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Abstract. Particle swarm optimization (PSO) is a population-based stochastic opti-
mization technique that has been widely applied to solve a number of complex optimization
problems. However, PSO is easily trapped into the local optima and appears premature
convergence during the search process. To address these issues, we present an effective
fuzzy particle swarm optimization (abbreviated as EFPSO) algorithm by introducing a
two-input and two-output fuzzy logic controller (FLC) with nine inference rules into the
canonical PSO in this paper. To be specific, the increment of global optimum and the
maximal focus distance of particles are employed as the two-input variables, while the
inertia weight and the constraint factor are adaptively adjusted according to the control
information translated from the FLC in the search process of particles. Conducted exper-
iments in the task of benchmark function optimization and standard image segmentation
demonstrate that the EFPSO proposed in this paper significantly outperforms several
other existing PSO variants in the literature.
Keywords: PSO, FLC, Inertia weight, SA, Premature convergence, GA

1. Introduction. Particle swarm optimization is a swarm intelligence and swarm search
algorithm originating from artificial life and evolutionary computation [1]. Due to the
convenience of realization and promising optimization ability, PSO has been successfully
applied in solving various function optimization problems, or the problems that can be
transformed to the function optimization problems since its advent in 1995. Currently,
PSO has become one of the most preferred choices for optimization problems due to
its lesser memory requirements and better performance for providing solutions closer to
optimum on different benchmark and engineering problems such as computer vision [2],
engineering optimization [3], economic dispatch [4], and other related research areas [5],
etc. It should be noted that the performance of PSO can be changed by varying the
values of its parameters, such as the inertia weight, cognitive and social acceleration
coefficients, and the learning coefficient. Although PSO is a powerful optimization tool
with very few parameters to be adjusted, its operation itself is complicated and difficult to
understand. On the other hand, similar to other evolutionary algorithms [6,7], due to the
lack of knowledge of the dynamic search process, it is hard, if not impossible, to design
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a mathematical model to adaptively adjust these parameters conveniently, especially for
the inertia weight.

Over the last few decades, some understanding of the PSO search process has been
accumulated, and the linguistic description of the search process is also available. These
understanding and linguistic descriptions make fuzzy inference system a good candidate
for dynamically tuning these parameters of particle swarm optimization. Based on this
recognition, a two-input and two-output FLC is introduced into the canonical PSO to
improve its optimization performance. Here, the two-input variables utilized here are as
follows: one is the increment of global optimum (IGO) at successive generations, which
reflects how particles will move in the subsequent search process according to their current
situation. Exactly speaking, the sign of IGO indicates where particles will move towards
(positive sign (+): move towards the objective gradually, negative sign (-): move far away
from the objective gradually, and zero: stay at the original position), and the absolute
value of IGO denotes the moving distance of particles. In addition, it should be noted
that all of the situations discussed here are based on the premise of minimal optimization
problems. The other input variable is the maximal focus distance (MFD) of particles
that is able to reflect the current distribution of particles in the whole swarm, which is
utilized to check the premature convergence of the PSO algorithm. Obviously, a larger
MFD implies a more divergent swarm whereas a smaller one implies a more convergent
swarm. The two-output variables include the inertia weight and constraint factor. The
basic idea behind this scheme is to get a better balance between the exploitation and
exploration during the search process of the particle swarm.

The rest of this paper is organized as follows. Section 2 reviews some related work
on PSO, especially some classical fuzzy particle swarm optimization methods obtained
from the literature. Section 3 introduces the canonical PSO algorithm. In section 4, the
proposed fuzzy particle swarm optimization is elaborated from three aspects including the
fuzzy logic controller, input-output variables of FLC and the fuzzy PSO system design,
respectively. Section 5 reports the experimental results and analysis. Finally, this paper
is ended with some important conclusions and future work in section 6.

