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ABSTRACT. The generalized orthogonal matching pursuit method supposes that the spar-
sity is known, however, the sparsity is unknown in many practices. To overcome the
problem, an tmproved method that can reconstruct signal without the prior sparsity in-
formation is proposed. The proposed method divided the signal reconstruction into two
stages. The first stage will be stopped until the residual equal or less than the chosen
threshold, and the size of the current estimated support set is used as an initial valued of
adaptive parameter. In the second stage, a backtracking step is executed. We separately
use the size of current adaptive parameter and updated adaptive parameter that is the sum
of current adaptive parameter and the number of chosen indices, as the size of estimated
support set, and compare their corresponding residual. If the residual of former is larger
than the latter, the updated adaptive parameter is used as the new adaptive parameter;
else we do not update the adaptive parameter. The simulation results demonstrated that
the proposed method could reconstruct signal without requiring prior information of the
sparsity. This method had a better recovery performance than the original algorithm..
Keywords: Generalized Orthogonal Matching Pursuit; Reconstruction performance;
Sparsity information; Threshold.

1. Introduction. In recent years, we have seen significant interests and research progress
in the area of compressive sensing (CS) [1], which can surpass the limits of the Nyquist
sampling rate to exactly reconstruct signal from a small number of random projections of
a sparse signal which contain enough information for exact signal reconstruction. CS dif-
fers from the traditional Nyquist sampling theory and includes three procedures: sparse
representation, non-related linear measurement, and signal reconstruction. The recon-
struction algorithm aims to recover signals accurately from the measurements, and this
step is one of most important parts of CS.

The challenge of compressed sensing is in solving the nonlinear optimization problem
which is NP hard. Many reconstruction algorithms have been proposed to solve the
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problem and obtain the original sparse signal from measurements. Two major classes of
reconstruction algorithms are /;-minimization and greedy pursuit algorithms.

Common /;-minimization approaches include basis pursuit (BP) [2], Gradient projection
for sparse reconstruction (GPSR) [3], iterative threshold (IT) [4], and other algorithms.
Those algorithms proposes good performance in solving a convex minimization problem,
but they have a higher computational complexity.

Greedy algorithms have excellent performance and small cost in recovering sparse sig-
nals from compressed measurements. A greedy algorithm proposed early was the matching
pursuit algorithm (MP) [5] which uses greedy heuristics to select the basis that spans the
space for non-zero elements. Building on the MP algorithm, the orthogonal matching
pursuit algorithm (OMP) [6] was proposed to optimize the MP via orthogonalization of
the estimate support set. The OMP has become a well-known greedy algorithm with
wide application. The regularized orthogonal matching pursuit algorithm (ROMP) [7]
was developed to refine the selected columns of the measurement matrix with a regu-
larized rule to improve the speed of OMP. The stage wise orthogonal matching pursuit
(StOMP) [8] selects multiple columns in each iteration via a presupposed threshold. The
subspace pursuit (SP) [9] and compressive sampling matching pursuit (CoSaMP) [10]
proposed similar improvement methods. Both of these algorithms were proposed with
the idea of backtracking, and the difference is that SP selects k columns from the sensing
matrix in each iteration, while CoSaMP selects 2k. The generalized orthogonal match-
ing pursuit (GOMP) was proposed by Wang [11, 12]. The algorithm selects S(S < K)
columns in each iteration. The generalized OMP (GOMP) has received increasing at-
tention in recent years, because the method can enhance the recovery performance of
OMP. Several papers have been published on the analysis of the theoretical performance
of GOMP [11, 12, 13, 14]. However, all the above greedy algorithms require the spar-
sity K as prior information which may not be available in practical applications. The
sparsity adaptive greedy algorithm represented by the sparsity adaptive matching pursuit
(SAMP) [15] to overcome this drawback. Those sparsity adaptive greedy algorithms can
reconstruct the signals without knowing the sparsity.

2. GOMP algorithm. The GOMP is a variation of OMP algorithm. Compared to
OMP, which selects only one column in each iteration, GOMP changes the number of
columns that are selected in each iteration to improve the computational efficiency and
recovery performance.

In kth iteration, GOMP firstly computes the correlation between the columns of the
sensing matrix ¥ and the residual vector 7*~ by ®'r*~! and r* denote residual vector in
kth iteration. Then indices of the columns corresponding to S maximal correlation are
chosen as the new elements of the estimated support set A¥ in each iteration, where A*
is the estimated support set in kth iteration. Next to obtain #* using the least square
method (LS), where 2% is the new approximation of x in kth iteration. The residual
r* € RM is revised by ®,r2,x from y:
Tk:y—éAkfi'Ak (1)

where y = ®x. These operations are repeated until either the iteration number reaches
the maximum ky,x = min(K, M/S) where K is the sparsity ofz , or the Iy -norm of the
residual falls below a threshold ¢ (||7*||; < ¢ ). Ease of understanding, we describe the
GOMP algorithm in Table 1 according to [11, 12].

