
Journal of Information Hiding and Multimedia Signal Processing c©2018 ISSN 2073-4212

Ubiquitous International Volume 9, Number 4, July 2018

Generalized Locality Preserving Projection for
Multimodal Biometric Recognition

Zhifang Wang, Jinjin Dong, Fuzhen Zhu, Jianhua Song

Department of Electronic Engineering
Heilongjiang University

No.74, Xufu Road, Nangang District, Harbin
2009013@hlju.edu.cn

Received July, 2017; revised March, 2018

Abstract. Multimodal biometric recognition is a promising personal identity authenti-
cation technology which can remedy the limitation of the traditional identity authentica-
tion and the unimodal biometrics. Comparing with other three fusion levels of multimodal
biometrics, feature level fusion can reduce the redundant information to avoid calculation
consumption and acquire the discriminative information to improve the system perfor-
mance. Complex fusion is a novel feature fusion pattern which takes two features as
real part and imaginary part of a complex vector. However, the existing linear methods
of complex fusion cannot consider the nonlinear factor. Meanwhile the computations of
the nonlinear methods is too great. This paper extended LPP into the complex field and
proposed generalized locality preserving projection (GLPP) which takes advantage of the
optimal linear approximations to find the nonlinear manifold structures.Face and palm
are taken as the experimental objects to conduct the fusion features. Experimental result
shows the proposed algorithm achieves much better performance than two unimodal bio-
metrics and other four conventional multimodal biometric algorithms.
Keywords: Multimodal biometric recognition, Feature fusion, Complex field, LPP

1. Introduction. The basic theory of subspace analysis is aimed to find a linear or non-
linear transformation to compress or convert the original data into a low dimensional
space. Principal component analysis (PCA) and Fisher discriminant analysis (FDA) are
two popular methods. Nevertheless, both PCA and FDA effectively pay attention only to
the Euclidean structure of sample space and fail to discover the underlying structure of
samples [1], such as face. Locality preserving projection (LPP) finds an embedding that
preserves local information, and obtains a locality preserving subspace that best detects
the essential sample manifold structure. In the application of face recognition, LPP en-
codes more discriminating information in the low dimensional face subspace by preserving
local structure which is more important than the global structure for classification. So, it
significantly outperforms Fisherface and Eigenface which perform FDA and PCA on face
recognition respectively .

The above algorithms are applied on unimodal biometric recognition which has drawn
extensive attention during the past decades for its huge potentials in many applications.
However, the performances of unimodal biometric systems have to contend with a variety
of problems such as background noise, signal noise and distortion, and environment or de-
vice variations. Therefore, multimodal biometric systems are proposed to solve the above
mentioned problems[2, 3]. Along with the fusion in pixel level, score level and decision
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level, one important branch is to perform fusion in feature level which can derive the most
discriminative information from original multiple feature sets and eliminate the redundant
information resulting from the correlation between different feature sets. In general, there
are two basic modes for feature level fusion: serial rule and weighted sum rule. However,
the former would lead to more redundancy and increase computation cost owing to the
high dimensional fusion features. For the latter, the proper determination of weights is a
contentious issue. Then Yang generalized PCA and FDA into complex field to produce
two new methods for multimodal biometrics: Generalized PCA (GPCA)[4] and General-
ized FDA(GFDA) [5], which keep still the original characteristic attained from the real
field. An efficient subspace learning algorithm should be able to discover the nonlinear
structure of the sample space. Kernel PCA(KPCA) and kernel FDA (KFDA) are two ker-
nel based typical methods in subspace analysis. Whereafter, generalized KPCA(GKPCA)
[6] and generalized KFDA(GKFDA)[7] are proposed as the classifier of the complex field
for multimodal biometric recognition. However, the computation of them are too expen-
sive. This paper extended LPP into the complex field and proposed generalized locality
preserving projection (GLPP) for multimodal biometric recognition. Face and palm are
used as two distinct biometric subjects to test our algorithm. The key characteristics are
as follows: (1) Two distinct feature sets are fused by a complex vector to construct a
unitary space; (2) GLPP is used to resolve the classification problem of the unitary space
and ensure the availability of the proposed scheme; (3) Gram-Schmidt transformation is
imported to guarantee the orthogonality of eigenvectors in GLPP; (4) GLPP takes advan-
tage of the optimal linear approximations to the eigenfunctions of the Laplace Beltrami
operator to find the nonlinear manifold structures. It is superior to the linear methods
(GPCA and GFDA) and the nonlinear methods (GKPCA and GKFDA).