2. Related Work. From the literature, it can be clearly observed that most of the
current existing particle swarm optimization variants can be roughly divided into four
categories.
(1) Swarm initialization. Like other swarm based stochastic optimization algorithms,
PSO is first initialized with a population of random solutions (here refers to the positions
of each particle) in the search space, and then begins to enter a loop in order to continue
to search for optimal solutions by updating the particle’s velocities and positions until
some termination conditions are satisfied. In our previous work [8], two kinds of chaotic
maps are firstly exploited to improve the quality of the initial population for PSO with
promising results. Subsequent work [9] employs a similar chaotic opposition-based popu-
lation initialization instead of the purely random one to improve the PSO. In particular,
our recent work [10] introduces chaotic map based initialization and Gaussian mutation
mechanism as well as a local re-initialization strategy into the standard PSO. Extensive
experiments on several well-known benchmark functions demonstrate its effectiveness and
efficiency. In the context of swarm initialization, there has been very little work in this
research direction. However, it is reported that PSO tends to the characteristics of low
stability owing to its non-uniformly distributed initial particles by [11]. Moreover, it is
quite clear that the initial population can definitely affect the convergence speed of swarm
and consequently the optimization performance of PSO.
(2) Parameter selection. Note that the proper selection of control parameters such
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as inertia weight and acceleration coefficients can markedly influence the convergence of
PSO. As the representative work, Tanweer et al.[12] present a self regulating particle
swarm optimization (SRPSO) which incorporates the self-regulating inertia weight de-
termined by the best particle for better exploration and self-perception on global search
direction determined by the rest particles for exploitation in the search space. In [13], a
simplified PSO is developed based on the stochastic inertia weight. It is clearly to be seen
that this variant removes the velocity parameter and obtains inertia weight by means of
random distribution to enhance the local and global search ability of PSO. In addition,
Clerc and Kennedy [14] introduce a constriction factor into the standard particle swarm
optimization that is a function of c1 and c2 to insure the convergence of PSO. In the
work of Ratnaweera et al.[15], a self-organizing hierarchical particle swarm optimizer is
put forward with time-varying acceleration coefficients to control the local search and
convergence to the global optimum solution. Besides, many other acceleration coefficients
[16-19] have also been formulated for PSO to improve its performance, and more details
of them can be gleaned from the corresponding literature.
(3) Topology structure. To increase the diversity of the swarm, different topologies
based particle swarm optimization has been developed in recent years. The salient neigh-
borhood structures applied to PSO include the ring topology [20], the von Neumann
topology [21] and the small world topology [22]. In [23], a PSO with expanding neighbor-
hood topology is developed by combining particle swarm optimization and the variable
neighborhood search to solve the well-known constrained shortest path problem. Recently,
the work by Majercik [24] applies fluid neural networks to create dynamic neighborhood
topologies and introduces fluid neural network particle swarm optimization (FNN-PSO)
with a dynamic neighborhood mechanism. In the meanwhile, Wang et al.[25] develop a
hybrid topology scale-free Gaussian-dynamic PSO for real power loss minimization prob-
lem involving fully connected topology and ring topology simultaneously. In more recent
work [26], a dynamic tournament topology strategy is exploited to improve particle swarm
optimization. To summarize, a suitable topological structure can effectively enhance the
performance of PSO.
(4) Hybrid versions. To hybridize PSO with other auxiliary search techniques has been
an active topic of research in swarm and evolutionary computation for decades. The
work of Davoodi et al.[27] combines an improved quantum-behavior PSO with a sim-
plex algorithm to solve the load flow problem. In [28], a hybrid PSO with artificial bee
colony is presented for high-dimensional optimization problems. In addition, it should be
noted that the combination of PSO with other evolutionary computation techniques like
selection [29], crossover [30] and mutation [31,32] of genetic algorithm has now become a
popular technique for enhancing the performance of PSO. As can be seen from the liter-
ature aforementioned, hybridization is a desirable strategy to keep the balance between
exploration and exploitation for PSO as well as to prevent the stagnation of the swarm
by leveraging the strengths of each of the components of the algorithm.

