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Abstract. The Ion Motion Optimization algorithm (IMO) is a new physical heuristic
global optimization algorithm with simple structure and strong robustness. To further
improve the convergence speed and convergence accuracy of IMO, an Opposition-based
learning differential ion motion algorithm (OL-IMO) is proposed here. On the one hand,
an individual updating method based on the opposition-based learning strategy is pro-
posed, which makes full use of the existing search resources to improve the convergence
speed; on the other hand, adding the individual evolutionary information modified random
perturbations in the solid phase of renovation, to better balance the algorithm of popula-
tion diversity and convergence speed. By testing 8 standard test functions, it is shown
that OL-IMO algorithm is superior to the IMO algorithm and the other two outstanding
optimization algorithms including ADN-RSN-PSO algorithm and MDE algorithm in op-
timization accuracy, convergence speed and robustness.
Keywords: PIon Motion Optimization algorithm; Opposition-based learning strategy;
The individual evolutionary information.

1. Introduction. In recent years, with the popularization of swarm intelligence opti-
mization algorithm, many experts and scholars have produced various effective optimiza-
tion algorithms. For example, in 2012, the Enhanced parallel cat swarm optimization
based on the Taguchi method(EPCSO) proposed by Pei-Wei Tsai and others has achieved
good results in solving the problem of numerical optimization [1]. And at 2016, the QUasi-
Affine TRansformation Evolutionary (QUATRE) algorithm: A cooperative swarm based
algorithm proposed by Zhenyu Meng and others has achieved good results in solving
the problem of large-scale optimization [2]. In this paper, the ion motion algorithm is
studied. Ion motion algorithm(IMO) [3] is a kind of physical heuristic group intelligence
optimization algorithm which simulates the movement rules of anions and cations. It
was just proposed by Behzad Javidy et al., Iran Islamic University, in 2015. The test
results of 8 standard test functions has shown that compared to the standard Genetic
Algorithm(GA) [4], Particle Swarm Optimization algorithm(PSO) [5], Ant Colony Opti-
mization(ACO) [6], Differential Evolution algorithm (DE) [7], and Artificial Bee Colony
algorithm(ABC) [8], the IMO algorithm has better optimization effect, which has many
advantages, such as fast convergence speed, less parameter setting, simple operation and
so on. In summary, the IMO algorithm has become a new star in the field of evolutionary
algorithms.
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However, like other swarm intelligence optimization algorithms, the IMO algorithm
also has low convergence speed and easy to fall into local optimum in the search process.
Since it has just been put forward, it has not been paid much attention by scholars in
various fields. At present, the performance improvement related articles have not been
published, and the theoretical system of the algorithm is not perfect. In view of this, an
Opposition-based learning differential ion motion algorithm (OL-IMO) is proposed here.
First, an individual update method based on opposition-based learning is proposed, which
makes full use of the existing search resources to improve the convergence speed of the
algorithm; Secondly, in the solid stage, we introduce different components with evolu-
tionary information to introduce more effective directional information for the generation
of the next generation, and enhance the individual’s social learning attributes, to better
balance the population diversity and speed of convergence of the algorithm. The experi-
ments confirmed that compared to the basic IMO algorithm, all-dimension neighborhood
based particle swarm optimization with randomly selected neighbors (ADN-RSN-PSO)
[9] and Modified differential evolution with self-adaptive parameters method (MDE) [10],
the algorithm proposed in this paper has obvious improvement in convergence speed and
convergence accuracy.

The rest of this paper is structured as follows. In the Section 2, we introduce the original
IMO algorithm. In the Section 3, we describe the Opposition-based learning differential
Ion Motion Optimization algorithm proposed here. In the Section 4, we describe relevant
experimental settings and experimental results. In the Section 5, we make a summary of
the work.

