structure, which has a

more flexible power transmission route and more working models. These advantages allow
series-parallel to efficiently satiate driving demands of public buses under the complex city
drive cycles. As shown in Table 1, the series-parallel structure has not only good power
but also excellent performance in terms of fuel economy. Hence, it’s more convenient to
control energy of series-parallel HEVs. The entire driving force is derived from the fuel
combustion of the engine for series-parallel HEVs that cannot be externally plugged in.
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Table 1. Comparison of three HEV structures

parameter
Fuel economy dynamic property

Idle
downtime

braking
energy
recovery

Efficient
workspace
control

completed
car

efficiency

acceleration
performance

Continuous high
power output
performaance

series ⃝ × ⃝ ⃝ △ △
parallel ⃝ ⃝ △ ⃝ ⃝ △
serise-
parallel

× × × × ⃝ ⃝

In order to maximize its fuel economy and emission potential, it is necessary to optimize
the control strategy of series-parallel HEVs[3,4].

So far, some researches into energy management strategies mainly focus on two aspects-
one on optimization-based management strategies and the other on rule-based energy
management strategies. Du et al. [3] study the hydraulic hybrid power system using the
rule-based logic threshold method. In their research, the engine map is divided into three
areas, and the vehicle working models are divided based on different operating points
to realize vehicle control. Pan [4] in order to increase fuel economy of buses, adopt the
pedal opening, SOC (State of Charge) of super capacitate, and current vehicle velocity
as fuzzy input variables and the engine output torque as the output variable, and then
formulated the fuzzy control rule based on engineering experience. The final simulation
results show that oil consumption per 100 km increases by 5% as compared with the logic
threshold. However, their research fails to consider control of braking conditions. Manzie
et al. [5] turns to a new ECMS (Equivalent Consumption Minimization Strate) real-time
optimal control approach. They compare charge and discharge, processes the constraint
function via weighting, and uses different equivalent factors to greatly improve the fuel
economy. However, their research results cannot guarantee global optimum. Lin et. al.
[6-7] employs the energy management strategy based on the dynamic programming algo-
rithm to disperse the fixed state of drive cycle into N periods. Then, the motor torque
and the transmission gear index are regarded as control variables, while the SOC and
the transmission gear as state variables. In this way, the optimal control variables of the
HEVs are obtained. Xu and Lin [8] proposed a new hybrid power configuration for hy-
brid electric vehicles with different control strategies. Hybrid electric vehicles have good
performance, when they are equipped with different weight fuel cells and power batteries.
Han et. al. [9] a flow chart of parameters matching and optimization of hybrid electric
vehicles is proposed. The multi-objective optimization model was established. The pa-
rameters matching and optimization of a hybrid vehicle were carried out. The reasonable
result of parameter matching was obtained. Chen et. al. [10] based on an electric as-
sist control strategy, the fitness function is defined so as to minimize the vehicle engine
fuel consumption and emissions. The driving performance requirements are considered as
constraints. And, a new approach is used for the battery control parameters to reduce the
number of the decision variables. Mao and Wang [11] presented Fuzzy control method to
distribute energy. The system runs well in practice. They improved energy efficiency and
realized the reducing tail gas emissions. Zhang [12] combined with the characteristics of
genetic algorithm and the advantages of simulated annealing algorithm in avoiding cyclic
search. They proposed a hybrid optimization algorithm based on multi-objective genetic
algorithm, and optimized the control parameters of the energy management of hybrid
electric vehicles. The results show that in multi-objective optimization on HEV control
strategy, the hybrid algorithm proposed avoids the defects of premature convergence and
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random search without direction in traditional genetic algorithm, enhancing the conver-
gence speed and computing efficiency. Lian et.al. [13] take the parallel hybrid electric bus,
four typical working condition models are established. The ant colony optimization algo-
rithm is applied to optimize the charge discharge equivalent coefficient of each case under
the minimum equivalent fuel consumption control strategy. The relationship between the
road slope and the distance regulation of the battery SOC target is analyzed and the
corresponding gradient adaptive module is designed. A hybrid vehicle control strategy
optimization method based on driving condition identification is proposed. Li et. al. [14]
designed a host platform for HEV with the graphic programming software LABVIEW.
Aiming at two core issues in the development process of parallel HEV, the engine and mo-
tor efficiency point tracking, energy flow animation display and road condition statistics
three functions are designed for improving the development efficiency of control strate-
gies. Poeti et. al. [15] proposes a modeling method that makes use of object-oriented
modeling principles for the design and development of HEV power train models. Chen et.
al. [16-17] proposed a new interpolation and sparse method for fuzzy rules. Zhang et. al.
[18] developed a new method to determine the fuzzy boundary of natural language based
on big data. Hong et. al. [19] presented new generalizing concept-drift pattern methods
for fuzzy association rules.
The authors [20] previously study analyzed the ISG (Integrated Starter Generator)

