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Abstract. A fast and effective image fusion method is proposed for creating a highly in-
formative fused image through merging multiple source images. Firstly, the source images
are decomposed into approximation component and detail component by multi-resolution
singular decomposition. Secondly, the tenengrad function and modified spatial frequency
are calculated as the contrast metric of the approximation and detail component, respec-
tively. Thirdly, the guided filter is guided by the tenengrad function and modified spatial
frequency when approximation and detail component are used as the input image, re-
spectively. Finally, the output images of the guided filter are adopted to generate the
decision map to merge the source images. Experimental results demonstrate that the
proposed method can obtain state-of-the-art performance in merging of multi-focus and
multimodal medical images.
Keywords: Image fusion, Guided filter, Spatial frequency, Multi-resolution SVD, Tenen-
grad

1. Introduction. Image fusion plays an important role in various images processing such
as feature extraction and target recognition. By the means of image fusion, different im-
ages with complementary information can be merged into a single fused image [1]. The
fused image can provide more comprehensive information which is more useful for human
and machine perception. A better image fusion method can not only preserve most of the
important information of different images, but also produce little of artifacts in the fusion
processing. Generally, image fusion methods can be separated into two groups such as
spatial-based methods and transform-based methods. Spatial-based methods [2] include
averaging and principal component analysis (PCA) [3] etc. Whereas the latter include the
wavelets, contourlet transform [4], nonsubsampled contourlet transform (NSCT) [5], and
shearlet transform [6]. Discrete wavelet transform would provide directional information
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in decomposition levels and contain unique information at different resolutions. How-
ever, discrete wavelet transform is less effective in expressing the sharp transitions such
as image edges and curve singularities due to its limitation of direction. The redundant
decomposition in NSCT and shearlet causes the increase in computation complexity in the
image fusion processing. Singular value decomposition(SVD) can convert the redundant
image information in spatial domain into a few of singular values. Therefore, SVD-based
fusion method has been used in many papers [7-10]. A video fusion algorithm [7] is
presented based on the 3D surfacelet transform and the higher order singular value de-
composition. Singular value decomposition is adopted to fuse the Quickbird panchromatic
and multi-spectral data [8]. There is no the multi-resolution characteristic like wavelet
transform in the these traditional SVD. Therefore, the idea of multi-resolution can be
introduced into the SVD to construct the multi-resolution singular value decomposition
(MSVD). On the other side, the fusion rule is vital to fused image quality. Recently,
edge-preserving smoothing filters such as guided filter [11], weighted least squares [12]
and bilateral filter [13] have been proposed in the area of image processing. The guided
filter is edge-preserving filter avoid ringing artifacts and decreasing the decomposition
computing time according to the independence of the filter size. The guided filter can
be used in image enhancement, image smoothing, and image denoising etc. According
to the guided filter’s ability of enhancing image edge, we introduce guided filter into fus-
ing the multi-resolution singular value decomposition components of source images. The
presented method outperforms other fusion methods such as the max and average fusion
rule based on MSVD, nonsubsampled contourlet transform, and cross bilateral filter.

2. Guided Filter. Guided filter is a type of edge-preserving smoothing operator, which
filters the input image under the guidance of another image [14-15]. The guided filtering
algorithm including the guiding image I, the input image p and an output image q.
Theoretically, the guided filtering assumes a linear relationship between the input image
and the output image in the local window centered at pixel k. The output image q can
be expressed as:

qi = akIi + bk, ∀i ∈ ωi (1)

Where ak and bk are constant in the window ωi, respectively. The r decides the size of
the window. The cost function of minimizing the difference between the output filtering
q and input filtering p is shown following.