2. Standard Ion Motion Optimization algorithm. The Ion Motion Optimization
algorithm divides the ion candidate solutions into two groups, namely, the anion group
and the cation group. They perform different evolutionary strategies in the liquid phase
and the solid phase, and circulate between the liquid and the solid phase to achieve the
purpose of optimizing the ions. The flow diagram of the IMO algorithm is shown in Fig.1.
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Figure 1. General steps of the IMO algorithm.
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The key operations of the IMO algorithm in Fig.1 are as follows:
(1) Initialization population
An initial random population consists of NP vectors Xi, ∀i = 1, 2, ..., NP , and is ran-

domly generated according to a uniform distribution within the lower and upper bound-
aries (xLj , x

U
j ). Each individual is initialized according to the following formula (1).

x0ij = xLj + randj • (xUj − xLj ) (1)

Where, randj is a random number between [0,1], which ensures that each initial solution
is different.

(2) Liquid phase
In the liquid phase, the anion group (A) and the cation group (B) are updated according

to the following patterns, respectively.

Ai,j = Ai,j + AFi,j × (Cbestj − Aj) (2)

Ci,j = Ci,j + CFi,j × (Abestj − Cj) (3)

Where, i ∈ {1, 2, 3, ...NP/2}, which is the size of the two groups of ions, j ∈ {1, 2, 3, ...D}
representation dimension. Cbest and Abest represent the optimal cation and the optimal
anion, respectively (suppose for the minimization problem, the optimal anion, cation is
the anion and cation with the lowest fitness value in the entire anion group and the cation
group), AFi,j represents the resultant attraction force of anions, and CFi,j indicates the
resultant attraction force of cations. The mathematical model is as shown in formula (4)
and (5) respectively:

AFi,j =
1

1 + e−0.1/ADi,j
(4)

CFi,j =
1

1 + e−0.1/CDi,j
(5)

Where ADi,j = |Ai,j − Cbestj|, CDi,j = |Ci,j − Abestj|, ADi,j is the distance of the ith

anion from the best cation in jth dimension, CDi,j calculates the distance of the ith cation
from the best anion in the jth dimension.

(3) Solid phase
With the iteration, the ion is gradually gathered near the optimal ion by the gravi-

tational force. To avoid over-concentration of ions to make the algorithm fall into local
optimum, therefore set the solid phase, to break the phenomenon of excessive concentra-
tion, and provide diversity for the algorithm. The physical process is like this: as the
iteration proceeds, the ion motion gradually slows down from the initial intense motion,
and gradually the liquid state ions will recrystallize into crystals. IMO simulates this
process and proposes a solid phase, with its corresponding pseudo code as shown in Fig.2.

According to the above pseudo code, if both (CbestFit ≥ CworstFit/ 2) and (AbestFit
≥ AworstFit/2) are met, the solid phases of evolution will take place.

(4) Determination of the terminating conditions
Completion of the solid phase evolution strategy to determine whether to achieve the

termination conditions of the algorithm. The termination conditions include the presup-
position accuracy, the number of iterations, and so on. If it is reached, the optimal ion is
directly output; otherwise, the anions and cations are returned to the liquid phase from
the solid phase and continue to be iterated. In such a process, anions and cations are
circulated in liquid phase and solid stage, and the optimal solution is gradually obtained
with iteration.
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Figure 2. IMO algorithm solid phase pseudo code

3. Opposition-based Learning differential ion motion algorithm. The Opposition-
based learning differential ion motion algorithm is improved from two aspects of individual
regeneration and the generation mode of ions in solid stage, so as to enhance the global
optimization ability of IMO algorithm. The details are as follows.

3.1. Improvement of individual renewal mode. In the IMO algorithm, each individ-
ual successively executes the liquid phase and the solid phase to generate new individuals.
The new individual is directly substituted for the original individual, regardless of its ad-
vantages and disadvantages. This individual renewal model has the following defects:
even if the new individual is inferior to the original individual, the original individual
can only be abandoned to retain the new individual. Since the original individuals carry
some excellent evolutionary information, new individuals are likely to deviate from the
original evolutionary direction and let them directly participate in iterative search, which
is blindness and will inevitably reduce the convergence speed of the algorithm.