It seems not wise to give detailed descriptions for various PSO variants existed in the
literature. Instead, this paper attempts to look into them through a unified view that
may help grasp the essentials of these particle swarm optimization algorithms for other
related researchers. So in this section, we will focus on several representative fuzzy PSO
methods in the literature as follows, especially the formulation and the construction of
their corresponding fuzzy logic controllers. Besides, note that a set of same symbols
appeared many times in this work are summarized in the following table so as to improve
the readability.
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Table 1. The symbols and their corresponding meanings

Notation Meaning
ω inertia weight
c1, c2 acceleration coefficients
r1, r2 random numbers under a uniform distribution in [0,1]
α constraint factor
t current iteration
fi fitness value of the i-th particle
favg average fitness value of the swarm for the current generation
N maximum number of particles

2.1. FPSO proposed by Shi & Eberhart [33]. In literature [33], a two-input and one-
output FLC has been designed to improve the performance of canonical particle swarm
optimization. Specifically, the two input variables mentioned here are the current best
performance evaluation (CBPE ) and the current inertia weight. The only one output
variable is the change of the inertia weight. In order to make CBPE be applicable to a
wide range of optimization problems, it is normalized as follows:

NCBPE =
CBPE − CBPEmin

CBPEmax − CBPEmin

(1)

where CBPEmin denotes the real minimum, CBPEmax is the non-optimal CBPE. Note
that the non-optimal CBPE here represents that any solution with CBPE greater or
equal to CBPEmax is not an acceptable solution to the minimization problem (assume
minimization problems). All three fuzzy variables are defined to have three fuzzy sets and
nine rules in the fuzzy system correspondingly. Simulation results show that PSO with a
fuzzy system tuning its inertia weight can improve its performance to a large extent.

2.2. FATPSO proposed by Liu & Abraham [34]. In literature [34], a two-input and
two-output FLC has been devised. One of the input variables is NCBPE that is the same
as defined in [33]. The other is the current velocity (CV ) of the particle. In addition,
one of the output variables is ρ, the scaling factor to control the domain of the particle’s
oscillation. Another is Vck, which controls the change of the velocity threshold according
to the following formula:

Vc = e− [10(1 + Vck)] (2)

A new velocity update strategy is designed as follows:

Vij(t+ 1) = ω
∧
v+c1r1(x

#
ij(t)− xij(t)) + c2r2(x

∗
j(t)− xij(t)) (3)

∧
V =

{
vij, if |vij| > vc
u(−1, 1)vmax/ρ, if |vij| < vc

(4)

where u(-1,1) is the random number, uniformly distributed in the interval [-1,1], and ρ is
the scaling factor to control the domain of the particle’s oscillation according to vmax. vc
is the minimum velocity threshold, a tunable threshold parameter to limit the minimum
of the particle’s velocity. Note that there are two-input and two-output based on six rules
in the fuzzy adaptive turbulent particle swarm optimization (FATPSO) system. Through
numerical experiment, it validates that the performance degrades little as the optimization
problem’s dimension increases.



EFPSO: An Effective Fuzzy Particle Swarm Optimization and Its Applications 1369

2.3. FPSO proposed by Yadmellat & Salehizadeh & Menhaj [16]. In literature
[16], a new fuzzy tuned inertia weight particle swarm optimization (FIPSO) is presented
based on the linguistic fuzzy control structure. More specifically, FIPSO is a two-input
(t and ∆v(t)) and one-output (inertia weight ω) FLC based particle swarm optimization
algorithm. ∆v(t) can be defined as below.

∆vav(t) = |vav(t)− vav(t− 1)| (5)

vav(t) =
1

m ·D
∑
m

∑
D

vid (6)

where ∆vav(t) denotes the average relative velocity. Note that nine dynamic fuzzy control
rules are established for ω, which can meet the different requirement of PSO for inertia
weight during the different search stages. Simulation results have shown that FIPSO has
a better convergence compared to the other versions of PSO variants. Furthermore, the
performance of it does not degrade significantly as the problem’s dimension scales up.

2.4. FPSO proposed by Tian & Zhao [17]. In literature [17], Tian et al. formulate
a novel fuzzy particle swarm optimization with two-input and two-output, in which the
fitness variance (Delt) and mean extremal deviation (Total) are considered as the input
parameters of FLC so as to measure the discreteness of swarm in the search space and
the population diversity respectively. Through this way, the inertia weight and learning
factor of the extended term of PSO can be adaptively adjusted during the search process.

Delt =
1

N

∑N

i=1
(fi − fave)2 (7)

Total =
1

POP

∑POP

i=1
(pBest− gBest)2 (8)

Note that in Eq.(8), POP , pBest and gBest denote the swarm size, individual and global
extremums, respectively.