HEV structure and operating models, builds a logic threshold control strategy and then
applies it for simulation in Simulink. Results show that the oil economy is improved by
46.2% as compared with that of traditional fuel-driven vehicles. In this paper, a global
optimization energy management strategy based on dynamic planning is first built and
simulated. Then, simulation results are analyzed for the purpose of extracting design
parameters of the fuzzy energy management strategy. Based on the extracted design
parameters, the membership function and the fuzzy control rule of variables are formulated
to efficiently realize optimal control of series-parallel HEVs.

2. Series-parallel hybrid power system. Series-parallel hybrid power system struc-
ture is shown as Fig.1.This structure is also referred to as a coaxial dual-motor structure
just because the engine, ISG, main drive motor, and automatic clutch are installed in
same axis. The automatic clutch is set between the drive motor and the ISG. By control-
ling connection and disconnection of the automatic clutch, the operation mode of HEV
can be converted between serial and parallel.

Figure 1. Series-parallel hybrid power system structure
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In this system, the ISG motor has both the function of starting and charging. The
transmission was cancelled, and coordinating the operation of the engine, ISG motor, and
main motor can meet the actual working conditions through rotation characteristics of
the main motor. The main deceleration of the reducer is relatively large.

The series-parallel system has three power sources, an engine, an ISG motor, and a
drive motor. They are switched by the clutch-controlled system in series-parallel mode
of operation. According to the characteristics of the structure, the series-parallel hybrid
power system has multiple power modes: pure electric drive, engine quick start, pure
engine drive, engine drive and power generation, motor boost, brake recovery and so
on. Because this system does not have external charging, all the energy is from the
energy released by the fuel of the engine while the vehicle is running. The battery energy
consumed by the motor is the power supplied by the engine or converted by the braking
energy recovery. The power output of each power source is controlled by the energy
management strategy under different working conditions. Different energy management
strategies are bound to differ in the fuel economy and emissions of vehicles. Therefore,
in order to achieve the maximum reduction of vehicle fuel consumption and air pollution
emissions, active optimization control of hybrid buses is required.

2.1. Dynamic programming based optimization. Dynamic programming is put for-
ward by Richard Bellman. A dynamic programming algorithm disperses a multi-stage
process into a series of single stages, and makes use of the relationship between the single
stages to work out solution one by one. Finally, the optimal solution can be obtained.
Dynamic programming based optimal control of the series-parallel HEV can be boiled
down as: Disperse a given drive cycle into k stages, and introduce certain constraints;
choose a series of control variables from the initial state x(0) to the final state x(k) to
see which variable can bring down the oil consumption of the whole drive cycle to the
minimum.

2.2. Construction of the dynamic programming based optimization algorithm.
Under the series operation model, the clutch is disconnected, and the system made up of
the engine and the engine and the ISG is called the auxiliary power unit (APU), whose
power cannot be directly output to the wheel. Hence, the torque required is independently
provided by the drive motor. Under the condition, the rotational velocity of the engine
(namely the rotational velocity of the ISG) is not influenced by the drive cycle. It can be
described by Eq. (1).

Under the parallel operation model, the clutch is disconnected; the engine, ISG and
drive motor can directly output their power to the wheel. The torque required by the
vehicle can be jointly provided by the engine, ISG and drive motor. The rotational speed
of the drive motor and wheels is decided by the vehicle velocity. It can be described by
Eq. (2).

According to the operating efficiency characteristics of the engine-generator set, it can
be determined that the high-efficiency speed of the engine during power generation in the
clutch disengagement state is between 1100 r/min and 1300 r/min.

