
Journal of Information Hiding and Multimedia Signal Processing c©2018 ISSN 2073-4212

Ubiquitous International Volume 9, Number 5, September 2018

Application of Doc2vec and Stochastic Gradient
Descent algorithms for Text Categorization

Zhongyue Hu, Mingliang Liu∗, Ping Yang, Maomao Chen

Electronic Engineering College
Heilongjiang University

Harbin, China
∗Corresponding author: mll 0608@163.com

Received May,2018 ; revised August,2018

Abstract. In text categorization, text representation has become an important factor
limiting the classification accuracy of classifiers. Ignoring the semantics, grammar, and
location information of lexical items in the Vector Space Model (VSM) of a text leads to
the loss of considerable feature information that could be useful for text categorization.
Therefore, in this study, we propose text classification algorithm combining Doc2vec and
Stochastic Gradient Descent algorithms. First, the Doc2vec algorithm is used to train
the original corpus to generate the paragraph vectors of the text. Then, for each piece of
text, all paragraph vectors are connected as eigenvectors of the text. Finally, the text is
classified using the polynomial Naive Bayes and SGD classifier. The experimental results
for the 20Newsgroup corpus indicate that our proposed algorithm can classify texts quickly
and efficiently with an accuracy of more than 90%.
Keywords: Doc2vec model; SGD algorithm; Text categorization

1. Introduction. The text categorization(TC)[1] involves the use of computers to au-
tomatically classify texts of unknown categories into one or more prior categorization
systems based on the content of the texts; thus, it is obvious that that there is a one-to-
many mapping of functions between texts and categories. However, in general, a text is
classified into a category for which it has obtained the maximum probability from among
the different probabilities of belonging to a particular category. Text categorization plays
an important role in many applications, such as redundancy filtering, organization man-
agement, intelligent retrieval, information filtering, metadata extraction, and ambiguity
elimination, among others. There are several key processes in text categorization, in-
cluding text representation, text similarity computation, and evaluation of classification
results. In particular, text representation is not only the basis of text classification, but
also the most important process.

Raw text is unstructured data that the computer cannot directly process; thus, in
order to ensure that raw text can be processed by the computer, text representation is
performed, which primarily involves extracting the metadata representing the essential
features of the text in a structured form and transforming the unstructured documents
into representations suitable for machine learning algorithms and classification tasks. The
text representation model provides a series of algorithms that translate the original text
into learning algorithms and data formats required for the classification tasks. Among
these text representation models, the Vector Space Model (VSM) model is widely used
in the field of information retrieval and text classification. Although this model involves

1337

1338 Z. Y. Hu, M. L. Liu, P. Yang, and M. M. Chen

simple calculations, it suffers from various drawbacks; nevertheless, this model generates
a high-dimensional sparse vector, wherein the dimension of the vector is consistent with
the total number of terms in the text set. However, the number of entries in a realistic
text categorization task is considerably large, which can lead to an unrealistically and
unsuitably high-dimensional vector. Furthermore, the VSM assumes that the terms in
the text are independent of each other and the frequency of entries, information gain, Chi-
square statistic, and other statistics are considered as the basis for feature extraction and
selection, while ignoring semantics, grammar, location, and other related characteristics
between terms. Therefore, using VSM, it is easy to categorize texts with similar content
into different categories; however, it might not be efficient for more complex texts. For
example, in a scientific article, the term “Apple” is specified several times. In another
text, there are many instances of the terms “iPhone,” “iPad,” and “Mac”. Considering
these two texts, a text representation algorithm based on the VSM approach will likely
classify the two texts into different categories; in particular, the document containing the
term “Apple” will probably be classified under the category of fruit, which is different
from the second text. In fact, though both texts convey information about “Apple,” and
therefore, should have been grouped under the same category, they are not. The primary
reason for this discrepancy is that the word “Apple” is a word polysemy, and can represent
both fruit as well as Apple Inc., a company based in the United States. In summary, the
VSM approach cannot differentiate in such cases with same or similar words with different
meanings.