3. Sparsity adaptive GOMP method. The GOMP only modifies on the identification
step of OMP. OMP selects only one column as candidate in each iteration but GOMP
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TABLE 1. GOMP ALGORITHM

Input: measurements y € RV,

sensing ® € RM*N

sparsity K,

number of indices of columns for each selection S(S < K).
Initialize: iteration count k = 0,

residual vector r° =y,
estimated support set A° = 0.
While |[¥|] > € and k < min{K, M/S} do
k=k+1.
(Identification) Select S largest entries (in magnitude) from ®'7*~*. Then
record the {¢(i)}i=1,2,3......s corresponding to the entries.
(Augmentation) A* = A"t U {p(1), p(2)......0(S)}.
(Estimation of x1) &k = argming,, ,,)=ax ||y — Pull,.
(Residual Update) r* =y — ® 1.

End

Output The estimated support A = argmin ||, — #r|l,, and signal ;5 = ®';y.
T[T =K

selects S columns as candidates in each iteration. When S=1, GOMP is exactly the
same as OMP. That is to say OMP is a special case (S=1) of GOMP. The GOMP made a
simply modification to OMP, however, the promotion to OMP in computational efficiency
and recovery performance is great. This is because GOMP increases the probability of
selecting correct candidate by selecting more candidates. At the same time, GOMP may
select more than one correct candidate in each iteration. That makes it own faster speed
to find the correct support set and exactly reconstruct signal.

Although GOMP own excellent computational efficiency and recovery performance, it
has its drawback. Firstly, the GOMP algorithm needs the sparsity as prior information
to reconstruct signal. Tablel shows that the GOMP algorithm requires sparsity K of the
signal to serve as the iteration stop condition. The S, chosen in the GOMP, also requires
sparsity K to serve as the limiting condition. However, sparsity K is not always available
in many practical applications. Besides, at the same time to select more correct candi-
dates, GOMP also adds more error candidates into the estimation support set. Because
the GOMP can not remove those error candidate out the estimation support set, those
accumulated error candidates will remain in the estimation support set throughout the re-
mainder of the reconstruction process. Those accumulated error candidates will make the
size of estimation support set bigger than the real support set. This will further increase
the cost of the algorithm. To overcome these two problems, we propose a novel sparsity
adaptive GOMP method for signal recovery when the K is unknown, in this section.

The sparsity K is equal to the size of true support set. For the first problem, this new
method uses the estimated size of support set as the substitute of sparsity K. So, the new
method can exactly reconstruct signal using a suitable estimation support set and the
problem how to obtain the sparsity K is converted to how to obtain a suitable estimation
support set. For the second problem, this new method adopts backtracking to enhance
the reliability of indices in the estimation support set. However, when the number of
candidates in the estimation support set is far less than true support set, to execute the
backtracking step and judge whether the size of the estimation support set is suitable is
unnecessary. In order to avoid unnecessary computation cost, this new method adopts the
divide and conquer principle and divide the reconstruction process into two steps using a
specific threshold .

In the first step, when the residual norm H’I”kHQ was larger than the specific threshold ¢,
the method computes the correlation between the columns of the sensing matrix ® and the
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residual vector 7*~! by ®'r*~!. Then indices of the columns corresponding to S maximal
correlation are chosen as the new reliable candidates and are added into the estimated
support setA*. Because the larger the correct candidates in the estimation support set,
the smaller residual norm |[|r||, norm .When the residual HT‘IC||2 norm is smaller than ¢
, this suggested there are enough correct candidates in the estimation support set for
current stage. At this point, the new method calculates the size of current estimation
support set as an initial parameter P and entered the next stage.

In the second step, the new method then updates the candidates of the estimation
support set using backtracking to reduce the number of error candidates. The back-
tracking would select L (L = P) largest elements from |z«|. The indices are reported
as they correspond to the elements. The A, is updated by using those indices. The
new method utilized the new estimation support set to generate a new residual r,e,,. If
|7 newl]y < Hrk_1H2 , we consider the L to be suitable. If ||7pel, > Hrk_1H2 , we consider
the L to be too small for the current iteration and update L to L = P 4+ S X step. It is
a dilatation step size with initial value step= 0. When ||7pep||y > Hrk””z, step=step+1.
When L was considered too small, the method adopted a stage-wise approach that ex-
panded the estimated support set stage by stage. When the new method completes the
backtracking, it updates r*=r,.,, and proceeds to the next iteration. This continued until
the iteration number reached M (kpax = M) or the l,-norm of the residual fell below a
thresholde. The process of the proposed algorithm was expressed in table II.