Tdes = η0i0Tm + Tmb

ωe = ωisg

Te = −Tisg

ωm = vi0
0.377γw

(1)

{
Tdes = η0i0(Te + Tisg + Tm) + Tmb

ωe = ωisg = ωm = vi0
0.377γw

(2)
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Where, Tdes is the torque required by the driver; Tapu is the output torque of the APU
system; Te and ωe are the output torque and rotational velocity of the engine, respectively;
Tisg and ωisg are the output torque and rotational velocity of the ISG; Tm and ωm are the
output torque and rotational velocity of the motor; Tmb is the mechanical braking torque;
v is the velocity; i0 denotes the final ratio; rw represents the radius of the wheel; η0 is the
drive system efficiency.
As mentioned above, when the clutch is disconnected, the rotational velocity of the

engine and the ISG cannot be directly identified. When the ISG drives the vehicle sep-
arately, the engine will be turned off. When a driving car is charged under the series
structure, the rotational speed of the APU system is decided by its work efficiency curve.
In this paper, under the China Typical Drive cycle of Bus Cycle (CTDCBC), the dy-
namic programming model chooses the SOC and the disconnected state, Ccl(t), of the
clutch as the state variables [See Eq. (3)]; while the engine torque, Te(t), drive motor
torque TTM(t) and the clutch control command, Rcl(t), are adopted as control variables.
[See Eq. (4)] The clutch state and the control command can be written as Eq. (5) and
Eq. (6), respectively:

x(t) = (Ccl(t), soc(t)) (3)

u(t) = (Rcl(t), Te(t), Ttm(t)) (4)

Ccl(t) =

{
0 (Meaning the clutch is disconnected)
1 (Meaning the clutch is connected)

(5)

Rcl(t) =

{
0 (Command for disconnection of the clutch)
1 (Command for connection of the clutch)

(6)

In order to maintain balance of the SOC and work efficiency from the beginning to the
end of the drive cycle in the dynamic programming based global optimization performance
objective function, the SOC constraints are introduced as shown in Eq. 7. It makes the
SOC values at the beginning and end of the cycle condition equal. Meanwhile, state of
the clutch and the engine is introduced as the other two constraints [See (8) and Eq.
(9), respectively] to prevent problems caused by complicated road circulation conditions.
Problems include repeated start and halt of the engine, and the repeated connection and
disconnection of the clutch.

L1 = soc(tf )− soc(0) = 0 (7)

L2 = Ccl(tn+1)− Ccl(tn) (8)

L3 = Ebs(tn+1)− Ebs(tn) (9)

The CTDCBC operating condition [0, t f] is stepped in 1s steps and is divided into
1314 stages. Therefore, the objective function J of the dynamic optimization global
optimization performance of the coaxial dual-motor hybrid vehicle is as shown in Eq.
(10). Eq. (10). It includes four sub-functions. They are in turn oil consumption objective
sub-function, SOC correction function, clutch state constraint function, and engine state
constraint function.
ESW is the engine switching signal.

J =
∑tf

k=0

{∫ tk+1

tk
Qe[x(k), u(k − 1), t]dt+ α |Ccl(k + 1)− Ccl(k) |+β |Ebs(k + 1)− Ebs(k)|

}
+ε[soc(tf )− soc(0)]2

(10)

Where, α, β and ‘ are the weighting coefficient.
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Structures like the motor, engine and battery have their own mechanical constraints and
performance constraints. Therefore, the constraint functions, Eq. (11), are introduced to
the optimization process. During the solution process, if any control variable or any state
variable exceeds the required area of the constraint, the computer will record and store
it. The constraints are as below: socmin ≤ soc(k) ≤ socmax

ωm,min ≤ ωm(k) ≤ ωm,max, ωe,min ≤ ωe(k) ≤ ωe,max, ωg,min ≤ ωg(k) ≤ ωg,max

Tm,min ≤ Tm(k) ≤ Tm,max, Te,min ≤ Te(k) ≤ Te,max, Tg,min ≤ Tg(k) ≤ Tg,max

(11)

2.3. Operational process. Gridding is performed of the state variables and the control
variables, respectively. The optimal solution is tracked reversely from the final stage, n, to
the initial stage of the drive cycle. The operation process is represented in Fig. 2. At the
k stage, the grid points of state variables, such as xi(k) and xi+1(k) corresponding to all
allowed control variable points. Then, according to the state transfer function, such as Eq.
(12), and the instant cost function, one can solve xi(k+1), xi+1(k+1), and the instant fuel
oil consumption value, Ji(k+ 1), Ji+1(k+ 1), xi(k+ 1) and xi+1(k+ 1) thus obtained are
unlikely to appear on the grid points of the state variables in the next stage. Therefore,
the linear interpolation is employed to work out every final cost function. Next, the
computer stores the minimum fuel oil consumption function value and the corresponding
control variable value of the grid point for the convenience of forward optimum seeking.
The operation goes on until the initial stage of the drive cycle.

