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Abstract. In recent years, vision-based localization technology in driving assistance sys-
tem has drawn much attention. In this paper, an Advanced SeqSLAM method is proposed
to solve the problem of localization due to the high similarity of scenes in high-accuracy
scene matching of light rail system. In this method, salient regions with discriminative
information are extracted from high-similarity frames of reference sequences by off-line
processing, and binary feature descriptors are generated in these regions to improve the
speed and precision of scene matching. Compared with the local features, the error of
the proposed scene matching method is reduced by 31.43% and the computation time is
reduced by 94.22% in the Hong Kong MTR dataset. Compared with the scene tracking
algorithm of SeqSLAM, the precision of scene tracking based on proposed binary features
in salient regions is increased by 9.84% compared without significant increase of running
time in the Nordland dataset. The experimental results show that the proposed method
improves the performance of the light rail localization.
Keywords: Vision-based localization; Scene tracking; Salient region detection; Binary
feature extraction

1. Introduction. In recent years, advanced driver assistance systems (ADAS) are widely
used in vehicle scheduling systems to improve the safety. As an important part of ADAS,
the localization module is the basis of other function modules. Due to the complex en-
vironments including tunnels, urban canyons formed by skyscrapers and even inside of
the buildings, the instable signal in the ADAS system for light rail based on Global Posi-
tion System (GPS) poses a huge safety risk for train driving and scheduling. Therefore,
the localization technology based on visual information has become an active research
area [1, 2].
Vision-based localization system collects visual information during vehicle travelling

and transforms it into topological map [3], which is stored in the database. The nodes
and edges contained in the topological map represent the defined scenes and the relation-
ships between scenes, respectively. When the vehicle enters the same scene again, the

500



Advanced SeqSLAM using Discriminative Information for Light-Rail Localization at High Frame Rate 501

localization system locates the current position based on the current frame taken by the
camera using scene matching to find the most similar node/scene in the topology map. In
the light rail localization system, the topology map can be simplified to one-dimensional
scene chain, as shown in Fig.1. Meanwhile, the location information can be obtained by
the route-based scene tracking algorithm [4].
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Figure 1. Topologic map for light rail localization system

The scene matching based on visual information may suffer from condition changes
such as moving objects and illumination changes. Therefore, laser radar [5], infrared
sensor [6] and stereo camera [7] are widely used in localization system to obtain the stable
information of scene. However, these methods rely on special sensors and can hardly be
migrated to mobile platforms. Therefore, monocular camera-based visual localization is
still a hot area of research [8, 9].

Conventional visual feature descriptors, such as Scale-Invariant Feature Transform
(SIFT) [10] and Speeded-Up Robust Feature (SURF) [11] are used to generate the descrip-
tors of scenes [12, 13, 14]. The machine learning-based methods extract the stable features
of the scene [15, 16, 17], or remove illumination-sensitive components [8, 9, 12, 13]. In
recent years, with the success of deep learning methods, Convolutional Neural Networks
(CNNs) [18] have been applied to the vision-based localization system to obtain stable
scene information [14, 19]. Scene change learning [17, 20, 21, 22] predicts the condi-
tion changes to match scenes under different conditions. However, these learning-based
methods require a large number of video sequences and manual calibration to generate
training data. Therefore, the localization system based on single reference sequence still
faces many challenges [7].

The accuracy of vision-based localization is determined by the frame rate of reference
sequence. The reference sequence at higher frame rate records more location information.
Therefore, location information with high accuracy can be obtained through frame-by-
frame matching. However, due to the high similarity of the scenes in high-frame-rate
railway sequence, such as 25 frame per second (fps) shown in Fig.1, the reference sequence
is down sampled to 1 fps in the time domain [4, 12] to increase the match rate but reduce
the accuracy. Therefore, vision-based localization with high frame rate reference sequence
is still an important bottleneck.