In contrast to the VSM approach, the Latent Semantic Indexing (LSI) [2] algorithm,
which is based on the word document co-occurrence matrix, performs singular decompo-
sition and dimensionality reduction, mapping words and documents to potential semantic
spaces; the dimensionality of these semantic spaces is smaller than the corresponding
feature vector. On the other hand, the Latent Dirichlet Allocation [3](LDA) algorithm
builds a three-level Bayesian probabilistic model of words, topics, and documents to mine
potential topics in the corpus and cluster relevant keywords. Although LSI and LDA
[4] algorithms consider the semantic information of lexical entries, the selection of the-
matic information in the LSI model considerably affects the results. There are no definite
algorithms for the selection of the number of topics, which can only be set manually. Fur-
thermore, the LDA models ignore the relationship between the words themselves. Based
on the above discussion, it is clear that these models have some limitations for practical
applications.

In 2013, Mikolov et al. proposed an efficient text word vector representation model
called Word2vec[5, 6]; This model contains two training algorithms, including Continuous
Bag-of-Words (CBOW) and Skip-Gram, to generate the word vector. Furthermore, it
should be noted that their model is based on neural networks; however, while calculating
the weights between different neurons, the model does not adopt forward feedback or
back-feed algorithms in the neural networks. On the contrary, it uses the Huffman tree
instead of hidden layers as well as neurons of the output layer; thus, in this model, the
leaf nodes of the binary tree and output neurons have similar functions. Moreover, the
number of leaf nodes is equal to the counts of terms in the corpus; then, the Huffman
tree is constructed based on the word frequencies appearing in the corpus. With Huffman
encoding, the code length corresponding to the high frequency words is longer, whereas
the code length of the low frequency words is shorter; this ensures the shortest path for the
weighted ownership of the tree. Compared with the LSI algorithm, Word2vec preserves
the linear relationship between different words; furthermore, it trains faster and retains
the memory relationship between different words compared with the LDA algorithm.

Application of Doc2vec and Stochastic Gradient Descent algorithms 1339

However, Word2vec does not adequately represent the semantic features of the text in the
case of short texts.

Le and Mikolov proposed the Doc2vec[7] algorithm, which can handle sentences, para-
graphs, and documents with different lengths. By constructing paragraph vectors, this
algorithm can learn fixed-length features from corpora of different lengths[8]. In addition,
the paragraph vectors make word vectors more effective for semantic texts, especially
short texts.

Considering this, in this study, we use the Doc2vec algorithm to extract the feature vec-
tors of texts; then, we classify the texts using the Stochastic Gradient Descent (SGD)[10]
classifier. Testing our proposed method on the 20Newsgroups datasets, a classification
accuracy of over 92% was achieved for each category, which verifies that our text classifi-
cation model is efficient and feasible.

2. Text representation model.

2.1. Doc2vec model. The primary tasks in the Doc2vec algorithm involve the learn-
ing and generation of paragraph vectors; these paragraph vectors can learn fixed-length
features from input sequences with different lengths[9]. Compared with the traditional
methods, paragraph vectors do not require a specific word weight function and do not
rely on complex parsing tree structures; therefore, their efficiency is relatively high. The
Doc2vec algorithm includes two models, namely the Distributed Memory Model of Para-
graph Vectors (PV-DM) and the Distributed Bag-of-Words Version of Paragraph Vector
(PV-DBOW). PV-DM can be used to predict center words when the paragraph vector
and context are given, whereas PV-DBOW can be used to predict the probability of a
group of words given only a paragraph vector.

In the PV-DM model, the paragraph vector can be used to predict the next word in the
text when sufficient contextual information is available; in this model, all the paragraph
vectors form a matrix and each paragraph vector corresponds to one column in the matrix
D, which is a matrix of all the words in the same text and each word corresponds to a
column in the matrix. In general, paragraph vectors are linked to word vectors or used
to predict the next word in the text. The framework of the PV-DM model is shown in
figure 1. where “baidu,” “is,” and “internet” are words in the context and “company” is
the word to be predicted; all these words correspond to a certain column in the matrix.
Further, “paragraph id” is the paragraph vector.