The rest of the paper is organized as follows: section 2 introduces the typical fusion
pattern and further focuses on the linear and nonlinear approaches of complex fusion;
Our algorithm is presented in section 3; In section 4, experimental results are illustrated.
Finally, section 5 concludes this paper.

2. Related Works. Multimodal biometric technology is divided into four levels: pixel
level, feature level, score level and decision level. Comparing with other three fusion levels,
feature level can reduce the redundant information to avoid calculation consumption, and
simultaneously acquire the discriminative information to improve the system performance.
This section summarizes the current fusion patterns in feature level, and then focuses on
linear and nonlinear complex fusion pattern.

2.1. Fusion Pattern. In general, there are two basic modes for feature level fusion:
serial rule and weighted sum rule [8]. The former connects two feature vector into a
longer fusion vector. This rule consumes large computational resources. For weighted
sum rule, the fusion feature is the sum of the two unimodal features multiplied by the
respective weighted value. So two problems should be considered: weighted value and
dimension. The choice of weights value is no good way, usually in accordance with the
experience. If the dimension of two unimodal feature vector is deferent, two ways can be
selected: truncating the long vector or filling the short vector by zeros. Besides, Yang [4, 5]
proposed a novel method which avoid the large amount of computation and the selection
of the weighted value. This method takes two features as real part and imaginary part of
a complex vector.

Suppose a and b be two feature vectors derived from two biometric modes respectively,
the fusion feature is obtained as f = a + ib where i denotes imaginary unit. So we find
complex fusion also need to face the dimension problem. Yang unified dimension during
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feature extraction using PCA and KPCA [5]. Normally, the fusion features obtained by
serial rule and weighted sum rule are directly used to match. Complex fusion implements
feature selection to derive the most discriminative information of fusion feature before
matching. GPCA and GFDA are the earliest literature in this area. Whereafter, other
methods based on complex fusion are proposed[6, 7].The following part of this section
introduces these methods which are divided into linear and nonlinear style.

2.2. Linear Style. In a complex field C, the inner product is defined[5] by

< x, y >= xHy (1)

where x, y ∈ C and H is the denotation of conjugate transpose. We can be easily proved
that the inner product meets the following conditions:

· < x, y >= < y, x >
· < x, x >≥ 0, where < x, x >= 0 if and only if x = 0
· < k1x1 + k2x2, y >= k1 < x1, y > +k2 < x2, y >, ∀x1, x2, y ∈ C,where k1, k2 are two

real constants.

So the subspace is a unitary space. Suppose there are a total of n classes, each class of
m samples. In the unitary space, the within-class scatter matrix Sw, the between-class
scatter matrix Sb and the total scatter matrix St can be defined as follows:

Sw =
∑n

i=1

∑m
j=1(x

j
i − x̄i)(x

j
i − x̄i)H

Sb =
∑m

i=1(x̄i − x̄)(x̄i − x̄)H

St =
∑n

i=1

∑m
j=1(x

j
i − x̄i)(x

j
i − x̄i)H

(2)

where x̄i and x̄ denote the mean vector of class i and the mean of all training samples
respectively.

