
Journal of Information Hiding and Multimedia Signal Processing c©2018 ISSN 2073-4212

Ubiquitous International Volume 9, Number 5, September 2018

A Lower-side Attainment Degree Approach for
Bilevel Optimization under Uncertainty

Aihong Ren

School of Mathematics and Information Science
Baoji University of Arts and Sciences

No.1 Hi-Tech Avenue, Baoji, Shaanxi, China
raih2003@hotmail.com

Received February, 2018; revised April, 2018

Abstract. In this study, a new solution approach based on the lower-side attainment
degree is developed for bilevel linear programming problems with fuzzy coefficients in both
objective functions and constraint functions. In order to handle fuzzy uncertainties,
we adopt the lower-side attainment degree to defuzzify fuzzy terms, and convert the fuzzy
bilevel programming problem into the equivalent deterministic bilevel one. Compared with
some traditional defuzzifying techniques, this kind of transformation does not produce
complicated intermediate models and complex computation process, and provides a simple
deterministic bilevel linear model. The resulting bilevel linear model is coped with by the
extended Kth-best approach. Furthermore, we extend the developed approach to deal with
the fuzzy random bilevel programming problem with the aid of expectation. Finally, we
provide several numerical examples to demonstrate the feasibility and efficiency of the
proposed method.
Keywords: Bilevel optimization; Fuzzy number; Fuzzy bilevel programming; Fuzzy
random variable; Lower-side attainment degree

1. Introduction. Bilevel optimization is a very hot research topic in mathematical pro-
gramming that has attracted extensive attention from many researchers in the past few
decades. So far, a large number of works about theories, algorithms and applications for
bilevel optimization have been done, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The conventional
bilevel programming problem is well-defined, that is to say, all the parameters involved
in the problem are supposed to be known precisely. Nevertheless, some relevant parame-
ters in many real-life bilevel problems often meet with uncertainties. Therefore, there is
a growing demand to introduce any appropriate uncertainty programming technique in
bilevel optimization to cope with such bilevel decision problems with uncertainty.

Fuzzy set theory proposed by Zadeh [11] is one of the most powerful tools for tackling
uncertainty in optimization problems. On the basis of fuzzy set theory, uncertain param-
eters in bilevel optimization are characterized as fuzzy numbers, and thus a fuzzy bilevel
programming problem occurs. Compared to the conventional bilevel optimization, solving
such a type of problem is much trickier. Zhang et al. [12] employed λ−level sets of fuzzy
numbers to change the fuzzy bilevel linear optimization problem into a multiobjective
bilevel programming problem, and then developed the fuzzy Kuhn-Tucker approach, the
fuzzy Kth-best approach and the fuzzy branch-and-bound approach to solve the resulting
model. Hamidi and Nehi [13] introduced λ−cut to convert a bilevel linear programming
with fuzzy parameters into an interval bilevel linear programming problem, and developed
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a solution algorithm to find a linear piecewise trapezoidal approximate fuzzy number for
the upper level objective function of the fuzzy bilevel programming problem. It should be
noted here that these two studies perform the defuzzifying process by discretizing fuzzy
sets via λ−level sets. Katagiri et al. [14] introduced possibilistic Stackelberg problem
for the fuzzy bilevel programming problem based on possibility theory, and employed
linear or nonlinear bilevel programming techniques to solve the resulting deterministic
bilevel model. More recently, Ren and Wang [15] proposed a new approach by combining
the nearest interval approximation with reliability-based possibility degree of interval for
dealing with the fuzzy bilevel linear programming problem. Besides, Zhang et al. [16]
provided a survey which covered theoretical developments and applications about fuzzy
bilevel decision-making techniques.

Furthermore, the practical bilevel decision-making problem may appear in a hybrid
uncertain environment which contains not only a fuzzy circumstance but also a random
situation. In such a case, consideration of both fuzziness and randomness in some pa-
rameters is desirable, and hence a fuzzy random bilevel programming problem arises by
regarding uncertain parameters as fuzzy random variables introduced by Kwakernaak [17].
In the latest years, much attention has been devoted to efficient solution methodologies
for this kind of problem. Sakawa and Katagiri [18] employed level sets and fractile crite-
rion optimization for coping with the fuzzy random bilevel linear programming problem.
Utilizing level sets and probability maximization, Sakawa and Matsui [19] suggested an
interactive fuzzy programming technique to derive a satisfactory solution for the same
fuzzy random bilevel programming problem under a cooperative situation. After that,
Ren and Wang [20] used an interval programming approach based on level sets to reduce
the fuzzy random bilevel programming problem into an equivalent crisp multiobjective
bilevel one, and developed a computational methodology for finding optimistic Stackel-
berg solutions. Singh and Chakraborty [21] adopted the concept of fuzzy expectation and
fuzzy variance to convert the fuzzy random bilevel programming problem into a fuzzy
programming at first stage, and applied the aspiration level and α−cut of the leader’s
objective function to transform the fuzzy programming problem into the deterministic
problem. Notice that these above works are concentrated on employing α−level sets of
fuzzy numbers to carry out the defuzzifying process, and thus additional constraints and
variables may be created. In addition, other latest researches on the fuzzy random bilevel
programming problem may refer to [22, 23, 24, 25].