E (ak, bk) =
∑
i∈ωk

(
(akIi + bk − pi)2 + εa2k

)
(2)

In this equation, ε is a regularizer parameter to avoid ak to be too big. The equation (2)
can be calculated through linear regression adopting the following two equations [16]:

ai =

1
|ε|
∑

i∈ωk
(Iipi − µkp̄k)

σ2
k + ε

(3)

bk = p̄k − akµk (4)

Where σ2
k and µk denote the variance and mean of ωk in I , respectively. |ε| represents

the number of pixels in ωk. p̄k is the mean of ωk. The final filtering output is given by:

qi =
1

ω

∑
i∈ωk

(akIi + bk) = ākIi + b̄k (5)



Image Fusion Adopting Guided Filter and Multi-resolution Singular Value Decomposition 21

3. Multi-resolution Singular Value Decomposition. For an arbitrary image matrix
A ∈ Rm×n, there is the orthogonal matrix U ∈ Rm×n which satisfied [17-18]:

UTAV =
∑

:=

[∑
1 0

0 0

]
(6)

Therefore, the A can be expressed as A = U
∑
V T . Where

∑
1 is a non-singular diagonal

matrix size of m× n . The diagonal elements of
∑

1 can be decreasingly aligned into the
following.

σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0 (7)

Where r is the rank of matrix A. According to orthogonal matrix U and V depending
on matrix A, the SVD is nonlinear. The A is equivalent to

∑
1 , according to

ATA =


σ2
1

σ2
2

...
σ2
n

 (8)

The larger singular value in the diagonal matrix above can be regarded as the approxi-
mation component of the image information. In a similar way, the smaller singular value
can represent the detail component of the image. The M × N image I can be divided
into non-overlapping 2×2 blocks and arrange each block into a 4×1 vector by stacking
columns to form the data matrix X1 . Decompose the data matrix I1 by SVD, we can get
T = USV T , where U and V are orthogonal matrices with size of 4×4. T is multiplied by
the UT , we can get the matrix A = UTT = SV T . The elements in each row of A may be
rearranged to form M/2×N/2 matrix A1, A2, A3 and A4. A1 represents the approximation
component the image I. And the A2, A3 and A4 denote as the three detail components
of the image I, respectively. The A1, A2, A3 and A4 are similar to the LL, LH, HL, and
HH components of the traditional wavelet transform. Successively, next level of MSVD
can be applied in the approximation component [19].

4. Fusion Rule.

4.1. Fusion Rule of Approximation Component. In the tenengrad function, the
Sobel operator [20, 21] is adopted to calculate the spatial gradient in the vertical and
horizontal directions of image. Tenengrad function can be given by the following formula
[22]:

T (i, j) =
∑
i

∑
j

[
f 2
h(i, j) + [f 2

v (i, j)
]

(9)

Where fh(i, j) and fv(i, j) are the gradients along the horizontal and vertical direction,
separately. They can be expressed as:

fh(i, j) =(f(i+ 1, j − 1) + 2f(i+ 1, j) + f(i+ 1, j + 1))

− (f(i− 1, j − 1) + 2f(i− 1, j) + f(i+ 1, j + 1))
(10)

fv(i, j) =(f(i− 1, j + 1) + 2f(i, j + 1) + f(i+ 1, j + 1))

− (f(i− 1, j − 1) + 2f(i, j − 1) + f(i+ 1, j − 1))
(11)

Owing to the guided filters ability to enhance the image detail part and image edge,
the guided filter can be used as contrast performance metrics function of the image to
more effectively extract the salience regions. When the tenengrad value of MSVDl(i, j)
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approximation component is adopted as the guide image in the guided filter, the output
of the guided filter can be expressed as:

ql(i, j) =
1

ω

∑
k∈ωk

(
akT

l (i, j) + bk
)

= ākT
l (i, j) + b̄k (12)

Where the parameter l denotes ql(i, j) and T l(i, j) that are calculated by the approxima-
tion component of the MSVD coefficient instead of the detail component. The contrast
performance metrics of tenengrad function will be enhanced by the guided filter method
guided by the tenengrad function of the MSVD approximation coefficients. So, the fusion
decision map can be calculated as following.

Mapl(i, j) =

{
1, if qlA(i, j) ≥ qlB(i, j))

0, if qlA(i, j)<qlB(i, j))
(13)

Thus, the new fused approximation component can be selected according to the decision
map.