In order to solve the problems of large visual data training, low localization accuracy
and high computational complexity, this paper proposed an Advanced SeqSLAM method
with salient region detection and binary feature extraction for high-accuracy scene match-
ing based on single monocular sequences. Compared with other methods, the proposed
method has the following innovations: 1) a salient region detection method is proposed for
single monocular reference sequence to distinguish continuous similar frames (as shown
in Fig.1); 2) a salient region-based binary feature is proposed to accelerate visual feature
extraction for scene matching, which meets the requirement of real-time scene tracking
system; 3) an Advanced SeqSLAM scene tracking approach based on discriminative in-
formation is designed for high accurate light rail localization.
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2. Method. This part contains the two parts of our system: discriminative information
learning in offline module and discriminative information based scene tracking in online
module. As shown in Fig.2, the salient regions in each reference frame are labeled firstly.
The binary patterns of these salient regions are generated, which are used to extract the
binary features of the reference frames and current frames.
In the online module, for each current frame, a series of candidate matching reference

frames are retrieved by the SeqSLAM method in the offline module. The best matched
reference frame for the current frame is identified by the binary feature verification to
obtain the current location of the train.
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Figure 2. The framework of the proposed method

2.1. Discriminative information learning. The expected salient regions contain the
difference between high-similarity frames. To reduce the computational complexity and
improve the stability of the algorithm, we first establish the region of interest (ROI) in
the frame for further key region detection.
For vision-based localization system, three categories of useless areas should be removed

from the ROI in light-rail sequence frame. The removed areas include a rectangular area
with temporary occlusion caused by other trains, the track area without significant change
over time and the blur area near the boundary of the frame.
The salient regions in the video frame consist of pixels with higher discrimination

power, and the saliency scores are used to measure this power of the pixels. The saliency
score of a pixel reflects the difference between that pixel and the corresponding pixels
in same location of another frames. The pixels in a video frame ft at a certain moment
t are denoted as p(x, y, ft). The set of neighbor frames is denoted as F(t). The visual
information of p(x, y, ft) is represented by the Histogram of Oriented Gradients (HOG)
feature [23] in the surrounding area. The saliency score S of p(x, y, ft) can be calculated
by equation (1).

S(x, y, ft) =
1

T

∑
fi∈F(t)

∥D⃗(x, y, ft)− D⃗(x, y, fi)∥2 (1)

where the D⃗(·) is the HOG feature vector of pixel p(·). The F(t) is defined by equation
(2).

F(t) =
{
fi|i ∈

[
t− T

2
, t+

T

2

]
, i ̸= t

}
(2)
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where T is the number of the neighbor frames in F(t).
After calculating the saliency scores of all the pixels in the ROI, the salient regions are

obtained by grouping the pixels which have higher scores than the predefined threshold.
Fig.3(a) shows the saliency scores of the pixels within ROI of a frame and the salient
regions extracted from the frame. The red area represents a region of high significance,
and the blue color in turn. When the value of threshold is 1.05 times the average value
of the saliency scores in the ROI, Fig.3(b) contains two salient regions while the small
regions with the bounding box smaller than 40× 40 are easily disturbed by noise and not
regarded as the salient regions.

 
 

(a) (b)

Figure 3. Example of saliency score and salient regions. (a) Heat-map of
saliency score in ROI. The pixels with higher saliency score are drawn in
red, while blue areas have lower saliency score. (b) The extracted salient
regions.

Compared with the conventional feature description, the binary features represented
by BRIEF [24] and ORB [25] have less computational complexity in the extraction and
matching stage, and are widely used in real-time systems. However, these binary feature
descriptors are designed for small regular regions, which means not suitable for large and
irregularly shaped regions. In this section, we generate specific binary patterns for salient
regions in the reference sequence to calculate the binary features of the reference frame
and the current frame when they are in the matching procedure.

The binary feature vector consists of cascaded bits, each of which reflects the intensity
relationship of a certain pixel pair in the feature description area, as shown in equation
(3).

τ(p1, p2) =

{
1, I(p1) > I(p2),

0, otherwise,
(3)

where I(·) is the pixel intensity. t(·) is the binary test.
For one reference frames ft, create its pixel set P (ft), which contains all the pixels in

the salient regions. The binary pattern H(ft) is established by randomly selecting N pixel
pairs in P(ft). The binary descriptor B(ft) can be generated by equation (4).