Different from α−level set method or other traditional defuzzifying techniques, Hop [26]
proposed the lower-side attainment degree to address fuzzy uncertainties in the optimiza-
tion problems. In essential, this technique makes use of the relative relationship among
fuzzy numbers or fuzzy random variables to execute the defuzzifying process. From the
computational point of view, this method has high computational efficiency.

The main aim of this paper is to propose a new method based on the lower-side attain-
ment degree for solving the fuzzy (random) bilevel linear programming problem. In order
to do so, the lower-side attainment degree is first used to tackle fuzzy uncertainties in both
objective functions and constraints, and then the fuzzy bilevel programming problem is
converted into the corresponding deterministic bilevel one. Next, a new concept of Stack-
elberg solution on the basis of the lower-side attainment degree is introduced. Considering
that the resulting deterministic model is a simple bilevel linear programming model, the
extended Kth-best approach [27] is employed to deal with it. Furthermore, we extend
the proposed approach to tackle the fuzzy random bilevel linear programming problem
with the help of the expected value. The proposed approach in this paper produces no
complex intermediate models and obtains a simple resulting deterministic model. Finally,
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three numerical examples are given to show the feasibility and efficiency of the developed
method.

This paper is organized as follows: Section 2 recalls the concepts of triangular fuzzy
number, fuzzy random variable and the lower-side attainment degree. Section 3 develops
a solution methodology based on the lower-side attainment degree to deal with the fuzzy
(random) bilevel linear programming problem. Section 4 gives experimental results of
several numerical examples. Finally, concluding remarks are made in Section 5.

2. Preliminaries. In this section, the basic concepts of triangular fuzzy number and
fuzzy random variable are recalled, and then the definitions and useful results relevant to
the lower-side attainment degree of two fuzzy numbers or two fuzzy random variables are
introduced.

Definition 2.1. ([28]) A triangular fuzzy number x̃ = (x, l, r), l, r ≥ 0, is defined as
follows

µx̃(t) =


max{0, 1− x−t

l
}, t ≤ x,

1, l = 0, r = 0, x = t,
max{0, 1− t−x

r
}, t ≥ x,

0, otherwise,

where l, r ≥ 0(l, r ∈ R) are the left and right spreads, respectively. In particular, a crisp
number x ∈ R can be denoted as a triangular fuzzy number x̃ = (x, 0, 0).

Definition 2.2. ([29]) Suppose that (Ω,A, P ) be a probability space in which Ω is the
sample space, A is Borel σ−algebra on Ω and P is the probability measure. Let F0(R)
denote the set of all fuzzy numbers with compact supports on R. A fuzzy random variable
is a map:

˜̄X : Ω→ F0(R), ω → X̃ω,

such that for any Borel set B of R and for every α ∈ (0, 1)

˜̄X−1
α (B) = {ω ∈ Ω|X̃α

ω ⊂ B} ∈ A,
where X̃α

ω is the α−level set of the fuzzy set X̃ω.

According to Hop [26], for two fuzzy numbers ũ, ṽ and ũ ≤ ṽ, when the intersection
between the right side of ũ and the left side of ṽ exists, the lower-side attainment degree
of ũ to ṽ can be defined as

D(ũ, ṽ) =

∫ 1

0

max{0, sup{s ∈ R : ũ(s) ≥ α} − inf{r ∈ R : ṽ(r) ≥ α}}dα.

Proposition 2.1. ([26]) For two triangular fuzzy numbers ũ = (u, a, b), ṽ = (v, c, d) and
u ≤ v, the average lower-side attainment degree of ũ to ṽ is

D̄(ũ, ṽ) =
u− v + b+ c

2
.

Similarly, for two fuzzy random variables ˜̄u, ˜̄v and ˜̄u ≤ ˜̄v, Hop [26] gave the concept of
the lower-side attainment degree of ˜̄u to ˜̄v as follows:

D(˜̄u, ˜̄v) =

∫ 1

0

max{0, sup{s ∈ R : ũω(s) ≥ α} − inf{r ∈ R : ṽω(r) ≥ α}}dα.

Proposition 2.2. ([26]) Let ˜̄u and ˜̄v be two triangular fuzzy random variables, and ˜̄u ≤ ˜̄v.
The average lower-side attainment degree of ˜̄u to ˜̄v is

D̄(˜̄u, ˜̄v) =
u(ω)− v(ω) + b(ω) + c(ω)

2
.
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3. Methodology. In this section, a novel solution strategy based on the average lower-
side attainment degree is developed to deal with the fuzzy (random) bilevel linear pro-
gramming problem.