According to the above equations, Sw, Sb and St are all non-negative definite Hermite
matrices. So, each eigenvalue of the above three matrices is a real number. This conclusion
ensures the progress of GPCA because the selection of the principal component is sorted
according to the size of the characteristic value. The objective function of GPCA is
expressed[4] as

JGPCA = arg max
W

|WHStW | (3)

where W is the projection matrix which maps the fusion features to a feature space
with maximal irrelevant. In the actual operation, the eigenvectors corresponding to the
eigenvalues in descending order compose the matrix W . Then the mapping feature g
of the fusion feature f is obtained by g = WHf . GFDA is also proposed on the basis
of GPCA similar to the real field. Yang used GFDA in face recognition and named as
combined fisherface. The objective function of this method is displayed[5] as follows:

JGFDA = arg max
W

|WHSbW |
|WHSwW |

(4)

where W is composed by the generalized eigenvectors of the generalized eigenequation
SbX = λSwX corresponding to the several largest eigenvalues. Then the mapping feature
g can be computed in the same way as GPCA.

2.3. Nolinear Style. In real field, nonlinear problem is usually converted to a linear
problem in a high-dimensional space. Kernal method uses a nonlinear transformation φ
to convert the nonlinear problem into a linear problem of high dimensional space. First
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of all, a nonlinear mapping φ is used to map the sample space Rd into the nonlinear space
F :

φ : Rd → F
x 7→ φ(x)

(5)

Suppose there are a total of n classes, each class of m training samples. The within-class
scatter matrix S̃w, the between-class scatter matrix S̃b and the total scatter matrix S̃t are
constructed in the nonlinear space F :

S̃w =
∑n

i=1

∑m
j=1(φ(xji )− φ̄i)(φ(xji )− φ̄i)H

S̃b =
∑m

i=1(φ̄i − φ̄)(φ̄i − φ̄)H

S̃t =
∑n

i=1

∑m
j=1(φ(xji )− φ̄i)(φ(xji )− φ̄i)H

(6)

where φ̄i = 1
m

∑m
j=1 φ(xji ), φ̄ = 1

nm

∑n
i=1

∑m
j=1 φ(xji ). However, it is difficult to do so

directly because of the high dimension of the nonlinear space F . Fortunately, kernel
tricks can avoid this computation by the following rule

k(xji , x
t
s) =< φ(xji ), φ(xts) >= φ(xji )

Hφ(xts) (7)

where k(·) denotes the kernel function of two arbitrary examples xji and xts . In this way,
the explicit mapping φ is not required.

GKPCA and GKFDA are two representatives of the nonlinear methods in complex field.
Define the matrix Q = [φ(x11)− φ̄, φ(x21)− φ̄, · · · , φ(xm1 )− φ̄, · · · , φ(xmn )− φ̄], S̃t = QQH .
The objective function of GKPCA is expressed[6] as follows:

JGKPCA = arg max
W

|WH S̃tW | (8)

Singular value decomposition (SVD) technique is adopted to reduce computational effort
derived from the high dimensional nonlinear space F , so R̃ = QHQ is obtained by kernel
function, and then centralize R̃ as

R = R̃− 1nmR̃− R̃1nm + 1nmR̃1nm (9)

where 1nm denotes a nm× nm matrix whose elements are all equal to 1/nm.
GKPCA makes use of the between-class information, but GKFDA also considers the

within-class information. Imitating KFDA of the real field, the objective function of
GKFDA is expressed [7] as

JGKFDA = arg max
W

|WH S̃bW |
|WH S̃wW |

(10)

thenW is the matrix composed by the generalized eigenvectors of the generalized eigenequa-
tion S̃bX = λS̃wX corresponding to the several largest eigenvalues. According to the
theory of reproducing kernel and the theoretical formulae computation, the function
S̃bX = λS̃wX can be converted into KbX = λKwX where

Kb = 1
n

∑n
i=1(ui − u)(ui − u)H

Kw = 1
nm

∑n
i=1

∑m
j=1(α

j
i − ui)(α

j
i − ui)H

(11)

where
ui = [ 1

m

∑m
j=1 k(x11, x

j
i ), · · · , 1

m

∑m
j=1 k(xmn , x

j
i )]

u = [ 1
nm

∑n
i=1

∑m
j=1 k(x11, x

j
i ), · · · , k(xmn , x

j
i )]

α = [k(x11, x
j
i ), · · · , k(xmn , x

j
i )]

(12)

So, W is the solution of the generalized eigenequation KbW = λKwW . The remainder
operation is same with GKPCA.