B(ft) =
∑

0≤i≤N

2iτ(pm, pn) (4)
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where pm , pn ∈ H(ft). N is the number of the pixel pairs in H(ft).
The pixel pairs in H(ft) can be divided into two categories. The intra-pair contains two

pixels coming from the same salient region which records the local visual information of the
region. Another type, called inter-pair, contains two pixels coming from different regions.
Therefore, the pixel pairs record the relative position between these salient regions.

2.2. Advanced SeqSLAM scene tracking. For each current frame, the tracking mod-
ule in the online phase retrieves the best matching frame in the reference sequence using
the SeqSLAM. However, due to the high frame rate of the reference sequence, the SeqS-
LAM fails to identify the most accurate matching frame and return a series candidate
frames with similar appearances. The proposed advanced SeqSLAM verifies these candi-
dates with learning-based binary feature to obtain the best matching reference frame.
Denote the current frame as fC,t. Qt is the candidate frame set returned by SeqSLAM.

The extracted binary feature of frame fR,i in Qt is denoted as B(fR,i). The Hamming
distance is used to measure the similarity between fC,t and fR,i, which is denoted as
H(B(fC,t, B(fR,i)). The best matching frame fmatched for fC,t can be identified with
equation (5).

fmatched(fC,t) = argmin
fR,t∈Qt

(
H(BfC,t

, BfR,i
)
)

(5)

where H(·) is the Hamming distance function.

3. Experimental results and discussions. In order to evaluate the validity and per-
formance of the proposed salient region and the binary feature extraction method, we
collect the results of two experiments using the Hong Kong MTR dataset and a publicly
available Nordland dataset and give some discussions in this section.

3.1. Dataset. The two video sequences in the Hong Kong MTR data set were captured
by our smartphone installed in light rail vehicles with a video resolution of 640×480 and a
frame rate of 25 frames per second. Due to the different collection time, the illumination
condition and the train speed are all different in these two sequence. All frames are
manually calibrated. The Nordland database contains four sequences collected in four
seasons with a video resolution of 1920× 1080 and a frame rate of 25 frames per second.
In this paper, 6000 frames in summer and fall are used as training and testing data and
downsampled to 640×480. The two sequences keep running at the same speed. Therefore,
the frames with same index number were collected from the same location.

3.2. Evaluation for salient region. In order to evaluate the validity of the salient
region proposed in this paper, we compared the accuracy of HOG-based scene matching
with salient regions and other 3 methods without salient regions: 1) a global HOG feature
that uses a HOG feature to describe the entire video scene; 2) the local HOG feature that
divides the frame into 40 × 40 macroblocks and calculates HOG feature vectors in each
of the macroblocks respectively; 3) the HOG feature vector of macroblocks located in
the region of interest is calculated. 4) HOG feature vectors are calculated in the salient
regions proposed in this paper.
We matched the single frame scene in the reference sequence with the continuous scene

with high similarity in the current sequence within Hong Kong MTR dataset, and used
the offset between the matching result and the artificial calibration result as the matching
deviation. The average calculation time and matching offset of the four methods are
shown in Table 1.
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Table 1. Computational time and matching offset of matching.

Method
Matching offset Computational time

(frame) (s)

Global HOG feature 15.24 0.0593
Local HOG feature 2.10 62.4205
HOG feature in ROI 2.26 13.5960
HOG feature in salient region (proposed) 1.44 3.6058

The scene matching based on global HOG features is the fastest, but the matching
offset with value of 15.24 makes it can be hardly used in the real application. Although
the matching offset of scene matching based on the local HOG features drops to 2.10
frames, the huge computation time can not meet the requirement of the practical system.
On the other hand, the computation time of scene matching based on the ROI decreased
by 78.22%, but the matching offset was increased by 0.16 frame. Compared with the local
HOG feature method, the matching offset is reduced by 31.43% and the matching time is
reduced by 94.22% based on the scene matching method proposed in this paper.