3.1. Bilevel linear optimization with fuzzy parameters. A general fuzzy bilevel
linear programming model can be formulated as follows:

min
x1

F̃ (x1, x2) = c̃11x1 + c̃12x2

s.t. ã1i1x1 + ã1i2x2 ≤ b̃1i, i = 1, 2, · · · ,m1,
where x2 solves

min
x2

f̃(x1, x2) = c̃21x1 + c̃22x2

s.t. ã2i1x1 + ã2i2x2 ≤ b̃2i, i = 1, 2, · · · ,m2,
x1 ≥ 0, x2 ≥ 0,

(1)

where x1 ∈ Rn1 and x2 ∈ Rn2 are vectors of decision variables controlled by the upper
and lower level decision makers, respectively. F̃ (x1, x2) and f̃(x1, x2) are the upper and
lower level objective functions, respectively. c̃lj and ãlij, l, j = 1, 2, i = 1, 2, · · · ,ml, are

nj−dimensional fuzzy vectors whose components are fuzzy numbers, and b̃li are fuzzy
numbers.

Taking into account that the triangular fuzzy number is the most popular and commonly
used type of fuzzy number in practice due to its simplicity, and we assume that fuzzy
coefficients involved in problem (1) are triangular forms in this study.

Owing to fuzziness inherent in model (1), some conventional bilevel programming tech-
niques are unable to be directly utilized for dealing with such a problem. One of the
most critical issues for handling this type of problem is to remove fuzziness with the aim
of converting the fuzzy bilevel programming problem into its crisp equivalent form. To
this end, a solution approach on the basis of the average lower-side attainment degree is
suggested to tackle problem (1) in this paper.

The lower level programming problem of problem (1) is fundamentally one single level
fuzzy optimization problem. For this kind of problem, some methods based on ranking
fuzzy numbers or α−level set [30, 31] have been put forward to eliminate fuzziness con-
tained in the problem. From a standpoint of computation, these techniques may suffer
from complicated computation in the defuzzifying process. As a different approach, the
lower-side attainment degree of fuzzy numbers introduced by Hop [26] can efficiently tackle
fuzzy terms into the corresponding deterministic ones [26] with simple computation pro-
cess. In the light of this fact, we first deal with fuzziness in the lower level programming
problem by employing the lower-side attainment degree.

For a given x1, an equivalent form of the lower level programming problem of problem
(1) can be formulated by converting the lower level objective function into its equivalent
fuzzy constraint: 

min
x2

θ2

s.t. f̃(x1, x2) ≤ θ2,

ã2i1x1 + ã2i2x2 ≤ b̃2i, i = 1, 2, · · · ,m2,
x2 ≥ 0,

(2)

where θ2 is a crisp number, fuzzified as (θ2, 0, 0).
For convenience, denote g̃2i(x1, x2) = ã2i1x1 + ã2i2x2, i = 1, 2, · · · ,m2. Using arithmetic

operations between triangular fuzzy numbers, the objective function value at the lower
level f̃(x1, x2) and the left hand side g̃2i(x1, x2) of the i−th constraint in problem (2)
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are triangular fuzzy numbers. Denote f̃(x1, x2) = (f(x1, x2), lf , rf ) and g̃2i(x1, x2) =
(g2i(x1, x2), lg2i , rg2i).

For problem (2), we use the average lower-side attainment degree to transform fuzzy
constraints into the corresponding crisp ones. Besides, the inequality conditions on the
left and right hand sides of all fuzzy constraints need to be satisfied by their most possible
values. Based on these discussions, problem (2) can be defuzzified into the following crisp
problem by minimizing the achievement of the left-hand side to right-hand side of each
constraint:



min
x2

θ2 + λ2 +
m2∑
i=1

η2i

s.t. f(x1, x2) ≤ θ2,
g2i(x1, x2) ≤ b2i, i = 1, 2, · · · ,m2,

D̄(f̃(x1, x2), θ2) = λ2,

D̄(g̃2i(x1, x2), b̃2i) = η2i, i = 1, 2, · · · ,m2,
λ2 ≥ 0, η2i ≥ 0, i = 1, 2, · · · ,m2,
x2 ≥ 0.

(3)

For any given x1, let MD̄(x1) be the set of optimal solutions of problem (3).
Next, we introduce a crisp variable θ1 and equivalently convert the upper level objective

function into the corresponding fuzzy constraint. Thus problem (1) can be rewritten as


min
x1

θ1

s.t. F̃ (x1, x2) ≤ θ1,

ã1i1x1 + ã1i2x2 ≤ b̃1i, i = 1, 2, · · · ,m1,
x1 ≥ 0, x2 ∈MD̄(x1).

(4)

Denote g̃1i(x1, x2) = ã1i1x1+ã1i2x2, i = 1, 2, · · · ,m1. Obviously, F̃ (x1, x2) and g̃1i(x1, x2)
are also two triangular fuzzy numbers. Denote F̃ (x1, x2) = (F (x1, x2), lF , rF ) and g̃1i =
(g1i(x1, x2), lg1i , rg1i).