2.5. Other FPSOs in the literature [18,19,35-40]. Apart from the FPSO algorithms
aforementioned, Kang et al.[18] propose a fuzzy based approach for tuning acceleration
parameters of the PSO algorithm. Bajpai and Singh [32] present a fuzzy adaptive par-
ticle swarm optimization for bidding strategy in uniform price spot market. A hybrid
meta-heuristic fuzzy scheme [36] has been designed based on discrete particle swarm opti-
mization variable neighborhood search to solve quadratic assignment problem. In partic-
ular, the representations of the position and velocity of the particles in PSO is extended
from the real vectors to fuzzy matrices in this hybrid fuzzy scheme. In [37], FCPSO-H is
built to overcome the weaknesses of local optimum and curse of dimensionality, in which
fuzzy logic is employed to control the acceleration coefficients in velocity equation for each
particle. Recently, Juang et al.[38] come up with an adaptive fuzzy PSO based on the
standard particle swarm optimization algorithm. This PSO utilizes fuzzy set theory to
adjust PSO acceleration coefficients adaptively, and is thereby able to improve accuracy
and efficiency of searches. Besides, Robati et al.[39] put forward a balanced fuzzy particle
swarm optimization (BF-PSO) to solve the fundamental optimization problem entitled
traveling salesman problem. Khan et al.[40] develop a fuzzy logic based multi-objective
particle swarm optimization algorithm to efficiently solve the distributed local area net-
works topology design problem. In more recent work [19], to make up for the drawbacks
of trapping into local optima and premature convergence, Neshat has developed FAIPSO.
Its acceleration coefficients c1 and c2 are adaptively adjusted for each particle based on
a fuzzy inference system, which comprises six inputs, two outputs and ten rules. In the
meanwhile, a parabolic model is used to reduce its inertia weight. Alternatively, a range
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of vision is defined for each of the particles and every one of the particles searches within
this range. Especially another two-input, one-output and 14-rule based fuzzy inference
system is formulated to adaptively control the range of the vision. In sum, all of the
FPSO methods mentioned above possess respective advantages (information sharing, fast
convergence and robustness) and disadvantages (premature convergence, local optimum
and curse of dimensionality, etc).

3. Particle Swarm Optimization. Particle swarm optimization is a population-based
technique for optimization, which simulates the social behavior of the fish schooling or
bird flocking. In PSO system, each candidate solution is called a particle, each particle
moves in the search space with a velocity that is dynamically adjusted according to the
corresponding particle’s experience and the particle’s companions experience. Mathemat-
ically, the particles are manipulated according to the following equations:

vid(t+ 1) = ω × vid(t) + c1 × r1 × [pid(t)− xid(t)] + c2 × r2 × [pgd(t)− xid(t)] (9)

xid(t+ 1) = xid(t) + α× vid(t+ 1) (10)

Note that ω is the inertia weight, it has characteristics that are reminiscent of the tem-
perature parameter in the simulated annealing (SA). A large inertia weight facilitates
a global exploration while a small inertia weight facilitates a local exploitation. α is
generally used to control the weight of the velocity. The i-th particle is represented as
Xi = (xi1, xi2, · · · , xiD). The best previous position (the position giving the best fitness
value) of the i-th particle is recorded and represented as Pi = (pi1, pi2, · · · , piD). The
index of the best particle among all the particles in the population is represented by
the symbol g. The rate of the position change (velocity) for particle i is represented as
Vi = (vi1, vi2, · · · , viD). During the update, the maximum velocity of each dimension of
a particle is restricted to vmax, whose coordination of every dimension is also restricted
to the permission scope. D represents the dimension of the search space. Note that in
Eq.(9), the first part is the previous velocity of the particle, while the second is the “cogni-
tive” part, representing the exploiting of its own experience, where c1 is individual factor.
The third is the “social” part, denoting the shared information and mutual cooperation
among the particles, and c2 is societal factor.

4. Fuzzy Particle Swarm Optimization. In this section, the proposed EFPSO will
be elaborated from three aspects of the fuzzy logic controller, input-output variables of
FLC and the fuzzy PSO system design, respectively.

4.1. Fuzzy logic controller. An FLC is composed of a knowledge base, that includes the
information given by the expert in the form of linguistic control fuzzy rules, a fuzzification
interface, which has the effect of transforming crisp data into fuzzy sets, an inference
system, that uses them together with the knowledge base to make inference by means of a
reasoning method, and a defuzzification interface, that translates the fuzzy control action
thus obtained to a real control action using a defuzzification method.