The new method could reconstruct the signal without the sparsity K from the mea-
surements. This showed that the new method achieved the sparsity adaptive function.
The proposed method also had a better reconstruction performance than the GOMP be-
cause the backtracking was added. Experimental evidence demonstrated that our changes
improved the performance.

TABLE 2. SPARSITY ADAPTIVE GOMP METHOD

Input: measurements y € RM7
sensing ® € RM*N
sparsity K,
number of indices of columns for each selection S(S < K).
threshold t.

Initialize: iteration count k = 0,
residual vector 7° =y,
estimated support set A° = 0,
dilatation step size step = 1.

I

While [[¥]]2 > € and k < M do
k=k+1;
First Stage: 1.Select S largest entries (in magnitude) from ®'r*=1. Then the indices were

recorded {¢(¢)}i=1,2,3......s corresponding to the entries.
2. AF = AL U {p(1), 9(2)......0(S)}
3. Tpk = arg minsup p(u)=AF ||y - q)uHQ
4. Tiemp =Y — PprTps
5. If ||7temp||y < t, the algorithm goes into the second stage,
else " = riemp.-
Second Stage: 1. When the new method enters the second stage in the first time, calculate
size of current estimation support set Af. P = size (Af ), L= P+ S X step.
Select L largest elements of|x x| .Then record the indices that correspond to
the elements and renew the A, with those indices.
2. Thew =Y — Pprlpk
3. If ||[Tnewlly > Hr’“lHT step = step + 1, ™ = rhew.
End
Output The estimated support A = arg min |&ax — &7, and signal &3 = <I>‘LAy.
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4. Simulation and Discussion. The reconstruction performance of the new method
with sparse signals was evaluated. In each trial, we generated a K-sparse vector x € RV
whose support was chosen at random. Additionally, we constructed a M x N sensing
matrix ¢ with entries drawn independently from a Gaussian distribution N(0,1/M).
t = 10 was empirically chosen. To ensure compatibility with gOMP, the trials used the
same s, ® (M = 128, N = 256). The gOMP threshold e= 107¢ was adopted. We used
MATLAB 7.0 with a quad-core 64-bit processor (Windows 7) for each algorithm. This
was repeated 600 times. The probability of the exact reconstructions and the average
running time for each K was recorded. The probability of the reconstruction and the
running were selected as the two major criterions.

In Figure 1, we compared the probability of successful reconstruction of the proposed
method(S=3) with the ROMP [7], OMP [6], SP [9], CoSaMP [10], StOMP [8], and
gOMP [12](S=3) algorithms. The proposed method had the best reconstruction per-
formance for probability of reconstruction. When K=45, our proposed method remained
near 100% for reconstruction probability. When the reconstruction probability of our
proposed method decreased with a rise in K, it remained the highest of the algorithms
with the same K. We specially chooses S=3 for both the gOMP and the proposed method
to reduce the differences. The trial result demonstrated that the proposed method was
more effective than these mainstream algorithms.

The reason that the proposed algorithm is superior to other algorithms is because
its particular backtracking method.Compared to these algorithms without backtracking
that are OMP,ROMP,StOMP and gOMP,the backtracking of the proposed algorithm can
reevaluate the reliability of candidates of the estimation support set according to their
contribution to the estimated signal. Then the backtracking will remove those unreliable
candidate out the estimation support set.This can reduce the number of error indices in the
estimated support set then improve the signal reconstruction effect.It’s worth nothing that
CoSaMP and SP also adopt backtracking.Compared to CoSaMP and SP, the proposed
algorithm adopts particular backtracking method.In each iteration, the SP algorithm adds
K new candidates into the estimation support set , the CoSaMP algorithm adds 2K new
candidates, but the proposed algorithm only adds S(S < K) new candidates.It means the
proposed algorithm has a higher accuracy in the identification of candidates than CoSaMP
and SP. In order to ensure a higher computational efficiency, the proposed algorithm
innovatively divide the reconstruction process into two steps. In first step,the proposed
algorithm only selects S new candidates into the estimation support set.When the residual
Hrk”Z norm is smaller than ¢ , this suggested there are enough correct candidates in the
estimation support set for current stage. Then the proposed algorithm enter to the second
step and backtracking to the candidates of the estimation support set.The particular
backtracking method is compatible with computational efficiency and accuracy.