After the end of the reverse solution, the computer will start from the initial stage of
the drive cycle, and use the cost functions and control variable matrices stored by the
reverse solution process to find out the optimal solution and the optimal control variable
sequence in the whole stage via interpolation.

x(k + 1) = f [x(k), u(k)] (12)

where f [x(k), u(k)] is the state transfer function.

Figure 2. Dynamic programming operation process

3. Fuzzy control strategy. The vehicle optimal control rule can be obtained through
the dynamic programming algorithm. However, the computing quantity is huge, and the
algorithm, relying on the already known conditions of the drive cycle, is hardly applicable
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to real-time control. Therefore, the dynamic programming algorithm is often applied to
offline research. The results thus obtained can serve as reference for design of other energy
management strategies or for comparison of advantages and disadvantages of different
energy management strategies. The fuzzy energy management strategy has a wide range
of applications. Its strong robustness and instantaneity make it highly applicable to the
HEV, a complex system with multiple nonlinear, time-varying components. This paper
uses the dynamic programming based global optimization algorithm to extract the design
parameters. According to the extracted design parameters, the membership function and
the fuzzy control rule of the fuzzy logic controller are built. Finally, the fuzzy energy
management design of the series-parallel HEV is finished.

3.1. Establishment of the fuzzy control strategy. The fuzzy controller usually con-
sists of five parts, including the fuzzification interface, database, rule base, decision-
making unit and defuzzification interface. The input variables conduct fuzzification of
the accurate signals via the fuzzification interface. The inference engine infers the fuzzy
output variables based on the membership function stored in the database and the fuzzy
control rule stored in the rule base. Then, the fuzzy variables are output after increasing
their precision by going through the defuzzification interface.
Fig. 3 shows the operation models of the series-parallel HEV using the dynamic pro-

gramming based global optimization algorithm and at different SOC initial values. From
Fig. 3, it can be seen that the series operation model and the parallel operation model
do not exchange with each other according to simple control rules. Instead, the parallel
operation model can exchange to the series operation model only when the transmission
shaft rotational speed, ωt, is higher than 1,000. When the SOC initial value is high,
the dynamic programming algorithm might correspondingly increase the purely dynamic
drive operation model with a small energy consumption so as to increase the fuel economy.
The SOC of the power battery, vehicle required torque, Tdes, and the rotational ve-

locity of the drive motor, ωn, are adopted as input variables of the fuzzy controller, and
the torque of the engine, Te, as the output control variable to build a three-input and
one-output fuzzy controller. The vehicle required torque, Tdes, is set to be a fuzzy set
with six elements, namely [HX,LX,X,Z,D,HD]; the drive motor to be a fuzzy set with
three elements, namely [X,Z,D]; the battery SOC to be a fuzzy set with four elements,
namely [HX,ZX,ZD,HD]. The domain of all variables is set to be [0,1]. The input variable
membership function is shown as below:
Fig. 7 show operating points of the engine under the dynamic programming diagram.

The engine mainly operates nearby the optimal fuel economy curve. Under the drive
cycle with a large demand of power, such as sharp acceleration or climbing, the engine
will increase its output power. On the contrary, under the drive cycle with a small
demand of power, such as fast cruise, the engine tends to reduce the output power to
cut oil consumption. When the battery SOC is too high, the battery should resort to
electric discharge. When there is a high demand of power, the engine will deviate from
the optimal operation zone to increase power output. Therefore, the membership function
of the engine output torque is built as below. The actual output torque of the engine is
Te, a fuzzy set with six elements, namely [HX,LX,Z,D,LD,HD]. See Fig. 8.

3.2. Fuzzy control rule. According to the results obtained by the dynamic program-
ming based global optimization algorithm, the control rules are formulated for the fuzzy
controller. Some fuzzy control rules are shown as below:
If (Tdes is D) and (ωm is D) and (soc is ZD) then (Te is LD)
If (Tdes is X) and (ωm is HX) and (soc is ZX) then (Te is LX)
If (Tdes is X) and (ωm is HX) and (soc is ZD) then (Te is Z)
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(a) SOC =0.5 (b) SOC =0.6

(c) SOC =0.7 (d) SOC =0.8

Figure 3. Distribution of operation points at different SOC initial values

Figure 4. Membership function of the battery SOC

Figure 5. Membership function of the vehicle required torque
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Figure 6. Membership function of the drive motor rotational velocity

Figure 7. Operating points of the engine under the dynamic programming algorithm

Figure 8. Membership function of the engine torque

If (Tdes is Z) and (ωm is HX) and (soc is ZD) then (Te is Z)
If (Tdes is D) and (ωm is Z) and (soc is ZD) then (Te is LD)
If (Tdes is D) and (ωm is D) and (soc is ZD) then (Te is LD)
If (Tdes is HD) and (ωm is D) and (soc is ZD) then (Te is HD)
......etc.