Figure 1. Framework of the PV-DM model

In the PV-DBOW model, when the paragraph vector is given, it can be used to predict
the probability of occurrence of a group of words in a paragraph. The basic principle
of this model is that in the iterative process of the SGA, a text window (the size of the

1340 Z. Y. Hu, M. L. Liu, P. Yang, and M. M. Chen

text window is set by the user) is sampled at each iteration and then, one of the words
is selected from the text window using a classifier. The framework of the PV-DBOW
model is shown in figure 2. where D is the paragraph vector matrix, “Paragraph id” is a
paragraph vector and “id” is the index of the column in the paragraph vector D.

Paragraph vectors can be used to preserve the information of a paragraph, such as the
subject of the paragraph. In addition, the paragraph vectors are unique and cannot be
shared between different paragraphs; however, word vectors between different paragraphs
can be shared. Paragraph and word vectors are obtained using a back-propagation al-
gorithm and trained using an SGA classifier. In particular, at each step of the random
gradient, a certain length of text is sampled from random paragraphs one at a time, then
the gradient error of the network is calculated, and the parameters of the model are up-
dated based on the gradient. The paragraph and word vectors can be obtained after the
sampling process is stopped when the error gradient reaches the user-set threshold.

Figure 2. Framework of the PV-DBOW model.

2.2. Text representation and feature extraction. In this study, the 20Newsgroups
news corpus is selected as an experimental sample; this corpus is an international standard
dataset for text categorization, text mining, and information retrieval. It contains a
sample set for testing and training. The training corpus contains 20 categories with a
total of 11,033 texts, while the test corpus also consists of 20 text categories, but with a
total of 7,532 texts.

In the corpus, the content of text consists of “from,” “subject,” “ines,” “text body,”
and some optional fields. The “from,” “subject,” and “lines” fields identify the source,
theme, and length of the text, respectively. The “from” and “lines” fields have no effect
on the topic expressed in the text. Therefore, only the contents of the “subject” and “text
body” fields are retained for the preprocessing of the text.

In general, the punctuation, special symbols, and high-frequency words contained in the
original corpus convey only little information regarding the text category; on the contrary,
high-frequency words may cause some interference for rare words and may even increase
the dimension of the feature vector. Therefore, in this study, we remove the punctuation
and special symbols from the original corpus using regular expressions; furthermore, we
remove the high-frequency words appearing in the text using stop words. In addition, in
order to express certain tenses, grammatical structures, and parts-of-speech information in
English, there are several forms of certain words, such as the prototype of a verb, its past
tense, and its past participle, which are considered in this study. From the perspective
of text categorization, there is no considerable difference among the categories alluded
to by the different forms of the same word. Furthermore, we used the Porter Stemmer

Application of Doc2vec and Stochastic Gradient Descent algorithms 1341

algorithm in our study; this algorithm was first introduced in 1979 by Dr. Martin Porter.
The Porter Stemmer algorithm unifies the different forms of a verb into a verb prototype,
nouns are unified into the singular form, and the adjective and its adverb are unified
into the adjective form. After stemming and word shape reduction, the number of words
in the text is further reduced; this reduces the time required by the feature extraction
algorithm.

After the processing of the original corpus, the noise information contained in the text
is eliminated. Next, we use the Doc2vec algorithm on the training set to obtain the word
vector of the text. In this study, we use the Doc2vec model provided by Gensim, which is
a library in the Python programming language, to represent the text in a corpus. Gensim
initially included a variety of Python scripts that were used in a Czech digital math
library, to categorize similar texts; in addition, in the past, the library’s functions were
used for “potential semantic analysis”; unfortunately, the obtained results were not good.
However, with continuous improvement, the efficiency and robustness of the Doc2vec
algorithm has been considerably improved. Thus far, Gensim includes scripts for topic
modeling, document similarity search on a large-scale corpus, as well as natural language
processing and information retrieval functions.

In corpus training, we set the parameters min count to 1 window to 10, size to 200
worker to 2, dm concat to 1, and dm to 1, which is based on the training text used in
the PV-DM training model. During the training process, all the words that appear only
once in the corpus are ignored, then, the next word is forecasted using 10 contextually
adjacent words, connecting all the paragraph vectors of peer text as a vector of the word
vector form and the dimension of the feature vector is set to 200. In Gensim, the function
parameters of the Doc2vec functions and their significance are listed in Table 1.