We compared the performances of the proposed method and the gOMP with smaller
values for the parameter S(S=3,5,7) in Figures 2 and 3. In Figure 2, we compared the
probability of reconstruction of the proposed method and the gOMP. We compared the
two algorithms from K=35 to K=70. This was because the probability of reconstruction
of both algorithms was 100% for K>10 and close to zero for K>70. The best performance
was the proposed method, with S=5 and S=7. The two curves were near identical. The
proposed method at S=3 has a slightly worse performance than the proposed method with
S=5 and S=7. The performance of the gOMP at S=3 was the best. The performance
of the gOMP at S=5 was worse, however, the performance of the gOMP at S=7 was the
worse overall. The proposed method demonstrated obvious advantages in the probability
of reconstruction.
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FI1GURE 1. Reconstruction performance for the K-sparse Gaussian signal
vector as a function of the sparsity K.

In this experiment, we compared our proposed method and the GOMP. We set two
signals with different sizes (N = 256,512) and three different S(S = 3,10,20). In order
to compare two algorithms with different S, we set the mean of two algorithms to be
observed in the experiment.

In Figure 3, we compared the average exact running time of the proposed method
and the gOMP. The effective running time should be computed in order to achieve a
successful reconstruction. Figure 2 illustrates that the two algorithms ensured 100%
exact reconstruct signal when K<40. We compared the average exact running time of
the proposed method and the gOMP from K=10 to K=40. In Figure 3, the gOMP at
S=>5 had the shortest running time. The running time of the gOMP at S=7 was slightly
higher than gOMP at S=5. The running time of the gOMP at S=3 was higher than
the gOMP at S=7. The trend of the proposed method showed that when the S was
larger, the running time was shorter. Figure 3 shows that the average exact running
time of the proposed method was slightly higher than the gOMP. The proposed effective
sparsity adaptive strategy found it difficult to avoid increasing the running time. Given
the effective sparsity adaptive capacity and the increased probability of reconstruction, the
increased the running time of the proposed method was not unacceptable. The proposed
method remains competitive.

In Figure 4 and Figure 5, we compared the performances of the proposed method and
the gOMP with the larger parameter values S(S=10,15,20).In Figure 4, we compared the
probability of reconstruction of the proposed method and the gOMP. We compared the
two algorithms from K=25 to K=70. Figure 4 shows that the larger S, the worse the
recovering probability performances were for both the algorithms. This was because as
the S increased, the probability of choosing an error increased. When a larger S was
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Prob. of exact recovery vs. the signal sparsity K(M=128,N=256)(Gaussian)
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FIGURE 2. Reconstruction probability of the GOMP and the proposed
method with a small S value.

chosen, those selected error candidates could reduce the probability of reconstruction.
The backtracking in the sparsity adaptive strategy of the proposed method caused the
proposed method to get rid of some unreliable candidates from the estimation support set.
The performances of the proposed method was better than the gOMP when a larger S
was chosen. Figure 4 shows that the proposed method (S=10) had the best performances
for the recovering probability. The proposed method (S=10) had the best performance,
followed by the proposed method(S=15), the proposed method(S=20), the gOMP(S=10),
the gOMP(S=15), and the gOMP(5=20).

In Figure 5, we compared the average exact running times of the proposed method and
the gOMP. We compared the two algorithms from K=10 to K=30. From Figure 5, we
found that the gOMP had no absolute advantage in running time when a larger S was
chosen. The gOMP(S=10) had the shortest running time. The proposed method(S=10)
had the second shortest running time and the gOMP(S=20) had the longest running time.
The running time of the gOMP(S=15), the proposed method(S=15), and the proposed
method (S=20) fell in between the proposed method (S=10) and the gOMP(S=20). These
three curves intertwine with each other and had similar performances.

These simulation results showed that the proposed method had a higher probability of
reconstruction without the sparsity information. This makes the proposed method more
suitable for practice application.
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The running time of recovery vs. the signal sparsity K(M=128,N=256)(Gaussian)
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FicURE 3. The average running time of the gOMP and the proposed
method with a small S value

5. Conclusion. In this paper, we proposed a novel sparsity adaptive generalized orthog-
onal matching pursuit method to for reconstruction of the sparse signal when the sparsity
was unknown. The proposed method initially chose S candidates in order to estimate the
support set of each iteration and set a specifically chosen threshold to estimate the num-
ber of correct candidates. When the residual dropped below the threshold, the proposed
method considered there was to be enough candidates selected for the estimation support
set. The proposed method then executed a backtracking step at various parameters in
order to generate a new residual. The proposed method used the varying parameter to
control the size of estimation support set. If the norm of the new residual was smaller
than the residual of the previous iteration, the proposed method considered the varying
parameter to be suitable. The proposed method then executed the backtracking step
with a varying parameter. If the norm of the new residual was larger than the residual of
the previous iteration, the proposed method considered the varying parameter to be too
small and the parameter was enlarged. The new method estimated the suitable size of
estimation support set step by step in order to consider the sparsity adaptive capability.
The simulation results showed that the proposed method considered the sparsity adap-
tive function and had a better performance than the gOMP in terms of the probability
of exact reconstruction.
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