4.2. FLC input-output variables. In this paper, two variables are selected as inputs
for FLC. One is the increment of global optimum (IGO) in successive generations defined
as follows:

IGO = pg(t− 1)− pg(t), t > 2 (11)

where pg(t − 1) and pg(t) denote the global optimum of the swarm at generation t − 1
and t, respectively. t is constricted to be greater or equal to 2. The initial value of IGO,
that is, when t equals to 1, is predetermined according to different optimization problems
(here refers to minimal optimization). From Eq.(11), it is easy to see that the value of
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IGO can be positive, zero or negative. To be specific, if it is positive, which indicates
particles move towards the objective gradually. On the contrary, if it is negative, which
implies particles move far away from the objective. In addition, if IGO is equal to zero,
then particles still stay at their original positions. Another input variable is the maximal
focus distance (MFD) of particles formulated by [10], which can be defined as follows:

MFD = max
i=1···m


√√√√ D∑

d=1

(pld − xid)2
 (12)

where m is the number of neighborhood particles, pld is the previous best position, and
xid represents the sub-vector of the d-th dimension of the i-th particle in the search space.
Similar to the commonly used measure variance of particles, MFD is utilized to check
whether the PSO algorithm plunges into the local optima or not. In other words, the
primary purpose of MFD is to evaluate the discreteness and diversity of the particles in
the swarm. Based on the above discussions, a corresponding control strategy is adopted
to tune the distribution of particles. Fig. 1 illustrates the scheme of the proposed EFPSO
algorithm.

Figure 1. Scheme of the proposed fuzzy PSO

4.3. Fuzzy PSO system design. In our proposed fuzzy PSO system, note that the
two-input variables IGO and MFD adopt the Gaussian membership function for fuzzy
logic controller.

f(x) = exp

(
−1

2
y2
)
, y =

8(x− x1)
x2 − x1

− 4 (13)

The two-output variables inertia weight (IW ) and constraint factor (CF ) adopt the Trim-
ple membership function as below,

f(x) =


0, x < x1
2(x−x1)
x2−x1

, x1 6 x 6 x1+x2

2
2(x2−x)
x2−x1

, x1+x2

2
6 x 6 x2

0, x > x2

(14)

Fig. 2 illustrates the framework of the proposed fuzzy particle swarm optimization.
Note that the control rules have the following forms: Rule(i, j), if IGO is IGOi and (or)
MFD is MFDj then IW is IWk and CF is CFh, for i=1,2,3; j=1,2,3; k=1,2,3; h=1,2,3,
where IGOi and MFDj belong to the linguistic set {Low,Medium,High}. The output
variables IW and CF are in the interval [0,1].

Table 2 lists the nine control rules of the proposed fuzzy particle swarm optimization
algorithm. It should be noted that the first two columns denote the two-input, 3 and
4 columns are the two-output variables, the numbers in parentheses indicate the weight
corresponding to the inference rule. The last column represents the fuzzy operators AND
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Figure 2. Framework of the fuzzy PSO

(1) and OR (2) for antecedents of the fuzzy rules. In addition, notice that the fuzzifica-
tion and defuzzification processes leverage mamdani and centroid methods, respectively.
Meanwhile, Fig. 3 displays the surface viewers based on the two-input variables IGO and
MFD as well as the two-output variables IW and CF respectively, which will be helpful
to understand the fuzzy inference system constructed in this paper.

Table 2. Nine control rules of the fuzzy PSO

[Rules]
1 1 1 3(1): 2
1 2 1 2 (1): 2
1 3 1 1 (1): 1
2 1 3 3 (1): 1
2 2 3 2 (1): 1
2 3 3 1 (1): 1
3 1 1 3 (1): 1
3 2 1 2 (1): 1
3 3 1 1 (1): 1