Table 1. Parameters names of Doc2vec function and their meanings

Parameter name Meaning Value

Dm Training model
1 when using the PV-DM model
0 when using the PV-DBOW model

Default 1
Set the value to 1

size Feature dimension Set the value to 200
window Maximum distance between the

predicted and text words
Set the value to 200

min count Minimum reserved word frequency Set the value to 1
dm concat Vector connection mode

1 Connection Mode
0 Non-connected Mode

Set the value to 1

dm mean Algorithm
0 means Summation
1 means Average

Set the value to 1

Finally, all the word vectors in each document are connected together as a vector
representation of the word.

3. Text classification model.

3.1. Polynomial Näıve Bayes classifier. The Näıve Bayes algorithm is a classification
method proposed by Maron and Kuhns based on the Bayes theorem and assumes that
feature conditions are independent; this algorithm is widely used in text classification and

1342 Z. Y. Hu, M. L. Liu, P. Yang, and M. M. Chen

spam filtering. There are two common variants of the Näıve Bayesian algorithm, including
the multinomial Näıve Bayes and multivariate Bernoulli models.

The multivariate Bernoulli model is a generation model in which the number of occur-
rences of entries, the occurrences of entries, and the relevance of entries are ignored, and
each text can be represented as d = {d1, d2, ..., dn}, and bi ∈ {0, 1}. The selected features
include n words, and bi indicates whether the corresponding word appears in the text; in
particular, 0 indicates that the word does not appear in the text, whereas 1 indicates that
it does. The decision rule of the model is given by the equations(1).

cmax = arg max
c∈C

p̂(c)
∏
i∈V

p̂(bi|c) (1)

where cmax is the document d most likely to belong to the category.
The polynomial Näıve Bayes model is also a generation model. The probability of a

document belonging to a certain category can be obtained using equations(2).

p(c|d) = k ∗ p(c)
∏

1≤i≤Cd

p(ti|c) (2)

where p(c) is a priori probability of document d belonging to category c. Document d
can be represented as d = {t1, t2, ..., tCd

}, where ti represents a term in d. Furthermore,
Cd is a total number of terms in the d; k is a scale factor; p(ti|c) represents the probability
of a word ti occurring under a certain category; p(c) and p(ti|c) can be obtained from the
corpus. Thus, the Näıve Bayes algorithm divides the document into the largest probability
category, that is, the maximum posterior probability is used to decide the category of the
text. This can be mathematically represented through equations(3) and (4) as follows:

Cmap = arg max
c∈C

p(c|d) = arg max
c∈Ci

p̂(c)
∏

1≤i≤Cd

p(ti|c) (3)

cmap = arg max
c∈C

p(c|d) = arg max
c∈C

[log p̂(c) +
∑

1≤i≤Cd

log p(t̂i|c)] (4)

Where arg max
c∈C

p(c|d) indicates that document d belongs to the maximum probability cat-

egory, which is usually the estimated maximum posteriori probability using the modified
equations (3), equations (2) floating-point may occur under the limit overflow.

In contrast to the two models discussed above, the polynomial model considers not only
whether the terms that appear in the text, but also the terms’ frequency. Furthermore,
considering classification performance, the classification accuracy of the polynomial model
is better than that of the multivariate Bernoulli model when multiple features are involved
in classification. In addition, polynomial models are more robust against noise. Therefore,
taking into account the characteristics of text, in this study, we select the polynomial
model as the text classifier.

Sklearn is a Python module that implements the classical machine learning algorithms
and incorporates numpy, scipy, and matplotlib third-party modules for scientific com-
puting. In particular, the Sklearn module provides classification, regression analysis,
clustering, dimension reduction, model selection, feature extraction, and a series of other
common functions. We use the Multinomial function in the naive bayes module under
Sklearn to construct a polynomial näıve Bayesian classifier; this function has three key
parameters, including alpha, fit prior, and class prior. Here, alpha indicates whether the
training sample needs to be smoothened; in our study, we set it to 1.0 to obtain a smooth
Laplace or lidstone. Further, for fit prior and class prior, we use the model default values,

Application of Doc2vec and Stochastic Gradient Descent algorithms 1343

i.e., the probability of learning a class and the class’s priority probability are automatically
adjusted based on the data.