In summary, the new individuals produced through the liquid phase and the solid phase
haven’t been improved are a key factor affecting the convergence speed of the algorithm.
In view of the literature [11] from probability theory has proved that, the probability
that the current individual is more far away from the optimal position than its reverse
individual is 50%, so the probability that the reverse individual and the current individ-
ual are retained to the next generation are equal in one to one competition.While the
literature [12] in the experiment prove that opposition-based individuals can effectively
increase the diversity of population. For those individuals who have not been improved in
this iteration, since their opposition-based individuals also have the ability to get the best
solution and they can provide other search locations differed from the most individuals
of population. So the participation of opposition-based individuals in the next iteration
can provide new evolutionary information for other individuals and supply the diversity
of the population to a certain extent. However the opposition-based individuals partici-
pating the iteration too much will destroy the original direction of evolution, resulting in
reducing the convergence speed of the algorithm. Therefore, the number of opposition-
based individuals and the original individuals involved in the iterative search need to be
balanced.



Opposition-based Learning Differential Ion Motion Algorithm 991

To make full use of the existing search resources and improve the convergence speed of
the algorithm. This paper puts forward the following improvement measures: comparing
the new Xinew generated by the liquid phase and the solid stage with the original Xi, if
Xinew is better, Xinew directly replace Xi and participate in iterative search; Otherwise,
Xi or the opposition-based solution of Xinew is selected with a certain probability Pm.
The corresponding pseudo code is as follows

 

Figure 3. Opposition-based learning pseudo code

Where, the opposition-based solution Xi of Xinew is produced as follows: hypothesis
Xinew = {x1, x2, ....xD}, it is a point in the D dimensional space, xj ∈ [aj, bj], j ∈
{1, 2, 3, ...D}. The opposition-based point Xi = {x1, x2, ...xD} corresponding to the Xinew,
as shown in formula (6), is shown as follows:

xj = aj + bj − xj (6)

Where, aj and aj are the minimum and maximum values for each dimension of the
contemporary candidate solutions, respectively.

3.2. Improvement of ion generation in solid phase. Through the analysis of the
IMO algorithm, it is found that the role of the solid phase is mainly to maintain the
diversity of the population. This stage provides three modes for the evolution of ions.
Mode 3 is the reinitialization of the individuals, however, the execution probability is
very low, so the effect on the convergence rate and the population diversity is minimal.
Pattern 2 increases diversity by learning the optimal ion. And mode 1 is to add a (-1,1)
random disturbance on the basis of mode 2, and its actual effect is to stretch in the
direction of each dimension in the individual dimension. The way of generating decision
has its own random unpredictability, specific analysis of the impact of the algorithm are
as follows: in the early stage of evolution, population diversity random disturbance has a
certain blindness, although it may have some other new individual local information, thus
increasing the population diversity. However, since they do not have the information of
evolutionary direction, the trend of evolution that originally has certain search direction
is damaged to a certain extent, thus affecting the convergence speed of algorithm; In the
later stage of evolution, individuals are generally closer to the global optimal solution,
and are disturbed by random step size. It is easy to get a relatively large offset, and can
not search fine around the optimal solution, so it is difficult to get the global optimal
solution. In summary, the search mode 1 in solid stage does not consider the degree of
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evolution directly, and directly depends on random disturbance to supplement the way of
population diversity, which is very unfavorable for algorithm convergence.

Considering that individuals carry information of evolutionary process, we try to modify
the search mode 1 with random perturbation in solid stage, and propose the disturbing
part as shown in formula (7).