3. Proposed algorithm.



Generalized Locality Preserving Projection for Multimodal Biometric Recognition 857

3.1. Background. LPP was originally proposed as a manifold learning algorithm in or-
der to study and analyze the nonlinear manifolds. Manifold learning attempts to find
the low dimensional manifold from the high dimensional manifold and determine the
corresponding embedding projection to realize dimensionality reduction or data visual-
ization. This operation is more superior than the traditional methods such as PCA and
multi-dimensional scaling (MDS). Manifold learning can be roughly divided into two cat-
egories: one is the global approach which calculates the relationship for each point with
all the other points and establishes a fully connected graph, for example Isometric Map-
ping(Isomap); The other is the local approach that considers the relationship between each
point and its neighborhood points and defines the edges of the graph usually by k-nearest
neighbor algorithm or ε-nearest neighbor algorithm, such as Locally Linear Embedding
(LLE) and Laplacian Eigenmap (LE).

Comparing with Isomap, LLE has several advantages including faster optimization
when implemented to take advantage of sparse matrix algorithms[9]. However, the low
dimensional embedding of LLE does not keep a distance relationship.Furthermore, least
squares problem faces the parameter selection during calculating the reconstruction weight.
The different parameter will cause the different reconstruction weight which affects the
final embedding results. Comparing with LLE, the weight selection of LE is more direct
and simpler[10], which sets the weight directly without solving a linear equations. Because
of this, LE is the fastest in the typical manifold learning method, but is not suitable to
recover the low dimensional structure same with LLE. Similarly, LE is also sensitive to
noise and outliers.

In order to improve generalization learning ability of LE, He[1] proposed LPP which
takes the mapping from the original high dimensional space to the low dimensional space
as a linear projection. This method is actually the linear approximation of LE. LPP
utilizes the projection matrix to transform the implicit nonlinear mapping of LE into
the explicit linear mapping, and a new sample can obtain the projection points in the
embedding space by the projection matrix directly. Different from the traditional linear
subspace method such as PCA and FDA, LPP optimally preserves local neighborhood
relationship during projection and finds the nonlinear manifold.

3.2. Generalized Locality Preserving Projection. Subspace analysis is widely used
in pattern recognition. This kind of methods realize dimensionality reduction mostly by
starting from the global feature. Manifold learning usually considers the local feature,
which presents a new tool for pattern recognition. For face recognition, it is proved LPP
outperforms PCA and FDA [1]. Furthermore, LPP takes advantage of the projection
matrix to realize the dimensionality reduction similar with PCA and FDA. Imitating the
example of GPCA and GFDA, this paper proposed generalized locality preserving projec-
tion(GLPP) to extend LPP into the complex field and apply to multimodal biometrics.
Furthermore, Gram-Schmidt orthogonalization is added to ensure the orthogonality of
the eigenvectors to improve the performance of the algorithm.

For a given training matrix X = [x1, x2, · · · , xn] where xi ∈ Cp(i = 1, 2, · · · , n) is a
p-dimensional column vector. GLPP seeks a projection matrix W to gain yi = WHxi
which represents xi in a lower dimension feature space Cd(d < p) as much as possible,
and also makes the adjacent points as close as possible. The objective function to select
the projection matrix W is as follows:

min
∑
ij

(yi − yj)2sij = min
∑
ij

(WHxi −WHxj)
2sij (13)
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where sij denotes the similarity between xi and xj. If ||xi − xj||2 < ε where ε > 0 is
sufficiently small, the neighbor relationship will be established between xi and xj and sij
is equal to nonzero; Otherwise, sij = 0. Then, sij can be defined in detail by two ways:

sij =

{
exp(−||xi − xj||2/t), ||xi − xj||2 < ε
0, otherwise

(14)

or

sij =

{
1, ||xi − xj||2 < ε
0, otherwise

(15)