The experimental results show that the global HOG features only extract the rough
visual feature of the whole video frame. Although the computational complexity is low,
the matching offset is too large due to the lack of the detail information of scene. The
local HOG features based method can record both the details and global information of
the scene. However, the high complexity of HOG feature calculation and feature matching
makes this method unable to be used in the practical system. The ROI based method
reduces the number of macroblocks used to calculate HOG features, thus greatly reducing
the time complexity of scene matching. With the salient region based method, the scene
matching module only calculates the region with the most discriminative information in
the scene. Meanwhile, it reduces the computational complexity of scene feature calculation
and scene matching and reduces the noise interference caused by non-critical regions to
scene matching.

3.3. Evaluation for Advanced SeqSLAM scene tracking. The proposed Advanced
SeqSLAM scene tracking method was tested in Nordland dataset. The reference sequence
was the fall sequence, and the summer sequence was used as the current sequence. As a
novel route-based scene matching algorithm, SeqSLAM [4] is widely used in path-based
scene tracking algorithms [26, 27] and compared with proposed method. We also compared
our approaches with a state-of-art LDB feature [28]. The matching offset between the
actual result of the scene matching and the ground truth of less than 3 frames is considered
as the correct match and vice versa as the wrong match. After counting all the correct
matches and wrong matches, the matching precision can be calculated using equation (6).
The average of matching offset between the actual and ideal results was also calculated
to measure the performance.

Precision =
correct match

correct match+ wrong match
× 100% (6)

Table 2 shows the comparison of precision and computational time between proposed
method and other methods. Compared with SeqSLAM, the scene tracking precision of
proposed method is improved by 9.84% and the matching offset is reduced by 39.79%
without significantly increasing the time cost. The proposed method also shows the
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better performance than the LDB-based method with increasing the precision by 2.68%
and reducing the offset by 38.66%.

Table 2. Precision and computation time of scene tracking.

Method Precision
Matching offset Time

(frame) (ms)

SeqSLAM 89.56% 1.3652 53.23
LDB 96.72% 1.3400 51.55
Proposed method 99.40% 0.8220 54.82

(a) Distance distributions of SeqSLAM and proposed method Current frame C#7370 ?

R#7366 R#7367 R#7368 R#7369 R#7370

R#7371 R#7372 R#7373 R#7374 R#7375

(b) Reference frame R#7366–R#7375

Figure 4. The distribution of matching distance of SeqSLAM and pro-
posed method.

Fig.4(a) shows the matching distance distribution of the current frame C#7370 in the
neighborhood of ground truth (R#7370 reference frame). In this figure, the horizontal
axis is the reference frame number, the left vertical axis is the matching distance of the
SeqSLAM method, and the right vertical axis is the Hamming distance based on the
proposed Advanced SeqSLAM scene tracking method in this paper.
In the SeqSLAMmatching result, the matching distances between current frame C#7370

and 10 reference frames, including R#7366 and R#7375, are 0, as shown by the black
line in Fig.4(a). In contrast, the binary feature proposed in Advanced SeqSLAM reaches
the minimum matching distance at the ideal matching result (horizontal axis 7370), as
indicated by the blue line.
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Fig.4(b) shows the 10 reference frames with the matching distance of 0 in SeqSLAM.
These 10 reference frames contain high similar scenes. This shows that the global features
used by SeqSLAM reserve only the rough information about the scene and can hardly
distinguish between these scenes with high similar appearance. The proposed binary
features are generated in the salient regions, while the salient regions contain the most
prominent visual information of the frame relative to the neighbor frames. The experi-
mental results show that the binary feature proposed in Advanced SeqSLAM preserves
these salient features and have better performance in scene tracking at high frame rate.

4. Conclusions. This paper presents an Advanced SeqSLAM for high-accuracy real-time
scene matching with salient region detection and binary feature extraction. Aiming at the
problem of high similarity of continuous scene at high frame rate sequence, this method
analyzes and extracts the salient regions containing the discriminative information of
scenes frame by frame. Meanwhile, in order to meet the requirement of real-time system,
the binary features are extracted for the irregular salient regions. The experimental
results in Hong Kong MTR dataset and Nordland dataset show that the proposed salient
region and binary feature can improve the precision of scene matching while ensuring the
efficiency of scene tracking system.
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