3.2. Support Vector Machine algorithms. Support Vector Machine (SVM) [11] al-
gorithms typically include two types of classification models. The basic model involves
defining the largest linear classifier in the feature space, which can be transformed into a
nonlinear classifier through the choice of kernel function. The learning strategy of SVM
is to maximize the interval, and the problem to be solved is one of convex quadratic
programming. The commonly used SVM model can be divided into linear SVM in the
linearly separable case, linear SVM, and non-linear SVM. When the features of the train-
ing samples are approximately linearly separable, a linear classifier is obtained by soft
margin maximization. In contrast, when the characteristics of the training samples are
linearly separable, a linear algorithm is obtained using the hard margin maximization
algorithm classifier. Lastly, when the training data is linearly inseparable, a nonlinear
SVM classifier is obtained through kernel trick and soft interval maximization.

Assuming the training dataset in the feature space is:

t = {(x1, y1), (x2, y2), ..., (xn, yn)} (5)

where xi is the eigenvector of the ith sample, yi is the category label of the ith sample,
and for the dichotomous question yi ∈ {0, 1}, {xi, yi} represents a sample in the training
set. The primary goal of the algorithm is to obtain a hyperplane using training intensive
learning, which can correctly classify most of the training samples into the corresponding
categories. The separated hyperplane satisfies the constraint ωx + b = 0, where ω is
the normal vector of the hyperplane. Figure 4. illustrates a simple dichotomous prob-
lem, where h1 is a separation hyperplane. It is evident that, for the linearly separable
dichotomous problem, we can find numerous discrete hyperplanes.

h

Figure 3. Simple dichotomous problem and corresponding separation hyperplane

The corresponding classification decision function for the test sample is:

f(x) = sign(ω · x+ b) (6)

where f(x) is decision function; when its value is 1, the test sample is classified as “positive
class”, whereas when its value is -1, the sample is classified as “negative class”. For linear
separable problems, there are numerous hyperplanes that can correctly separate the two
types of problems. The linear SVM can obtain the optimal separation hyperplane using
interval maximization; this obtained plane is unique. Point b in equations(6) represents
a sample point. The distance from this point to the hyperplane h1 is the length of the
line ||ab|| (geometric interval), which can be calculated using equations (7). Thus, the

1344 Z. Y. Hu, M. L. Liu, P. Yang, and M. M. Chen

geometric interval of the training set is defined as the minimum value of the geometric
interval values of all the samples.

γi = yi

(
ω

||ω||
· xi +

b

||w||

)
γ = min

i=1,2,...,n
γi

(7)

where ||ω|| is the L2 norm of ω.

a

b

h

Figure 4. Geometric interval of samples

The largest interval is the separation hyperplane obtained in training. The hyperplane
not only separates the positive and negative cases in the sample, but also correctly classi-
fies the points closest to the hyperplane into the corresponding categories. The hyperplane
with the largest geometric interval satisfies the following constraints:

max γ
ω,b

γi(
ω

||ω||
· xi +

b

||ω||
) ≥ γ

(8)

Equations (8) shows that the geometric interval between each training sample in the
training set and hyperplane is at least γ and it is a convex quadratic programming prob-
lem. Figure5. shows the maximum interval of the classified hyperplane; h1 and h2 are the
boundaries of the interval, while h3 is the optimal classification interval hyperplane, and
||h1h2|| is the interval with a value of 2/||w||.

h

h

h

Figure 5. Maximum interval classification hyperplane

Application of Doc2vec and Stochastic Gradient Descent algorithms 1345

When the training dataset is linearly inseparable, it contains some specific points that
cannot satisfy the constraint that the interval of the function be greater than or equal to
one. In order to solve this problem, a relaxation variable ξi ≥ 0 is introduced for each
sample point (xi, yi), and the constraint condition is defined as follows:

yi(ω · xi + b) ≥ 1− ξi (9)