In a unitary space, the distance between the complex vectors xi and xj is defined as
follows:

||xi − xj|| =
√

(xi − xj)H(xi − xj) (16)

let S = (sij)n×n, it is obviously a symmetric matrix. Following some simple algebraic
steps, we see that ∑

ij(W
Hxi −WHxj)

2sij
=
∑

ij(W
Hxi −WHxj)(W

Hxi −WHxj)
Hsij

= 2[
∑

ijW
Hxisijx

H
i W −

∑
ijW

Hxisijx
H
j W ]

= 2[
∑

iW
HxiDiix

H
i W −WHXSXHW ]

= 2[WHXDXHW −WHXSXHW ]
= 2WHX(D − S)XHW
= 2WHXLXHW

(17)

The coefficient ’2’ is ignored. L = D − S is a laplace matrix, and D = (Dij)n×n is a

diagonal matrix where Dij =

{ ∑n
k=1 Sik, i = j

0, i 6= j
. D can be taken as a measure on the

data points. The bigger the value Dii is, the more ’important’ yi is. So, in order to remove
the scaling issue and the translation arbitrariness, we impose a constraint as follows:∑

i

Diiy
2
i = 1 =⇒ WHXDXHW = 1 (18)

Therefore, the minimum problem (equation (13) ) converts into

arg min
WHXDXHW=1

WHXLXHW (19)

So, the projection matrix W is attained by the minimum eigenvalue solution to the gen-
eralized eigenvalue problem:

XLXHW = λXDXHW (20)

Note that D and S are both symmetric and real matrices, then L = D − S is also a
symmetric real matrix. It can be further proved that XLXH and XDXH are hermitian
matrices. The eigenvalue of equation (20) are all real number. This conclusion ensures
GLPP can select the eigenvector according to the size of the corresponding eigenvalue to
compose the projection matrix W .

However, the symmetry of the solution matrix (XDXH)−1XLXH cannot be guar-
anteed, the eigenvector cannot guarantee its orthogonality. So Gram-Schmidt orthog-
onalization is imported to convert the eigenvectors into orthogonal vectors. Suppose
λ1 < λ2 < · · · < λk are the first k largest eigenvalues of the matrix (XDXH)−1XLXH in
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order of size, and α = {α1, α2, · · · , αk} are the corresponding eigenvectors, the process of
orthogonal transformation is as follows:

w1 = α1

w2 = α2 − (α2,w1)
(w1,w1)

w1

w3 = α3 − (α3,w1)
(w1,w1)

w1 − (α3,w2)
(w2,w2)

w2

...

...

wk = αk − (αk,w1)
(w1,w1)

w1 − (αk,w2)
(w2,w2)

w2 − · · · − (αk,wk−1)

(wk−1,wk−1)
wk−1

(21)

Finally, the orthogonal projection matrix is W = [w1, w2, · · · , wk]. Then the ith projection
feature vector yi = W Txi can be obtained.

3.3. Connections to GPCA. This section presents a theoretical analysis of GLPP and
its connections with GPCA. We adopt the same hypothesis with LPP in the real field [1].
The parameter ε is used to defined the weight matrix S where ε represents the locality
between xi and xj. If we take ε to be sufficiently small, we preserve the local structure
which is the aim of GLPP. If ε is infinity, any two samples xi and xj can be considered that
they have a neighbor relationship. So, suppose sij = 1

n2 (∀i, j), then Dii =
∑

j sji = 1
n
.

Let I be the identity matrix, and e is a column vector taking one at each entry, then the
laplacian matrix L = D − S = 1

n
I − 1

n2 ee
T where the transpose T is equivalent to the

conjugate transpose H because L is the real matrix, it can be proved that XLXH is the
covariance matrix as follows:

XLXH = X(D − S)XH

= 1
n
X(I − 1

n
eeT )XH

= 1
n
XXH − 1

n2 (Xe)(Xe)H

= 1
n

∑
i xix

H
i − 1

n2 (nx̄)(nx̄)H

= 1
n

∑
i(xi − x̄)(xi − x̄)H + 1

n

∑
i xix̄

H + 1
n

∑
i x̄x

H
i − 1

n

∑
i x̄x̄

H − x̄x̄H
= E(xi − x̄)(xi − x̄)H + 2x̄x̄H − 2x̄x̄H

= E(xi − x̄)(xi − x̄)H

(22)

where x̄ = 1
n

∑
i xi is the mean of all the samples, and E(xi− x̄)(xi− x̄)H is the covariance

matrix similar with St. If we take ε to be infinity and select the eigenvectors according to
the largest eigenvalues of XLXH , the feature vectors are projected along the directions
of maximal variance. Hence, the global structure is preserved similar with GPCA.