Ai = Ai + φ1 × (Cbest− 1) + rand()× (Ai − An)
Ci = Ci + φ2 × (Abest− 1) + rand()× (Ci − Cn)

(7)

Where, Φ1 and Φ2 are all random numbers between [-1,1], while rand () is the random
number between [0,1]. An is an anionic individual different from Ai, Cn is a cation
individual different from Ci.

By the formula (7) shows that the original random perturbation correction for differen-
tial vector, its function includes the following two points: first, the best individual of the
population in evolution, compared to exchange information with the original model alone
individual and outstanding individual way, due to the non optimal individual by random
selection, many the combination will be the introduction of local search more information,
so as to increase the diversity of population, reduce the risk of falling into local optimal
algorithm; second, compared with the original random disturbance, improve the way of
carrying into the information, are more likely to get the new individual than the original
outstanding individual, so as to improve the convergence speed of the whole algorithm
however, in the late stage of evolution, the population generally tends to the optimal
individual, centralized distribution, the vector of the difference between the individual
will is very small, thus making disturbance The dynamic range is very small, and it is
more beneficial for the individual to carry out fine search at the same time to maintain
the diversity of the population, so as to obtain the global optimal solution.

3.3. Opposition-based learning differential ion motion algorithm. In this paper,
the Opposition-based learning differential ion motion algorithm is proposed. The following
steps are as follows:

Step 1 Parameter initialization, including the number of NP, the number of iterations
Tmax, the boundary xLj and xUj of the optimization problem, the dimension D of the
optimization problem.

Step 2 The population is initialized randomly, and the population is randomly divided
into anion group A1 and cation group C1, according to the formula (1).

Step 3 Calculation of all ion fitness values;
Step 4 The optimal and worst anions and cations were selected.
Step 5 Anion population and cation population perform the liquid phase according to

the formula (2) and formula (3) in sections 2 respectively, and the new anionic population
A2 and cation population C2 were obtained.

Step 6 The anion population A2 and the cation population C2 perform the solid phase
according to the 3.2 part, and the new anionic population A3 and the cation population
C3 are obtained.

Step 7 Calculate the fitness of A3 and C3 of anionic population. According to the 3.1
way, we determine the new cation population A1 and anion population C1 from A1, C1,
A3 and C3.

Step 8 Determines whether the termination condition is achieved, such as the preset
accuracy and the maximum iteration number. It is the algorithm that ends and outputs
the best result. Otherwise, it will go back to step 4 and enter the liquid stage again.

4. Experiment simulation and result analysis.
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4.1. Standard test functions and performance comparison index. To fully test
the performance of the proposed algorithm, 8 test functions are selected from the CEC2005
benchmark function list, as shown in Table 1. In this, the D represents the number
of dimensions, the dimension D=30 of F1∼F6, the dimension D=2 of the F7, and the
dimension D=3 of the F8. F1 ∼ F3 is a single peak function, F4∼ F6 is a multi-modal
function, and F7 ∼ F8 is a low dimensional function with only a small number of local
minimum values.

The performance comparison of test algorithms mainly focuses on 2 aspects:
(1) The accuracy of optimal solution: when the number of iterations reaches the max-

imum value of Tmax, the accuracy of the optimal solution obtained by the algorithm is
the best, the worst, the mean and the variance of the optimal solution obtained in many
independent operations.

(2) Convergence speed: before the function evaluation number reached the maximum
value Max FEs, the number of function evaluation times NFEs consumed when the opti-
mal solution obtained by the algorithm reaches the predetermined termination error value
Ter Err (termination error value);

In this paper, the experimental parameters were set as follows: NP = 50 the predeter-
mined error value of the test function Ter Err is set to 1.0e-10, the maximum number of
function evaluations Max Fes = 100000, each algorithm runs independently for 30 times.