Accordingly, the cost function is modified to:

1

2
||ω||2 + c

n∑
i=1

ξi (10)

where c is the penalty factor and c ≥ 0; in particular, a larger value for c denotes increased
penalty for misclassification, and vice versa. Thus, by adjusting c, the interval can be
maximized and consequently, the number of misclassification points is minimized. For
nonlinear problems, a non-linear transformation is typically adopted to transform the
hypersurface model in input space Rn into a hyperplane model in feature space H. Let χ
be an input space and H be a feature space; then, there is a mapping from χ to H:

φ(x) : χ→ H (11)

For all x, z ∈ χ the function K(χ, z) satisfies the following condition:

k(χ, z) = φ(χ) · φ(z) (12)

where k(χ, z) is the kernel function, φ(χ) is the mapping function, and φ(χ) · φ(z) repre-
sents the inner product of φ(x) and φ(z). Commonly used kernel functions include the
polynomial kernel function, Gaussian kernel function, and string kernel function. The
string kernel function is widely used in text classification, information retrieval, bioin-
formatics, and other fields, and its corresponding mapping relationship is as shown in
equations (13). Assuming that S is a collection of no less than n strings in length, and s
is an element in S; in addition, Hm is the feature space. Then, the mapping relationship
between the character s and the feature space can be obtained by calculating φn(s)

[φn(s)]u =
∑

i:s(i)=u

λl(i) (13)

where λ is a attenuation parameter and 0 < λ ≤ 1, l(i) represents the length of the string
i, and i : s(i) = u represents the same substring as u in s.

3.3. SGD algorithm. The so-called gradient involves calculating the partial derivative
of the multivariate function; from the geometrical perspective, the direction of the function
increases the fastest along the gradient direction. On the contrary, the opposite direction
along the gradient is the direction in which the function decreases the fastest. Therefore,
in machine learning algorithms, the minimized loss function is typically solved iteratively
using the gradient descent algorithm.

For the linear regression problem, a sample is denoted as yi = (x1, x2, ..., xn), assuming
that the function and loss function are defined as follows:

hθ(x1, x2, ..., xn) = θ0 + θ1x1 + ...+ θnxn

J(θ0, θ1, ..., θn) =
1

2m

m∑
i=0

(hθ(x0, x1, ..., xn)− yi)2
(14)

where θi is the parameter of the model and xi is the nth eigenvalue of each sample. The
steps of the gradient descent algorithm are as follows:

1346 Z. Y. Hu, M. L. Liu, P. Yang, and M. M. Chen

1) Determine the gradient of the current loss function. For each θi, the gradient is:

∂

∂θi
J(θ0, θ1, ..., θn), (15)

2) Determine the distance of descent:

α
∂

∂θi
J(θ0, θ1, ..., θn) =

1

m

m∑
j=0

(hθ(x
j
0, x

j
1, ..., x

j
n)− yj)xji , (16)

3) Determine whether all θi are less than ε; if true, the algorithm is terminated. Other-
wise, Step 4 is executed.

4) Update all θ, update the expression for θi as follows, and return to Step 1 after the
update.

θi = θi − α
1

m

m∑
j=0

(hθ(x
j
0, x

j
1, ..., x

j
n)− y

j
)xji , (17)

In practical applications, because the ranges of different feature values of samples are
different, the iterations in the algorithm might be considerably slow. In order to reduce
the influence of feature values, we can normalize them, after obtaining their expectation
x̄ and standard deviation sd(x) Then, the final sample is normalized using the following
formula:

x′ =
x− x̄
sd(x)

(18)

Compared with the common gradient descent algorithm, the SGD [12, 13, 14] algorithm
only calculates the gradient of one sample at a time. Thus, the corresponding update
formula is modified as follows:

θi = θi − α(hθ(x
j
0, x

j
1,, x

j
n)− yj)xji (19)