3.4. Connections with GFDA. The projection matrix GFDA is the solution of the
generalized equation SbW = λSwW where Sb and Sw are defined in section 2.2. Suppose
there are a total of n classes, each class of m samples,let xji denotes the sample j of class
i, and x̄i denotes the mean vector of class i, then

Sw =
∑n

i=1(
∑m

j=1(x
j
i − x̄i)(x

j
i − x̄i)H)

=
∑n

i=1(
∑m

j=1(x
j
i (x

j
i )
H − x̄i(xji )H − x

j
i (x̄i)

H + x̄i(x̄i)
H))

=
∑n

i=1(
∑m

j=1 x
j
i (x

j
i )
H −mx̄i(x̄i)H)

=
∑n

i=1(XiX
H
i − 1

m
(x1i + · · ·+ xmi )(x1i + · · ·+ xmi )H)

=
∑n

i=1(XiIX
H
i − 1

m
Xi(eie

H
i )XH

i )
=
∑n

i=1XiLiX
H
i

(23)

where XiLiX
H
i is the covariance matrix, Xi = [x1i , x

2
i , · · · , xmi ] is the d×m sample matrix

of class i. Li = I − 1
m
eie

H
i is a m-dimensional vector. Let X represents the total sample
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matrix, i.e. X = [X1, X2, · · · , Xn], and

wij =

{
1
m2 if xi and xj both belong to the same class
0 otherwise

(24)

L = I −W (25)

Then, we have

Sw = XLXH (26)

wij represents the similarity between xi and xj, so W can be taken as the weight matrix of
a graph with data points as its nodes. The matrix L is thus regarded as graph laplcaian.
Similarly, the matrix Sb can be computed as follows:

Sb =
∑n

i=1(x̄i − x̄)(x̄i − x̄)H

= (
∑n

i=1 x̄ix̄
H
i )− x̄(

∑n
i=1 x̄

H
i )− (

∑n
i=1 x̄i)x̄

H +
∑n

i=1 x̄x̄
H

= (
∑n

i=1
1
m2 (x1i + · · ·+ xmi )(x1i + · · ·+ xmi )H)− 2nx̄x̄H + nx̄x̄H

=
∑n

i=1

∑m
j,k=1 x

j
ix
k
i − nx̄x̄H

= XWXH − nx̄x̄H
= XWXH −X( 1

n
eeH)XH

= X(W − 1
n
eeH)XH

= X(W − I + I − 1
n
eeH)XH

= −XLXH +X(I − 1
n
eeH)XH

= −XLXH + C

(27)

where e = (1, 1, · · · , 1)H is a n−dimensional vector and C = X(I − 1
n
eeH)XH is the co-

variance matrix. The generalized eigenequation SbW = λSwW of GFDA can be computed
as follows:

SbW = λSwW
⇒ (C −XLXH)W = λXLXHW
⇒ CW = (1 + λ)XLXHW
⇒ XLXHW = 1

1+λ
CW

(28)

Then the projection matrix W can be obtained by solving the following equation:

XLXHW = λCW (29)

If the mean value of the sample set is zero, the convariance matrix is XXH which is
exactly the matrix XDXH in GLPP with the weight matrix defined in equation(24). It
is known that GFDA aims to preserve discriminative information and global geometrical
structure.