MSVDl
F (i, j) =

{
MSVDl

A(i, j), if Mapl(i, j) ≥ 1

MSVDl
B(i, j), if Mapl(i, j)<0

(14)

Where MSVDl
A(i, j) are MSVDl

B(i, j) the MSVD approximation component of the source
image A and B in MSVD domain. The A, B and F represent the source image A, source
image B, and fused image F , respectively.

4.2. Fusion Rule of Detail Component. Spatial frequency (SF) [23-24] is calculated
according to the row and column frequency of the image. The spatial frequency can be
calculated according to the Eq. (15).

SF (i, j) =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(Ii,j − Ii,j−1)2 + (Ii,j − Ii−1,j)2 (15)

Where Ii,j is the pixel value of the image in the i column and j row in the image I of M
column and N row. However, the SF of the image is not enough to express the salience
character due to lack of the direction information carried in the image. The modified
spatial frequency [25] is capable of capturing the fine details carried in the image because
of incorporating the direction information except for the row and column frequency. The
modified spatial frequency can be calculated as:

MSF (i, j) =
√
SF 2(i, j) +DF 2(i, j) (16)

Where DF (i, j) is the direction frequency of the image.

DF (i, j) =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(Ii,j − Ii−1,j−1)2 + (Ii−1,j − Ii,j−1)2 (17)

The MSF of the source image can express the performance of contrast measure in the
source image. Similarly, the MSF can be applied in transform domain to distinguish
the contrast and clarity of multi-scale transform coefficients. Furthermore, the contrast
performance metrics of MSF can be enhanced by guided filter method guided by modified
spatial frequency of the MSVD detail component. Hence, the of MSDd(i, )jthe MSVD
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Figure 1. Schematic diagram of the proposed fusion method.

detail component is adopted as the guide image in the guided filter. The output of the
guided filter can be expressed as:

qh(i, j) =
1

ω

∑
i∈ωk

(akMSF h(i, j) + bk) = ākMSF h(i, j) + b̄k (18)

Where the parameter h denotes that the qh(i, j) are MSF h(i, j) calculated by the detail
component of the MSVD coefficient instead of the approximation component. Therefore,
the fusion decision map can be illustrated as follows.

Maph(i, j) =

{
1, if MSF h

A(i, j) ≥MSF h
B(i, j))

0, if MSF h
A(i, j)<MSF h

B(i, j))
(19)

Thus, the new fused detail component MSVDh(i, j) can be selected according to the
following.

MSVDh
F (i, j) =

{
MSVDh

A(i, j), if Maph(i, j) = 1

MSVDh
B(i, j), if Maph(i, j) = 0

(20)

The proposed approach is shown in Fig.1.

5. Experiments and Discussion. To demonstrate the effectiveness of the presented
scheme, two groups of experiments have been executed. The first group of experiments are
performed on multi-focus images shown in Fig.2(a)-(h). The second group of experiments
are implemented on multimodal medical images shown in Fig.3 (a)-(d). Fig.3(a) and
Fig.3(b) are the magnetic resonance imaging (MRI) and computed tomography (CT),
respectively. Fig.3(c) and Fig.3(d) are the MRI and magnetic resonance angiography
(MRA), separately. In the two groups of experiment, the performance of the proposed
method is compared with those of the traditional MSVD method [10], the multi-scale
geometry analysis method based on NSCT [25] and the cross bilateral filter method [26].
The Naidu’s method based on the MSVD adopted the average and max rules to fuse the
approximation component and the detail component, respectively. In the Sudeb’s method
based on NSCT, the source images are decomposed by the three scales. The directions
in three scales are set to 1, 2, and 4, respectively. The ′pyrex′ and ′vk′ are utilized as the
pyramid filter and orientation filter, respectively. The parameter shown in the paper [26]
are adopted in the Kumar’s method based on the cross bilateral filter. In the proposed
method, the one level decomposition same as the Naidu’s method is used in the MSVD.
To show the effeteness of different local window radius Eps and regularization parameter
r in guided filter, an experiments are conducted on Fig.3 (c) and Fig.3 (d) by proposed
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Source multi-focus images for fusion experiments. (a), (c), (e)
and (g) focus on the left part; (b), (d), (f) and (h) focus on the right part.