Further, in comparison, the random gradient algorithm uses one sample to iterate at a
time, and thus, the training speed is considerably fast. In particular, when the number
of training samples is large, the training speed of the sample can be accelerated using
random gradient iteration. Because the SGD algorithm only iterates one sample at a
time, the convergence rate is slow, and it is possible to obtain the local optimal value
instead of the global optimal value. The mini-batch gradient descent algorithm can not
only guarantee a faster training speed, but also accelerates the convergence speed of the
model. The primary principle of the mini-batch gradient descent algorithm is that for
the training set with n samples, m samples are randomly selected for iteration, and the
corresponding update formula is as follows:

θi = θi − α
t+m−1∑
j=t

(hθ(x
j
0, x

j
1, ..., x

j
n)− yj)xji (20)

In this study, we select the SGD classifier class included in Sklearn to construct the text
classifier; this class implements a simple SGD algorithm and allows small batch gradient
learning14. The classifier supports different loss15 and penalty functions16, which improves
the performance of the classification model. The parameters of the SGD classifier function
and their meanings are listed in the Table 2.

Other parameters of the SGD classifier function, such as learning rate, max iter, alpha,
etc., are set to their default values; these default values can lead to a better classification
result.

Application of Doc2vec and Stochastic Gradient Descent algorithms 1347

Table 2. SGD classifier parameters names and meaning

Parameter Name Parameter Meaning Value of Parameters

Los
Optional parameters for the loss:
“hing,” “‘log,” “modified huber,”
“regression,” and so on

Loss is set to ‘log’

Penalty Type of penalty function:
“none,” “l2,” “elasticnet,” and so on

Penalty is set to ‘l1’

4. Experiments and Results. The experimental corpus for the text uses the 20News-
groups dataset as the sample. 20Newsgroups is an international standard dataset for text
classification, text retrieval, and information retrieval research. This dataset contains 20
text categories; further, the training set contains 11,033 texts, while the test set contains
7,532 texts. Table 3 lists the information of some of the categories in the experimental
dataset.

Table 3. Experimental corpus information for some categories

Category Training Set Samples Test Set Samples
alt.atheism 480 319
comp.graphics 584 389
rec.autos 594 396
misc.forsale 585 390
sci.space 593 394

In the experiment, the contents of a specific field are selected from the original corpus,
and then the contents of the filter are preprocessed (including removal of stop words and
restoration of the word steam). Then, the preprocessed text is used as the input parameter
for the Doc2vec model, and the word vector of the text is trained. Then, all the word
vectors are connected together to obtain the feature of the text. Finally, the feature is
used as the input parameter of the SGD classifier to train and generate the corresponding
text classification model, which is used to classify the test text.

In order to verify the performance of our classifier, the recall rate, accuracy rate and
F1-score are used as evaluation parameters of the classification model; these are defined
as follows:

r =
tp

tp+ fn
(21)

a =
tp+ tn

tp+ tn+ fp+ fn
(22)

F1 =
tp

(2 ∗ tp+ fn)
(23)

where tp indicates that the positive samples are still positive samples after classification;
tn indicates that the negative samples are still negative samples after classification; fp
indicates that the negative samples are wrongly classified as positive samples; and fn
indicates that the positive samples are wrongly classified as negative samples. Some of
the test results are listed in Table 3.

Based on the experimental results, the probability of correct classification of the text
for each category is over 90%, with a mean value of 0.92. In addition, the mean values
for recall rate and F1-score are 0.86 and 0.89, respectively. Thus, it can be predicted that
the classification accuracy of classifiers will be further improved with the increase in the

1348 Z. Y. Hu, M. L. Liu, P. Yang, and M. M. Chen

Figure 6. Model evaluation parameters

Table 4. Partial test results

Category Precision Recall F1-score
misc.forsale 0.93 0.69 0.79
rec.motorcycles 0.93 0.93 0.93
rec.sport.baseball 0.92 0.93 0.91
sci.med 0.91 0.9 0.82
talk.politics.misc 0.92 0.74 0.91
comp.graphics 0.91 0.89 0.94
rec.sport.hockey 0.90 0.96 0.92
avg 0.92 0.86 0.89

number of training texts in each category. Therefore, the classification algorithm based
on Doc2vec and SGD proposed in this study is effective for text classification.