5. Experimental Results and Analysis. To validate the effectiveness of the EFPSO
proposed in this paper, six well-known benchmark functions obtained from the literature
are leveraged to evaluate its performance, all of which have the same minimum value (viz.
zero) except for f6 with 0.000381827. Their expressions, initialization ranges, Xmax and
Vmax are described in Table 3. For the sake of fair comparison, the parameters involved
are set as follows: the acceleration coefficients c1 = c2 = 2.0, the swarm size is set to
80, the test function’s dimensions are 30 and the maximal iteration number is set to
5000 respectively. Without loss of generality, the mean fitness value (Mean) and standard
deviation (Std.) are utilized to measure the performance of each PSO algorithm based
on the above parameter configurations over 30 independent runs. To obtain an unbiased
comparison, the EFPSO algorithm is implemented on the platform of Intel Core Duo CPU
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Figure 3. Surface viewers of the constructed fuzzy PSO

2.0 GHz PC running the Windows XP professional edition in Matlab 7.0 is also provided
to demonstrate its performance. Besides, it should be noted that the experimental results
of CMA-ES, JADE and OLPSO-G methods are directly acquired from literature [41] for
comparison except for FPSO [17].

Table 3. The benchmark functions employed in our experiment

Func. Expression Initial range Xmax Vmax

f1
d∑

i=1

xi
2 [-100,100] 100 100

f2
d−1∑
i=1

(100(xi+1 − x2i )
2

+ (xi − 1)2) [-5,10] 100 100

f3
d∑

i=1

i× xi4 + random[0, 1) [-1.28,1.28] 10 10

f4
d∑

i=1

(xi
2 − 10 cos(2πxi) + 10) [-2.56,2.56] 10 10

f5
1

4000

d∑
i=1

(xi)
2 −

d∏
i=1

cos
(

xi√
xi

)
+ 1 [-600,600] 600 600

f6 418.9829× n−
d∑

i=1

xi sin(
√
|xi|) [-500,500] 500 500

From the results listed in Table 4, it can be easily observed that the EFPSO proposed in
this paper significantly outperforms the other PSO algorithms for functions f1, f2 and f5
respectively. As for f3, even though the Mean value of EFPSO is slightly worse than that
of JADE, our method achieves the better standard deviation compared to that of JADE
algorithm. With regard to f4, EFPSO is obviously superior to CMA-ES, OLPSO-G and
FPSO apart from obtaining the same best optimization result as JADE. Concerning the
test function f6, our approach can still achieve better performance in comparison with the
other three PSO variants except for JADE. On the other hand, it should be noted that
the standard deviations of the proposed fuzzy PSO are consistently smaller than that of
other PSO algorithms, which further demonstrate the robustness of EFPSO for numerical
optimization. All in all, the fuzzy schemes developed in this paper are able to get a better
balance between exploitation and exploration during the search process, which is largely
owing to the premature convergence of swarms can be effectively avoided by adopting the



1374 D. P. Tian

fuzzy strategies based on the maximal focus distance among particles and the increment
of global optimum at successive generations.

Table 4. Performance comparison among different PSO variants

Func. Metric CMA-ES JADE OLPSO-G FPSO EFPSO

f1
Mean 4.56e-16 1.30e-54 4.10e-54 6.18e-17 7.28e-56
Std. 1.13e-16 9.20e-54 6.32e-54 8.06e-17 9.15e-55

f2
Mean 2.33e-15 3.20e-01 2.15e+01 9.46e-01 7.16e-16
Std. 7.70e-16 1.10e-00 2.99e+01 8.83e-01 8.01e-16

f3
Mean 5.92e-02 6.80e-04 1.16e-02 6.97e-01 9.51e-04
Std. 1.73e-02 2.50e-04 4.10e-03 8.32e-01 3.13e-05

f4
Mean 1.76e+02 0 1.07e-00 3.72e-17 0
Std. 1.39e+01 0 9.90e-01 6.65e-19 0

f5
Mean 9.59e-16 2.00e-04 4.80e-03 4.26e-12 8.03e-19
Std. 3.50e-16 1.40e-03 8.63e-03 5.16e-12 6.64e-20

f6
Mean 3.15e+03 7.10e-00 3.84e+02 5.43e+02 3.69e+01
Std. 5.79e+02 2.80e+01 2.17e+02 7.06e+02 2.23e+01

To present a total comparison on the optimization performance between EFPSO and
other PSO variants, Table 5 shows the detailed results from the non-parametric Wilcoxon
rank sum tests [42] at 5% significance level. Note that the number of benchmark functions
(out of the 6 tested functions) that the EFPSO is significantly better than (Better), almost
the same as (Same), and significantly worse than (Worse) the compared PSO algorithm
are reported here. The total score (Total) is calculated by subtracting Worse from Better.
Obviously, the Total values shown in Table 5 apparently demonstrate the significance of
EFPSO over the other selected particle swarm optimization algorithms.