(a) (b) (c) (d)

Figure 3. Source multimodal images for fusion experiments. (a), CT; (b),
MRI; (c) MRI; (d) MRA

method. The QAB/F value by different parameters are shown in Tab.1. The right part of
Tab.1 is the different QAB/F values by different regularization value and the local window
radius is set to 16. The right part of Tab.1 are different QAB/F values by different local
window radius value and regularization parameter is set to 0.04. There is not obvious
difference by using different local window radius value and regularization. When local
window radius is equal to 16 and regularization parameter is equal to 0.04, QAB/F value
is biggest. Hence, In this paper, the local window radius and regularization parameter of
guided filter are set to 16 and 0.04, separately.

5.1. Comparison on multi-focus image fusion. Four pairs of multi-focus images
shown in Fig.2 are utilized to evaluate the performance of the proposed scheme. Fig.4
demonstrates the fusion result by the proposed method and the other three methods men-
tioned above. For the sake of demonstrating the difference of fusion result, the enlarged
part images of Fig.4 are illustrated in Fig.5. As shown in Fig.5(b), Naidu’s method pro-
duces obvious blurred edges around the character. There are obvious artifacts in Fig.5(c)
fused by Sudeb’s method. Fig.5(d) shows better fusion result but introduces artifacts
around character in the upper right section of Fig.5(d). There are minimal artifacts
around the object boundaries images in Fig.5(a) fused by the proposed scheme. Further-
more, the enlarged part of the image demonstrate that there are more clear artifacts in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Source multi-focus images for fusion experiments.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Comparisons on the enlarged part in Fig. 4.

Fig.5(g) and (h) than in Fig.5(f) and (e). Fig.5(e) shows the better image clarity and
smaller artifact than the Fig.5(f) does. For comparison purpose, the QAB/F metric [27]
and mutual information (MI) [25] are employed as objective criteria. QAB/F measures
the amount of edge information transferred from the source images to the fusion images
and MI computes how much information from source images is converted into the fusion
result. The explanations of QAB/F and MI metric are elaborately introduced in reference
[27] and [25], respectively. It can be known that the larger of the objective criteria values
and the clear fused image we get, the better fusion performance the method has. It can be
obviously concluded from Tab.2 that all of the QAB/F and MI value of four pair of multi-
focus images fused by the proposed algorithms are largest in the four methods except the
QAB/F of Fig.4(d) produced by Kumar’s method. However, the visual performance of
above demonstrate that the Fig.4(e) by the proposed algorithms is obvious better than
the Fig.4(d) by Kumar’s method is. As a whole, the proposed scheme is effective in merg-
ing multi-focus images than the other three methods from both visual performance and
the objective metrics.

5.2. Comparison on multimodal medical image fusion. Multimodal medical image
fusion plays an import role in the clinic diagnosis and provides the physician with the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Source multimodal images for fusion experiments.

complementary image information merged by different modal image. The experiments on
two pairs of multimodal medical images are executed to illustrate the effectiveness of the
proposed method. The fused results produced by the four methods are demonstrated in
the Fig.6. Obviously, Fig.6(b) lost all of white boundary in Fig.4 (b). The upper part of
white boundary in Fig.4 (b) is lost in Fig.6(d). The labeled parts with white information
transmitted from Fig.4 (b) are clearer than the corresponding part in Fig.6(d). From
Fig.6(e)-(h), it is obvious that Fig.6(e) shows the higher clarity and contrast than the
other three images does. There are many unwanted degradations in Fig.6(g) and Fig.6(h).
From Tab. 3, QAB/F and MI value of two pairs of multimodal medical images are largest
in the four methods. Taken together, the proposed scheme is more effective than the
other three methods from both visual performance and the objective metrics in merging
the multimodal medical images.