3.3. Simulation results. Major vehicle parameters are presented in Table 2. Mat-
lab/Simulink is used to conduct simulation under the drive cycle of the CTDCBC. The
battery SOC initial value is set to be 0.7, and the simulation results are as follows:
From Fig. 9 to 12, it can be seen that, during the whole drive cycle process, the battery

SOC value stays at 0.69, which is the SOC value at the end of the balancing process. It
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Table 2. Major parameters of the series-parallel HEV

Parameters Value

Vehicle

Unladen mass/Gross mass (kg) 12500/17500
Rolling resistance coefficient 0.012
Wind resistance coefficient 0.55

Tire radius (m) 0.526
Frontal area (m2) 8.13

Engine Maximum power (kw) 155
Highest torque (Nm) 630

Drive motor Maximum power (kw) 120
Highest torque (Nm) 500

ISG Maximum power (kw) 40
Highest torque (Nm) 300

Power battery Total capacity (AH) 60

Figure 9. Engine torque

Figure 10. ISG torque

Figure 11. Drive motor torque
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Figure 12. SOC of the battery based on the fuzzy control strategy

is slightly lower than the SOC initial value by 0.1. The engine operates steadily, and the
operating points are relatively concentrated. During the whole drive cycle process, the
oil consumption per 100 km is 22.1 L under the fuzzy control rule is 22.1 L, and 19.95 L
under the dynamic programming algorithm. The gap between the two is 9%. Compared
with the oil consumption under the logic threshold control strategy, the oil consumption
is reduced by 13% by following the dynamic programming based fuzzy controller put
forward in this paper. The comparison results are numerically shown in Table 3. Results
of the fuzzy controller are closer to the global optimization results based on the dynamic
programming. This suggests the fuzzy control strategy based on dynamic programming
outperforms.

Table 3. Comparison of oil consumption simulation results

Control strategies
Oil consumption per 100 km

(L/100km)

Improvement
(In comparison

with the logic threshold)
Logic threshold 25.43 -
Fuzzy control 22.1 13%

Dynamic programming 19.95 21%

4. Conclusions.

1. Based on global optimization algorithm, the global optimization objective function
with cost function is established under the CTDCBC containing the battery SOC
and clutch cost functions. The objective function is then used to solve the optimal
control rule to achieve the minimum oil consumption of the series-parallel HEV.

2. The membership function of the engine torque output variables is designed based on
distribution of engine operation points under different drive cycles, and according
to the dynamic programming results. Next, the corresponding fuzzy control rule is
formulated according to distribution of the HEV operation model points at different
SOC initial values. Finally, the fuzzy controller aiming at optimizing the engine
torque is designed;

3. Based on the Matlab/Simulink platform, the simulation is carried out under typical
CTDCBC cycle conditions in China. The globally optimized fuel consumption per
100 km is 19.95 L, and the fuel consumption per 100 km of traditional fuzzy control is
22.1 L. The fuel consumption value based on the globally optimized fuzzy control is
100 km. It is 24.2L. The fuzzy control of the design is 8.6% higher than the traditional
fuzzy control, which achieves the improvement of fuel economy and emission. And
it illustrates the feasibility and applicability of the scheme.



A Dynamic Programming based Fuzzy Logic Energy Management Strategy 433

Acknowledgment. This work was supported by the Fujian Nature foundation, No.
2016J01039; Xiamen City Project No. 3502Z20173037. Scientific Research Climbing
Project of Xiamen University of Technology, No. XPDKT18016.

REFERENCES

[1] W.C. Zhuang, Y. Ding , L.Q. Qiu, The Research state and development trend of energy management
strategy for plug-in hybrid electric vehicles, Machine Design and Manufacturing Engineering, vol.
45, no. 6, pp. 11-17, 2016.

[2] H.S. Luo, Study on energy management strategy of series-parallel hybrid electric vehicles based on
driving condition recognition, Dissertation, Chongqing University, 2016.