Table 5. Statistical analysis of wilcoxon-tests between EFPSO and its competitors

Item CMA-ES JADE OLPSO-G FPSO
Better 5 3 6 6
Same 1 1 0 0
Worse 0 2 0 0
Total 5 1 6 6

In addition, to further illustrate the effect of the proposed EFPSO algorithm, we also
apply it in the task of standard image segmentation, whose goal is to partition an image
into non-overlapping objects of interest based on the intrinsic features, such as color,
texture, intensity and contrast, etc. Note that the threshold segmentation is a basic
method in the field of image segmentation, and the most commonly used threshold method
is the Otsu algorithm [43] whose core idea can be described as follows: let the pixels of a
given image be represented in l gray levels {0, 1, · · · , l − 1}, suppose that the pixels are
dichotomized into two classes: object and background, denoted by C0 with gray levels
{0, 1, · · · , t} and C1 with gray levels {t + 1, t + 2, · · · , l − 1} respectively by a threshold
at level t. pi = ni/N , where ni represents the number of pixels at level i while N denotes
the total number of pixels appeared in the image. As a result, the probabilities of class
occurrence and the class mean levels for C0 can be defined as below:

ωo(t) =
t∑

i=0

pi, µ0(t) =
t∑

i=0

ipi/ω0 (15)
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Figure 4. The original and the segmented images of Lena

Similarly, the probabilities of class occurrence and the class mean levels for the background
can be described as:

ω1(t) =
l−1∑

i=t+1

pi, µ1(t) =
l−1∑

i=t+1

ipi/ω1 (16)

The variance formula between these two groups is d(t) = ω0(t)ω1(t)(µ0(t) − µ1(t))
2.

And the corresponding gray level value t∗ is the best threshold when the variance function
achieving the maximum value, i.e., t∗ = Argmax{d(t)}. So it can be seen that how to
determine the threshold value of Otsu method is the key to image segmentation. Here, we
exploit the EFPSO algorithm proposed in this paper to solve the segmentation threshold.
Note that due to the limited space, the standard images Lena and Peppers with 512 ×
512 pixels are employed here to validate the performance of the proposed fuzzy PSO
algorithm. At the same time, we compare them with the standard PSO (SPSO) and
genetic algorithm (GA), respectively. The main parameter settings of GA are described
as follows: elite selection strategy, crossover rate is 0.7, mutation rate is 0.4, migration
fraction is 0.2, population size is 50 and the maximum generation is 100 served as the
stopping criteria. Figures 4-5 illustrate the original images and the segmented results
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Figure 5. The original and the segmented images of Peppers

yielded by GA, SPSO and the proposed EFPSO respectively, which further verifies the
superiority of our approach over other swarm intelligence based methods in the task of
image segmentation.

6. Conclusions and Future Work. As one of the most important swarm intelligence
based algorithms, PSO attracts increasing attention as a new optimization technique for
solving complex optimization problems. In this paper, we have proposed a two-input
and two-output fuzzy logic controller based particle swarm optimization algorithm. The
increment of global optimum and maximal focus distance of particles are used as the two-
input variables, while the inertia weight and constraint factor as the two-output variables
that are adaptively adjusted according to the control information translated from the
FLC during the search process. Through extensive experiments, we demonstrate that the
fuzzy PSO proposed in this paper has not only the powerful ability to search the global
optimum, but also effectively prevent the premature convergence of the particle swarm
optimization algorithm. In particular, the EFPSO has already been successfully applied
in the multimedia retrieval systems to train the feedforward neural network, which further
validates its effectiveness and efficiency.
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As for future work, we plan to introduce this approach into the other real-world re-
search fields, such as integrated circuit design, multimedia semantic understanding and
engineering optimization scheduling, etc. Lastly, and arguably most importantly, the
qualitative relationship between the particle’s distribution and the convergence of PSO
will be elaborated comprehensively from the perspective of mathematics.
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