5. Conclusion. In this study, we use the text vector generated using the Doc2vec model
to express the characteristics of the text; then, an SVM classifier (training algorithm using
SGD) was used to train the text classification model. Compared with the traditional fea-
ture extraction algorithms, the word vector generated using the Doc2vec model contains
rich semantic, grammatical, and positional information. Therefore, the word vector is
more representative of the characteristic information of the text. The training algorithm
of classifier adopts the mini-batch gradient descent algorithm; because the algorithm only
selects some samples for gradient update at each iteration, it not only accelerates the con-
vergence speed of the classification model, but also improves the classification accuracy of
the model. Our test results on the 20Newsgroup corpus show that our proposed method
is efficient.

REFERENCES

[1] R. H. W. Pinheiro, G. D.C . Cavalcanti, I. R. Tsang, “Combining dissimilarity spaces for text
categorization” J. Information Sciences, vol.37, no. 407, pp.87-101, 2017.

Application of Doc2vec and Stochastic Gradient Descent algorithms 1349

[2] R. M.Silva, T. C. Alberto, T. A.Almeida, Akebo Yamakami “Towards filtering undesired short
text messages using an online learning approach with semantic indexing” J. Expert Systems with
Applications, vol.83, no. 26, pp314-325 , 2017.

[3] M. Pavlinek, V. Podgorelec, “Text classification method based on self-training and LDA topic mod-
els” J. Expert Systems with Applications, vol.80, no. 8, pp83-93, 2015.

[4] M. Hajjem, Chiraz Latiri, “Combinig IR and LDA Topic Modeling for Filtering Microblogs”J .
Procedia Computer Science, vol.112, no. 77, pp761-770, 2017.

[5] T. Mikolov, K. Chen, G. Corrado, et al. “Efficient estimation of word representations in vector
space,” J. Computer Science, arXiv:1301.3781v3, 2013.

[6] Q. V. Le, T. Mikolov ” Distributed Representation of Sentences and Document, ” J.Computer
Science, vol.2, no. 4, pp1188-1196, 2014.

[7] B. Pan, Q. C. Zhang, C. C. Yu , S. Cao, “Application of Doc2vec on job salary prediction, ”J.
Application Research of Computer, vol.35, no. 1, pp155-157, 2018.

[8] Y. Sha , Z. Shi, R. Li, Q. Liang, B. Wang. “Resolving Entity Morphs based on Character-Word
Embedding”J. Procedia Computer Science, vol.108, no. 6, pp45-57, 2017.

[9] M. Kamkarhaghighi, M. Makrehchi. “Content Tree Word Embedding for document representation”J.
Expert Systems With Applications, vol.90, no. 19, pp241-249, 2014.

[10] L. Wang, Y. Yang, R. Min, S. Chakradhar. “Accelerating deep neural network training with incon-
sistent stochastic gradient descent”J. Neural Networks, vol.93, no. 24, pp219-229, 2017.

[11] Y. Aytar, A. Zisserman, “Part level transfer regularization for enhancing exemplar SVMs” J. Com-
puter Vision and Image Understanding, vol.138, no. 12, pp114-123, 2015.

[12] Y. Ming, Yawei Zhao, Chengkun Wu, Kuan Li, . “Distributed and asynchronous Stochastic Gradient
Descent with variance reduction” J. Neurocomputing , vol.281, no. 4, pp420-431, 2017.

[13] K. Sopy la, Pawe l Drozda. “Stochastic Gradient Descent with Barzilai Borwein update step for
SVM”J. Information Sciences, vol.316, no. 15, pp218-223, 2015.

[14] S. Amari. “Backpropagation and stochastic gradient descent method” J. Neurocomputing, vol.5, no.
4, pp185-196, 1993.

[15] X. M. Dong, Di-Rong Chen. “Learning rates of gradient descent algorithm for classification” J.
Journal of Computational and Applied Mathematics, vol.224, no.19, pp182-192, 2009.

[16] T. Huang, B. C. Li, D. Shen, J. Cao, B. Mao. “Analysis of the grain loss in harvest based on logistic
regression” J. Procedia Computer Science, vol.112, no. 45, pp698-705, 2017.