Then the corresponding deterministic model for problem (4) can be obtained through
the average lower-side attainment degree:



min
x1

θ1 + λ1 +
m1∑
i=1

η1i +
m2∑
i=1

η2i

s.t. F (x1, x2) ≤ θ1,
g1i(x1, x2) ≤ b1i, i = 1, 2, · · · ,m1,

D̄(F̃ (x1, x2), θ1) = λ1,

D̄(g̃1i(x1, x2), b̃1i) = η1i, i = 1, 2, · · · ,m1,
x1 ≥ 0, x2 ∈MD̄(x1), λ1 ≥ 0, η1i ≥ 0, i = 1, 2, · · · ,m1.

(5)
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Equivalently, the above problem can be rewritten as:

min
x1

θ1 + λ1 +
m1∑
i=1

η1i +
m2∑
i=1

η2i

s.t. F (x1, x2) ≤ θ1,
g1i(x1, x2) ≤ b1i, i = 1, 2, · · · ,m1,

D̄(F̃ (x1, x2), θ1) = λ1,

D̄(g̃1i(x1, x2), b̃1i) = η1i, i = 1, 2, · · · ,m1,
where x2 solves

min
x2

θ2 + λ2 +
m2∑
i=1

η2i

s.t. f(x1, x2) ≤ θ2,
g2i(x1, x2) ≤ b2i, i = 1, 2, · · · ,m2,

D̄(f̃(x1, x2), θ2) = λ2,

D̄(g̃2i(x1, x2), b̃2i) = η2i, i = 1, 2, · · · ,m2,
λ1 ≥ 0, η1i ≥ 0, i = 1, 2, · · · ,m1, λ2 ≥ 0, η2i ≥ 0, i = 1, 2, · · · ,m2,
x1 ≥ 0, x2 ≥ 0.

(6)

It should be noticed here that the average lower-side attainment degree helps us trans-
form the fuzzy bilevel programming problem into a crisp bilevel linear programming one.
Obviously, this method provides a simple conversion process and a simple deterministic
model.

Next, we give the concept of the optimal solution for the fuzzy bilevel programming
problem (1).

Let SD̄ be the feasible region of problem (6).

Definition 3.1. A point (x∗1, x
∗
2) ∈ SD̄ is called a lower-side attainment degree Stackelberg

solution to the fuzzy bilevel programming problem (1), if (x∗1, x
∗
2) is a Stackelberg solution

to problem (6).

It is obvious that linear constraint functions are involved in the upper level programming
problem, the extended Kth-best approach [27] is employed to solve the bilevel linear
programming problem (6) by searching extreme points on the constraint region.

3.2. Bilevel linear optimization under fuzzy random uncertainty. In this section,
we will extend the proposed approach based on the average lower-side attainment degree
to deal with a kind of fuzzy random bilevel linear programming problem.

A fuzzy random bilevel linear programming problem in which fuzzy random variable
coefficients exist in both objective functions as well as the constraints can be stated as
follows: 

min
x1

˜̄F (x1, x2) = ˜̄c11x1 + ˜̄c12x2

where x2 solves

min
x2

˜̄f(x1, x2) = ˜̄c21x1 + ˜̄c22x2

s.t. ˜̄ai1x1 + ˜̄ai2x2 ≤ ˜̄bi, i = 1, 2, · · · , s,
ar1x1 + ar2x2 ≤ br, r = 1, 2, · · · , t,
x1 ≥ 0, x2 ≥ 0,

(7)

where ˜̄clj and ˜̄aij, l, j = 1, 2, i = 1, 2, · · · , s, are nj−dimensional fuzzy random vectors

whose elements are fuzzy random variables, and ˜̄bi are fuzzy random variables; arj, r =
1, 2, · · · , t, are nj−dimensional crisp vectors, and br are constants.
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Assume that the triangular form of fuzzy random variable is considered for the un-
certain parameters in problem (7). Denote ˜̄gi(x1, x2) = ˜̄ai1x1 + ˜̄ai2x2, i = 1, 2, · · · , s.
According to Zadeh’s extension principle [32], the upper and lower level objective func-
tions and the left hand sides of all uncertain constraints become triangular fuzzy random

variables. Denote ˜̄Fω(x1, x2) = (Fω(x1, x2), lFω , rFω), ˜̄fω(x1, x2) = (fω(x1, x2), lfω , rfω),

(˜̄gi)ω(x1, x2) = ((gi)ω(x1, x2), l(gi)ω , r(gi)ω), and (˜̄bi)ω = ((bi)ω, l
(bi)ω , r(bi)ω), ∀ω ∈ Ω.

Currently, the frequently used approach to tackle the fuzzy random bilevel programming
problem is to defuzzify and derandomize fuzzy random terms for the sake of reducing the
problem into the deterministic one dealt with by some efficient solution strategies. Here
the defuzzifying process utilizes the average lower-side attainment degree technique and
the derandomizing process adopts expectation method.

We first introduce crisp variables θ1, θ2 and convert the upper and lower level objective
functions into their equivalent fuzzy random constraints, and then obtain its equivalent
form: 

min
x1

θ1

s.t. ˜̄F (x1, x2) ≤ θ1,
where x2 solves

min
x2

θ2

s.t. ˜̄f(x1, x2) ≤ θ2,

˜̄ai1x1 + ˜̄ai2x2 ≤ ˜̄bi, i = 1, 2, · · · , s,
ar1x1 + ar2x2 ≤ br, r = 1, 2, · · · , t,
x1 ≥ 0, x2 ≥ 0.