4.2. Experimental simulation. To fully test the performance of the proposed method,
the proposed algorithm is compared to the basic IMO algorithm and the two global evo-
lutionary algorithms (these two global evolutionary algorithms include: in 2017, Wei Sun
et al. proposed the All-dimension neighborhood based particle swarm optimization with
randomly selected neighbors (ADN-RSN-PSO) [9]. In 2016, an improved differential evo-
lution algorithm (MDE)based on adaptive parameter method [10] ). To ensure the fairness
of the comparative experiment, for the same optimization problem, the algorithm uses the
same random initial population in a single run independently, to measure the difference
in performance optimization quality; and for the same optimization problem, using the
same algorithm in multiple independent operation is different random initial population.
To measure the algorithm to overcome the initial (external) random interference, ensure
to search for a satisfactory solution. In addition, the algorithm uses the same population
size NP and termination criteria, which are as follows: NP=50, the maximum number of
iterations Tmax=1000.

4.2.1. Comparison of convergence accuracy. To investigate the effect of the algorithm on
the accuracy of the results, Table 2 gives the results of 30 independent experiments in
the 8 different functions of the proposed algorithm and IMO algorithm, ADN-RSN-PSO
algorithm and MDE algorithm, including the average accuracy of the optimal solution,
the standard deviation, best value, the worst values.

From Table 2, it can be concluded that for ADN-RSN-PSO algorithm, except function
F2, F5, and F6, the others solution accuracy is lower than that of MDE algorithm, and
F7 and F8 are similar to MDE algorithm. The MDE algorithm can only obtain the
theoretical optimal value of F1, F3, and F4. The IMO algorithm can get the theoretical
optimal values of functions F4, and the accuracy of all functions is higher than that
of ADN-RSN-PSO algorithm. Compared with MDE algorithm, except for function F1
and F3, the accuracy of other functions is higher than MDE algorithm. The OL-IMO
algorithm can obtain a theoretical optimal value of 0 of f1-f6, and the remaining two
functions are also more accurate than the other three algorithms.
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Table 1. Eight benchmark functions

Function D Initialization range Optimum value
F1: Sphere function

f1(
⇀

X) =
D∑
i=1

x2i
30 −100 ≤ xi ≤ 100 0

F2: Schwefel’s problem 1.2

f2(
⇀

X) =
D∑
i=1

(
i∑

j=1

xj)
2 30 −100 ≤ xi ≤ 100 0

F3: High conditioned Elliptic function

f3(
⇀

X) =
D∑
i=1

(106)
i−1
D−1xi

0 30 −100 ≤ xi ≤ 100

F4: Griewank’s function

f4(
⇀

X) =
D∑
i=1

x2i
4000
−

D∏
i=1

cos( xi√
i
) + 1

30 −600 ≤ xi ≤ 600 0

F5: Rastrigin’s function

f5(
⇀

X) =
D∑
i=1

(x2i − 10 cos(2πxi) + 10)
30 −5.12 ≤ xi ≤ 5.12 0

F6: Expanded Scaffer’s function

f(x1, x2) = 0.5 +
sin2
√
x21+x

2
2−0.5

1+0.001(x21+x
2
2)

2

f6(
⇀

X) = f(x1, x2) + f(x3, x4)+
......+ f(xD, x1)

30 −100 ≤ xi ≤ 100 0

F7: Branin function

f7(
⇀

X) = (x2 − 5.1
4π2x

2
1 + 5

π
x1 − 6)2

+10(1− 1
8π

) cosx1 + 10

2 [−5, 10]× [0, 15] 0.398

F8: Hartman’s function

f8(
⇀

X) = −
D∑
i=1

ci exp(
3∑
j=1

aij(xj − Pij)2)
3 0 ≤ xi ≤ 1 -3.86278

4.3. Comparison of convergence speed. This part mainly investigates the conver-
gence speed of the algorithm, and the parameters of each algorithm remain unchanged.
Table 3 calculates the number of function calls (FEs) and the success rate of achieving
the preset accuracy when the algorithms converged to the required precision level in the
30 independent experiments.