5.3. Computation time analysis. Tab.4 demonstrates the computation time of all
methods. Kumar’s method is the slowest and Naidu’s method is the fastest. The proposed
method is faster than Sudeb’s method and Kumar’s method. Because the modified spatial
frequency and the guided filter need 80 percent time to produce the decision map. It
spends about 70 percent time on the firing times of the PCNN about seventeen direction
subbands by the NSCT decomposition in the Sudeb’s method the PCNN. In the whole,
the proposed method is better in the fusion image quality than the Kumar’s method and
Naidu’s method with effectively reducing time complexity.

6. Conclusion. A fast and effective image fusion method adopting guided filtering is
proposed to fuse the multi-focus images and multi-modal medical images. The proposed
algorithm utilizes multi-resolution singular value decomposition to decompose the source
images into approximation component and detail component like the traditional wavelet.
The tenengrad function and the modified spatial frequency are adopted to evaluate the
contrast and clarity of the approximation component and detail component, respectively.
More importantly, the guided filter has the nice edge-preserving smoothing property when
it is used to enhance the different contrast performance functions. The output of the
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guided filter guided by tenengrad function and modified spatial frequency is used to cre-
ate the accurate and effective decision map. Experiments demonstrate that the proposed
method can well preserve the original and complementary information of source images.
Furthermore, the proposed method is computationally efficient in comparison with differ-
ent methods in the computation time.

Table 1. Different QAB/F by different parameters.

Eps QAB/F r QAB/F

Eps=0.01 0.7211 r=1 0.7129

Eps=0.04 0.7375 r=4 0.7183

Eps=0.08 0.7358 r=8 0.7218

Eps=0.16 0.7321 r=12 0.7219

Eps=0.20 0.7255 r=16 0.7375

Eps=0.24 0.723 r=20 0.7243

Eps=0.28 0.7218 r=24 0.7139

Table 2. Objective evaluation on the multi-focus images fusion result.

Images Metric Proposed Naidu’s Sudeb’s Kumar’s

Pepsi
MI 8.0900 6.5321 7.6071 7.8872

QAB/F 0.7770 0.6709 0.7567 0.8628

Lab
MI 7.7038 6.9411 7.7021 7.4774

QAB/F 0.7375 0.6221 0.7178 0.7321

Bonsai
MI 8.1741 6.0158 7.0524 6.8310

QAB/F 0.7288 0.5668 0.6868 0.6923

Disk
MI 8.0220 5.8289 7.0584 6.6735

QAB/F 0.7248 0.5587 0.6978 0.6950

Table 3. Objective evaluation on the multimodal images fusion result.

Images Metric Proposed Naidu’s Sudeb’s Kumar’s

MRI and CT
MI 4.6448 3.6832 4.0060 4.3780

QAB/F 0.6262 0.4656 0.6042 0.6164

MRI and MRI
MI 4.0902 3.5877 3.8245 3.7450

QAB/F 0.5442 0.4247 0.5823 0.5364

Acknowledgment. This work was supported in part by National Natural Science Foun-
dation of China under grants 61702347, 61401308 and 61572063, the Natural Science
Foundation of Hebei Province under grants F2018210148, F2016201142, F2016201187 and
F2017210161, and Education Department of Hebei Province under grant QN2017132. The
authors also thank the anonymous referees for their valuable suggestions.



28 P. Geng, Z. Y. Wang, and X. M. Sun

Table 4. Computation time for different methods (unit: second).

Images Size Proposed Naidu’s Sudeb’s Kumar’s

Fig.3(a)-(b)
464 × 464 4.6448 3.6832 4.0060 4.3780

0.6262 0.4656 0.6042 0.6164

Fig.3(c)-(d)
256 × 256 4.0902 3.5877 3.8245 3.7450

0.5442 0.4247 0.5823 0.5364

Pepsi
512 × 512 4.6448 3.6832 4.0060 4.3780

0.6262 0.4656 0.6042 0.6164

Disk
480 × 640 4.6448 3.6832 4.0060 4.3780

0.6262 0.4656 0.6042 0.6164

Bonsai
944 × 736 4.6448 3.6832 4.0060 4.3780

0.6262 0.4656 0.6042 0.6164
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