(8)

Then we apply the average lower-side attainment degree and the expected value to
convert fuzzy random constraints into deterministic constraints, and thus reduce model
(8) into a deterministic bilevel programming problem as follows:

min
x1

θ1 + E[λ1(ω)] + E(
s∑
i=1

[ηi(ω)])

s.t. Fω(x1, x2) ≤ θ1,

D̄( ˜̄Fω(x1, x2), θ1) = λ1(ω),
where x2 solves

min
x2

θ2 + E[λ2(ω)] + E(
s∑
i=1

[ηi(ω)])

s.t. fω(x1, x2) ≤ θ2,
(gi)ω(x1, x2) ≤ (bi)ω, i = 1, 2, · · · , s,
D̄( ˜̄fω(x1, x2), θ2) = λ2(ω),

D̄((˜̄gi)ω(x1, x2), (˜̄bi)ω) = ηi(ω), i = 1, 2, · · · , s,
ar1x1 + ar2x2 ≤ br, r = 1, 2, · · · , t,
λ1(ω) ≥ 0, λ2(ω) ≥ 0, ηi(ω) ≥ 0, ω ∈ Ω, i = 1, 2, · · · , s,
x1 ≥ 0, x2 ≥ 0,

(9)

where E represents the expected value.
Let SD̄E be the feasible region of problem (9).

Definition 3.2. If (x∗1, x
∗
2) ∈ SD̄E is a Stackelberg solution to problem (9), then (x∗1, x

∗
2)

is called an expected lower-side attainment degree Stackelberg solution to the fuzzy random
bilevel programming problem (7).
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It is evident that the transformed model (9) is also a bilevel linear programming problem
with linear constraint functions in the upper level programming. Similar to the previous
section,we use the extended Kth-best approach to solve model (9).

4. Numerical examples. In this section, three numerical examples are provided to
show the effectiveness of the proposed technique for the fuzzy (random) bilevel linear
programming problem. Furthermore, some comparisons and discussions are given to
further illustrate the developed approach.

Example 4.1. Consider a fuzzy bilevel linear programming problem taken from Hamidi
and Nehi [13]:



min
x≥0

F̃ (x, y) = 1̃x− 4̃y

where y solves

min
y≥0

f̃(x, y) = 1̃y

s.t. 2̃x− 1̃y ≥ 0̃,
−2̃x− 1̃y ≥ −1̃2,
3̃x− 2̃y ≥ 4̃,

(10)

where all fuzzy coefficients are assumed to be in the form of triangular fuzzy number
t̃ = (t, 1, 1).

According to model (6), problem (10) can be transformed into the following bilevel
model:



min θ1 + λ1 + η1 + η2 + η3

s.t. x− 4y ≤ θ1,
D̄(1̃x− 4̃y, θ1) = λ1,
where y solves

min θ2 + λ2 + η1 + η2 + η3

s.t. y ≤ θ2,
2x− y ≥ 0,
−2x− y ≥ −12,
3x− 2y ≥ 4,
D̄(1̃y, θ2) = λ2,
D̄(0̃, 2̃x− 1̃y) = η1,
D̄(−1̃2,−2̃x− 1̃y) = η2,
D̄(4̃, 3̃x− 2̃y) = η3,
x ≥ 0, y ≥ 0, λ1 ≥ 0, λ2 ≥ 0, η1 ≥ 0, η2 ≥ 0, η3 ≥ 0.

(11)

Then we obtain the following bilevel linear programming problem by calculating all
average lower-side attainment degrees:
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min θ1 + λ1 + η1 + η2 + η3

s.t. x− 4y ≤ θ1,
1
2
(x− 4y − θ1 + x+ y + 0) = λ1,

where y solves
min θ2 + λ2 + η1 + η2 + η3

s.t. y ≤ θ2,
2x− y ≥ 0,
−2x− y ≥ −12,
3x− 2y ≥ 4,
1
2
(y − θ2 + y + 0) = λ2,

1
2
(0− (2x− y) + 1 + x+ y) = η1,

1
2
(−12− (−2x− y) + 1 + x+ y) = η2,

1
2
(4− (3x− 2y) + 1 + x+ y) = η3,
x ≥ 0, y ≥ 0, λ1 ≥ 0, λ2 ≥ 0, η1 ≥ 0, η2 ≥ 0, η3 ≥ 0.

(12)

Now solving problem (12) by the extended Kth-best approach, we can obtain the opti-
mal solution (x∗, y∗) = (3.0, 1.0). Put this solution into the upper level objection function
of problem (10), the corresponding objection function value is F̃ ∗ = (−1, 4, 4).

For this example, Hamidi and Nehi [13] applied λ−cut as the defuzzifying technique to
construct an interval bilevel programming model from a fuzzy one. As far as the resulting
model is concerned, our method provides a simple crisp bilevel linear programming model,
which can be coped with easily by some classical solution strategies.