From Table 3, we can see that for the ADN-RSN-PSO algorithm, only the function f1∼f4
can be successfully converged to the preset precision, however, the successful convergence
rate is less than 30%. The MDE algorithm has only function F1, F3, and F4 converges to
the preset precision and the successful convergence rate is 100%. The IMO algorithm can
be successfully converged for all functions, and the successful convergence rate for other
functions is 100% except F5. The successful convergence rate of the OL-IMO algorithm
is 100%. And the convergence rate is the fastest.

5. Conclusions. To enhance the convergence speed of the IMO algorithm for solving
function optimization and convergence precision. This paper proposes an opposition-
based update method based on individual learning strategies, make full use of the existing
search resources, to enhance the convergence speed; on the other hand, adding the indi-
vidual evolutionary information correction the random disturbance in the solid phase of
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Table 2. The mean, variance, best value and worst values for 30 indepen-
dent runs

fun ADN-RSN-PSO MDE IMO OL-IMO

f1

Mean best value 0.7713 0 3.3187e-39 0
Standard deviation 2.5951 0 1.7831e-38 0

Optimal value 0 0 0 0
Worst value 13.1486 0 9.7713e-38 0

f2

Mean best value 39.5832 1.2573e+04 3.2087e-35 0
Standard deviation 209.3445 4.2709e+03 1.7572e-34 0

Optimal value 0 5.7625e+03 0 0
Worst value 1.1477e+03 2.4555e+04 9.6244e-34 0

f3

Mean best value 1.2996e+05 0 6.4440e-35 0
Standard deviation 6.3692e+05 0 2.7727e-34 0

Optimal value 0 0 0 0
Worst value 3.4911e+06 0 1.4592e-33 0

f4

Mean best value 0.0659 0 0 0
Standard deviation 0.2046 0 0 0

Optimal value 0 0 0 0
Worst value 1.0239 0 0 0

f5

Mean best value 9.3929 28.7933 0.0534 0
Standard deviation 39.7363 6.2707 0.2891 0

Optimal value 1.4207e-07 16.0045 0 0
Worst value 218.9896 38.7343 1.5839 0

f6

Mean best value 3.0355 6.0520 1.9849e-12 0
Standard deviation 2.8440 0.2821 1.0872e-11 0

Optimal value 2.6623e-04 5.3135 0 0
Worst value 7.4726 6.5542 5.9547e-11 0

f7

Mean best value 0.3993 0.3979 0.6397 0.4479
Standard deviation 0.0024 0 0.3029 0.1470

Optimal value 0.3979 0.3979 0.3979 0.3979
Worst value 0.4083 0.3979 1.3586 0.9372

f8

Mean best value 0 0 -3.7052 -3.7789
Standard deviation 0 0 0.1185 0.1613

Optimal value 0 0 -3.8552 -3.8609
Worst value 0 0 -3.3732 -2.9493

Table 3. Average number of FEs and success rate for 30 independent runs
tested on f1 − f6

Fun
Number of Function Evaluations (Success Rate)

ADN-RSN-PSO MDE IMO OL-IMO
f1 17,300(23%) 70,700(100%) 21,100(100%) 11,100(100%)
f2 15,300(27%) 100,000(0%) 31,000 (100%) 15,200(100%)
f3 19,540(17%) 87,400(100%) 30,600(100%) 16,900(100%)
f4 18,600(20%) 73,600(100%) 19,900(100%) 12,000(100%)
f5 100,000(0%) 100,000(0%) 26,400(94%) 17,600(100%)
f6 100,000(0%) 100,000(0%) 50,600(100%) 23,400(100%)
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renovation, to better balance population diversity and algorithm convergence speed. By
testing 8 standard test functions, it is shown that the Opposition-based learning differen-
tial ion motion algorithm (OL-IMO) has obvious advantages over the IMO algorithm and
the other two outstanding optimization algorithms so far in solving accuracy, convergence
speed and robustness.
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