[3] J.Y. Du, H.W. Wang, H.Y. Huang, Rule-based control strategy application on power-split hybrid
powertrain, Transactions of the Chinese Society of Agricultural Engineering, vol. 28, pp. 152-157,
2012.

[4] S.C. Pan, Views on the series-parallel HEV vehicle control strategies, Dissertation, Zhengzhou Uni-
versity, 2015.

[5] C. Manzie , O. Grondin , A. Sciarretta, Robustness of ECMS-based optimal control in parallel hybrid
vehicles, IFAC Proceedings, vol. 46, no. 21, pp. 127-132, 2013.

[6] X.Y. Lin, R. Xue, D.Y. Sun, Rule based strategy derived from dynamic programming for novel
series-parallel hybrid electric city bus, Journal of System Simulation, vol. 25, no. 5, pp. 1077-1082,
2013.

[7] X.Y. Lin , D.Y. Sun, D.T. Qin, Development of power-balancing global optimization control strategy
for a series-parallel hybrid electric cityBus, China Mechanical Engineering, vol. 22, no. 18, pp. 2259-
2263, 2011.

[8] Y.L.Xu, C.F. Li, A new hybrid power configuration in HEV and its driving BLDC development,
Telkomnika, vol. 11, no. 2, pp. 257-264, 2013.

[9] L.J. Han, H. Liu, W.D. Wang, W.J. Yan, D.H. Zhang, A study on the parameter matching and
optimization of a power split HEV, Automotive Engineering, vol. 36, no. 8, pp. 904-910, 2014.

[10] D.Y.Chen, X. Li, L.H. Chen, S.S. Li, F. Tian, L. Yang, Research on energy optimal control strategy
for HEV, Energy Education Science and Technology Part A: Energy Science and Research, vol. 32,
no. 2, pp. 821-834, 2014.

[11] L.P. Mao, Y.N. Wang, Research on energy assembly control system of HEV, Journal of Natural
Science of Hunan Normal University, vol. 28, no. 2, pp. 33-36, 2005.

[12] X. Zhang, Y. Tian, L.Zhang, Optimization of HEV control strategy with a hybrid genetic algorithm,
Automotive Engineering, vol. 34, no. 4, pp. 292-296+300, 2012.

[13] J. Lian, W.M. Fan, L.H. Li, L.S.Yuan, Control strategy optimization method based on driving cycle
recognition for HEV, em Journal of Northeastern University, vol. 38, no. 4, pp. 551-556, 2017.

[14] X.J. Li, H.L. Wang, J.M. Ni, X.Y. Shi, Design of a novel host platform for HEV based on LABVIEW,
Automotive Engineering, vol. 35, no. 4, pp. 312-316, 2013.

[15] L. Poeti, J. Marco, N.D. Vaughan, Modeling methodology and considerations for a more integrated
exploration of HEV designs, International Journal of Vehicle Systems Modelling and Testing, vol. 7,
no. 3, pp. 235-267, 2012.

[16] S.M. Chen, Y.C. Chang, J.S. Pan, Fuzzy rules interpolation for sparse fuzzy rule-based systems
based on interval type-2 gaussian fuzzy sets and genetic algorithms, IEEE Transactions on Fuzzy
Systems, vol. 21, no. 3, pp. 412-425, 2013.

[17] S.M. Chen, Y.K. Ko, Y.C. Chang, J.S. Pan, Weighted fuzzy interpolative reasoning based on
weighted increment transformations and weighted ratio transformation techniques, IEEE Trans-
actions on Fuzzy Systems, vol. 17, no. 6, pp. 1412-1427, 2009.

[18] F.Q. Zhang, Z.J. Mao, G.Y. Ding, L. Xu, Design of chinese natural language in fuzzy boundary
etermination algorithm based on big data, Journal of Information Hiding and Multimedia Signal
Processing, vol. 8, no. 2, pp. 423-434, 2017.

[19] T.P. Hong , J.M.T. Wu , Y.K. Li, C.H. Chen, Generalizing concept-drift patterns for fuzzy association
rules, Journal of Network Intelligence, vol. 3, no. 2, pp. 126-137, 2018.

[20] G. B. Sun, T. T. Ma , Y. M. Tang, Simulation on ISG hybrid powertrain based on simulink, Me-
chanical & Electrical Engineering Magazine, vol. 33, no. 11, pp. 1415-1420, 2016.