Example 4.2. Consider the following example taken from Zhang and Lu [33]:

min
x≥0

1̃x− 2̃y

s.t. −1̃x+ 3̃y ≤ 4̃,
where y solves

min
y≥0

1̃x+ 1̃y

s.t. 1̃x− 1̃y ≤ 0̃,
−1̃x− 1̃y ≤ 0̃,

(13)

where all the coefficients are triangular fuzzy numbers, denoted by t̃ = (t, 1, 1).

Using model (6), problem (13) can be transferred to a bilevel linear programming
problem as follow:

min θ1 + λ1 + η11 + η21 + η22

s.t. x− 2y ≤ θ1,
−x+ 3y ≤ 4,
1
2
(x− 2y − θ1 + x+ y + 0) = λ1,

1
2
(−x+ 3y − 4 + x+ y + 1) = η11,

where y solves
min θ2 + λ2 + η21 + η22

s.t. x+ y ≤ θ2,
x− y ≤ 0,
−x− y ≤ 0,
1
2
(x+ y − θ2 + x+ y + 0) = λ2,

1
2
(x− y − 0 + x+ y + 1) = η21,

1
2
(−x− y − 0 + x+ y + 1) = η22,
x ≥ 0, y ≥ 0, λ1 ≥ 0, λ2 ≥ 0, η11 ≥ 0, η21 ≥ 0, η22 ≥ 0.

(14)
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With the help of the extended Kth-best method, the obtained optimal solution is
(x∗, y∗) = (0.3750, 0.7500), and the corresponding objective function value at the upper
level of problem (13) is F̃ ∗ = (−1.125, 1.125, 1.125).

To solve this example, Zhang and Lu [33] employed λ−cut to change problem (13) into
a multiobjective bilevel programming model. From the resulting deterministic model, it is
apparent that a bilevel linear programming model with a single objective function at each
level constructed by our approach is usually easier to tackle than a multiobjective bilevel
programming model constructed by Zhang and Lu’ method. In addition, the optimal
solution obtained by our approach is extremely different from that obtained by Zhang
and Lu’ method. It is mainly because different concepts of optimal solution are defined
based on different perspectives of decision-making under an uncertain environment by our
approach and Zhang and Lu’ method, leading to different optimal results.

Example 4.3. We consider the following fuzzy random bilevel linear programming prob-
lem in [34]:

min
x1

˜̄z1(x1, x2) = ˜̄c111x11 + ˜̄c112x12 + ˜̄c113x13 + ˜̄c121x21 + ˜̄c122x22 + +˜̄c123x23

where x2 solves
min
x2

˜̄z2(x1, x2) = ˜̄c211x11 + ˜̄c212x12 + ˜̄c213x13 + ˜̄c221x21 + ˜̄c222x22 + +˜̄c223x23

s.t. 2x11 + 3x12 + x13 + 2x21 + 3x22 + 3x23 ≤ 65,
4x11 + 4x12 + 2x13 + 3x21 + 2x22 + x23 ≤ 80,
2x11 + 4x12 + 3x13 + 3x21 + 2x22 + 2x23 ≤ 105,
−3x11 − 2x12 − 2x13 − 4x21 − x22 − 4x23 ≤ −70,
x1 = (x11, x12, x13)T ≥ 0, x2 = (x21, x22, x23)T ≥ 0,

(15)

where all the coefficients in both objective functions are triangular fuzzy random variables.
Tables 1 and 2 give the values of these coefficients.

Table 1. Values of coefficients in the upper level objective function

Probability ˜̄c111 ˜̄c112 ˜̄c113 ˜̄c121 ˜̄c122 ˜̄c123

P (ω1) =
0.25

(2.3,0.8,0.8) (-1.0,1.2,1.1) (1.3,0.7,0.5) (-1.3,0.9,0.6) (-1.8,1.3,0.9) (2.0,0.6,1.0)

P (ω2) =
0.40

(2.0,0.8,0.8) (-1.3,1.2,1.1) (2.0,0.7,0.5) (1.1,0.9,0.6) (-2.1,1.3,0.9) (2.4,0.6,1.0)

P (ω3) =
0.35

(1.9,0.8,0.8) (-2.4,1.2,1.1) (2.7,0.7,0.5) (-1.5,0.9,0.6) (-1.2,1.3,0.9) (3.8,0.6,1.0)

Table 2. Values of coefficients in the lower level objective function

Probability ˜̄c211 ˜̄c212 ˜̄c213 ˜̄c221 ˜̄c222 ˜̄c223

P (ω1) =
0.45

(3.0,0.7,0.7)
(1.7,1.2,0.9) (-1.6,0.8,0.6) (-1.4,0.5,1.0) (-1.6,0.9,0.8) (1.7,1.1,0.9)

P (ω2) =
0.15

(1.7,0.7,0.7)
(1.3,1.2,0.9) (-2.3,0.8,0.6) (-0.8,0.5,1.0) (-1.9,0.9,0.8) (2.6,1.1,0.9)

P (ω3) =
0.40

(2.3,0.7,0.7)
(0.9,1.2,0.9) (-1.0,0.8,0.6) (-2.0,0.5,1.0) (-1.2,0.9,0.8) (3.5,1.1,0.9)

For simplicity, let S denote the constraint region of problem (15).
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Now we first transform the upper and lower level objective functions into their equiva-
lent fuzzy random constraints by introducing two crisp variables θ1 and θ2, and then the
equivalent model of problem (15) is:

min θ1

s.t. ˜̄c111x11 + ˜̄c112x12 + ˜̄c113x13 + ˜̄c121x21 + ˜̄c122x22 + ˜̄c123x23 ≤ θ1,
where x2 solves

min θ2

s.t. ˜̄c211x11 + ˜̄c212x12 + ˜̄c213x13 + ˜̄c221x21 + ˜̄c222x22 + ˜̄c223x23 ≤ θ2,
(x1, x2) ∈ S.

(16)

According to model (9), a deterministic form of problem (16) is:

min θ1 + 0.25λ11 + 0.40λ12 + 0.35λ13

s.t. 2.3x11 − x12 + 1.3x13 − 1.3x21 − 1.8x22 + 2.0x23 ≤ θ1,
2.0x11 − 1.3x12 + 2.0x13 + 1.1x21 − 2.1x22 + 2.4x23 ≤ θ1,
1.9x11 − 2.4x12 + 2.7x13 − 1.5x21 − 1.2x22 + 3.8x23 ≤ θ1,
1
2
(2.3x11 − x12 + 1.3x13 − 1.3x21 − 1.8x22 + 2.0x23 − θ1 + 0.8x11 + 1.1x12

+0.5x13 + 0.6x21 + 0.9x22 + 1.0x23 + 0) = λ11,
1
2
(2.0x11 − 1.3x12 + 2.0x13 + 1.1x21 − 2.1x22 + 2.4x23 − θ1 + 0.8x11 + 1.1x12

+0.5x13 + 0.6x21 + 0.9x22 + x23 + 0) = λ12,
1
2
(1.9x11 − 2.4x12 + 2.7x13 − 1.5x21 − 1.2x22 + 3.8x23 − θ1 + 0.8x11 + 1.1x12

+0.5x13 + 0.6x21 + 0.9x22 + x23 + 0) = λ13,
where x2 solves

min θ2 + 0.45λ21 + 0.15λ22 + 0.40λ23

s.t. 3.0x11 + 1.7x12 − 1.6x13 − 1.4x21 − 1.6x22 + 1.7x23 ≤ θ2,
1.7x11 + 1.3x12 − 2.3x13 − 0.8x21 − 1.9x22 + 2.6x23 ≤ θ2,
2.3x11 + 0.9x12 − x13 − 2.0x21 − 1.2x22 + 3.5x23 ≤ θ2,
1
2
(3.0x11 + 1.7x12 − 1.6x13 − 1.4x21 − 1.6x22 + 1.7x23 − θ2 + 0.7x11 + 0.9x12

+0.6x13 + x21 + 0.8x22 + 0.9x23 + 0) = λ21,
1
2
(1.7x11 + 1.3x12 − 2.3x13 − 0.8x21 − 1.9x22 + 2.6x23 − θ2 + 0.7x11 + 0.9x12

+0.6x13 + x21 + 0.8x22 + 0.9x23 + 0) = λ22,
1
2
(2.3x11 + 0.9x12 − 1.0x13 − 2.0x21 − 1.2x22 + 3.5x23 − θ2 + 0.7x11 + 0.9x12

+0.6x13 + x21 + 0.8x22 + 0.9x23 + 0) = λ23,
λ11 = λ1(ω1) ≥ 0, λ12 = λ1(ω2) ≥ 0, λ13 = λ1(ω3) ≥ 0, λ21 = λ2(ω1) ≥ 0,
λ22 = λ2(ω2) ≥ 0, λ23 = λ2(ω3) ≥ 0, (x1, x2) ∈ S.

(17)

Through solving model (17), we obtain the optimal solution (x∗11, x
∗
12, x

∗
13, x

∗
21, x

∗
22, x

∗
23) =

(4.5490, 0.3788, 0, 15.4669, 6.5185, 0.8512).
For this example, Sakawa et al. [34] combined expectation optimization with possibility

and necessity to transform and solve it. From the point of view of the resulting deter-
ministic model, Sakawa et al.’ approach gives a bilevel linear fractional programming
model, and our method obtains a bilevel linear programming model which is the simplest
form in bilevel programming. From the final results, both E-P-Stackelberg solution and
E-N-Stackelberg solution obtained in [34] are different from the optimal solution obtained
by our approach in terms of different definitions of optimal solution.

5. Conclusion. In this research, we study bilevel linear programming problems within
a fuzzy (random) environment, where uncertain coefficients are considered as fuzzy num-
bers (fuzzy random variables). To effectively address fuzzy uncertainties, the lower-side
attainment degree is utilized to defuzzify fuzzy terms, and then change the fuzzy bilevel
programming problem into the equivalent deterministic bilevel linear problem solved by
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the extended Kth-best approach. Moreover, the developed method is extended to tackle
fuzzy random bilevel programming problems with the help of expectation. The advantage
of the proposed approach is that it can help make simple transformation processes and
obtain a simple deterministic model, and thus improve the computational efficiency.

The proposed approach can be further extended to handle multiobjective bilevel opti-
mization problems under fuzzy (random) environments. Besides, the applicability of the
proposed method is also considered as another future research work.
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[8] V. V. Kalashnikov, S. Dempe, G. A. Pérez-Valdés, N. I. Kalashnykova, and J. F. Camacho-Vallejo,
Bilevel programming and applications, Mathematical Problems in Engineering, vol.2015, pp.16 pages,
2015.

[9] A. Sinha, P. Malo, and K. Deb, Transportation policy formulation as a multi-objective bilevel opti-
mization problem, 2015 IEEE Congress on Evolutionary Computation (CEC-2015), Sendai, Japan,
pp.1-8 , 2015.

[10] A. Sinha, P. Malo, and K. Deb, A review on bilevel optimization: From classical to evolutionary
approaches and applications, IEEE Transactions on Evolutionary, vol.22, no.2, pp.276–295, 2018.

[11] L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, no.3, pp.338–353, 1965.
[12] G. Q. Zhang, J. Lu, and T. Dillon, Fuzzy linear bilevel optimization: Solution concepts, approaches

and applications, Fuzzy Logic, vol.215, pp.351–379, 2007.
[13] F. Hamidi, and N. Mishmast, Bilevel linear programming with fuzzy parameters, Iranian Journal of

Fuzzy Systems, vol.10, no.4, pp.83–99, 2013.
[14] H. Katagiri, K. Kato, and T. Uno, Possibilistic Stackelberg solutions to bilevel linear programming

problems with fuzzy parameters, Journal of Intelligent & Fuzzy Systems, vol.32, no.6, pp.4485–4501,
2017.

[15] A. H. Ren, and Y. P. Wang, An approach based on reliability-based possibility degree of interval for
solving general interval bilevel linear programming problem, Soft Computing, pp.1–10, 2017, Online.

[16] G. Q. Zhang, J. L. Han, and J. Lu, Fuzzy bilevel decision-making techniques: A survey, International
Journal of Computational Intelligence Systems, vol.9, pp.25–34, 2016.

[17] H. Kwakernaak, Fuzzy random variables-I: Definitions and theorems, Information Sciences, vol.15,
no.1, pp.1–29, 1978.

[18] M. Sakawa, and H. Katagiri, Stackelberg solutions for fuzzy random two-level linear programming
through level sets and fractile criterion optimization, Central European Journal of Operations Re-
search, vol.20, pp.101–117, 2012.



1182 A. H. Ren

[19] M. Sakawa, and T. Matsui, Interactive fuzzy random cooperative two-level linear programming
through level sets based probability maximization, Expert Systems with Applications, vol.40,
pp.1400–1406, 2013.

[20] A. H. Ren, Y. P. Wang, Optimistic Stackelberg solutions to bilevel linear programming with fuzzy
random variable coefficients, Knowledge-Based Systems, vol.67, pp.206–217, 2014.

[21] V. P. Singh, and D. Chakraborty, Solving bi-level programming problem with fuzzy random variable
coefficients, Journal of Intelligent & Fuzzy Systems, vol.32, pp.521–528, 2017.

[22] M. Sakawa, and T. Matsui, Fuzzy random non-cooperative two-level linear programming through
fractile models with possibility and necessity, Engineering Optimization, vol.45, no.7, pp.811–833,
2013.

[23] M. Sakawa, and T. Matsui, Interactive fuzzy random two-level linear programming based on level
sets and fractile criterion optimization, Information Sciences, vol.238, pp.163–175, 2013.

[24] A. H. Ren, Y. P. Wang, and X. X. Xue, An interval programming approach for the bilevel linear
programming problem under fuzzy random environments, Soft Computing, vol.18, no.5, pp.995–1009,
2014.

[25] M. Sakawa, T. Matsui, Bilevel linear programming with fuzzy random variables through absolute
deviation minimisation, International Journal of Operational Research, vol.25, no.1, pp.1–27, 2016.

[26] N. V. Hop, Solving linear programming problems under fuzziness and randomness environment using
attainment values, Information Sciences, vol.177, no.14, pp.2971–2984, 2007.

[27] C. Shi, J. Lu, and G. Q. Zhang, An extended Kth-best approach for linear bilevel programming,
Applied Mathematics and Computation, vol.164, no.3, pp.843–855, 2005.

[28] H. J. Zimmermann, Fuzzy set theory - and its applications, Springer Netherlands, Dordrecht, 2001.
http://dx.doi.org/10.1007/978-94-010-0646-0

[29] M. K. Luhandjula, Fuzziness and randomness in an optimization framework, Fuzzy Sets and Systems,
vol.77, pp.291–297, 1996.
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