4. Experiments.

4.1. Feature extraction and feature normalization. Before complex fusion, we should
solve two problems: feature extraction and feature normalization. For the first problem,
face and palm are easy to capture and register comparing with other biometrics. This
paper selects them as two distinct biometric characteristics to test our algorithm. The
experiments were performed on ORL face database and PolyU palm database.ORL face
database includes 40 people, 10 different image with pose and expression variation per
person. PolyU multispectral palm images were collected from 250 volunteers, including
195 males and 55 females, the samples were collected in two separate sessions. In each
session, the subject was asked to provide 6 images for each palm. In order to fuse two
feature sets, the number of samples should be coordinated. Our solution is to select 40
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Feature extraction

using PCA

Face training 

sample

Palm training 

sample

Normalization 

and complex 

fusion

GLPP

Database

Feature extraction

using PCA

Face training 

sample

Palm training 

sample

Normalization 

and complex 

fusion

GLPP Matching Result

Figure 1. The framework of the proposed algorithm

classes in which three samples per class were selected as the training sets, three samples
for testing.

Without loss of generality, PCA is taken as the unimodal feature extractor for face
and palm. A sample image (a face image or a palm image) is pulled into a long vector
as the input of PCA by progressive scanning. However, the size of two biometric images
is different. So, the output of PCA for two biometrics isn’t uniform. We can solve this
problem by controlling the number of the eigenvalues of the covariance matrix of PCA.
In other words, we only need to select the same number of the eigenvalues in descending
order. Then the dimension of the projection matrix of two biometrics is same because
the number of the eigenvalues composing the projection matrix is determined by the
eigenvalues. In following fusion experiment, we select 80 dimension which doesn’t bring
a large amount of calculation and preserves the potential discriminant information for
fusion. As a part of PCA, the above operation can be taken as feature normalization
before fusion.

Besides consistent dimension, feature normalization includes eliminating the differences
in the order of magnitude and the distribution between two distinct feature sets. We
use the z-score model [5] to normalize two feature sets before fusion. Suppose A =
[a1, a2, · · · , ak, · · · , am] be a feature matrix where ak is the kth sample. Let Ak be the kth
row of A, compute

Dk =
Ak − Āk

σk
(30)

where Āk is the mean value of Ak, σk is the standard deviation. Then Ak is normalized
as following:

Xk =
Dk −Dmin

Dmax

(31)

where Dmin and Dmax are the minimum value and the maximum value respectively. For all
the rows of A, the normalization can be completed by implementing the same operations.
Then the flow of the above procedure is illustrated in fig. 1.

4.2. Experimental results and analysis. Our goal is to compare our algorithm with
unimodal biometric characteristics (face and palm), and another fusion approaches: series
rule, weighted sum rule, sum rule(as a speical case of weighted sum rule), GPCA, GFDA,
GKPCA and GKFDA. Table 1 shows the comparison of the above algorithms. DET
curves are demonstrated in fig. 2. It can be clearly seen that our algorithm not only
exceeds the performance of unimodal biometrics, but also outperforms the other seven
fusion approaches. Compared with serial rule, sum rule and weighted sum rule, GLPP
can also be considered as a feature selector to remove more redundancy of features before
matching.
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Figure 2. DET curve of the proposed algorithm

While GPCA attempts to preserve the global structure of the fusion space,and GFDA
attempts to preserve the discriminating information; GLPP aims to preserve the intrinsic
geometry of the data and local structure. In many real-world classification problems,
the local manifold structure is more important than the global Euclidean structure, espe-
cially when nearest-neighbor like classifiers are used for classification [1]. Among subspace
learning algorithm for face recognition, KPCA and KFDA are used to extract the nonlin-
ear feature to resist the unwanted variations such as lighting, face expression and pose.
However, they are computationally expensive. GLPP takes advantage of the optimal lin-
ear approximations to the eigenfunctions of the Laplace Beltrami operator to find the
nonlinear manifold structures. Besides, GLPP encodes more discriminating information
in the low-dimensional subspace by preserving adjacency relation. So GLPP is superior
to GPCA, GFDA, GKPCA and GKFDA.

Table 1. EER comparison of different algorithms

Algorithm face palm series sum weighted sum
EER (%) 8.2 29 8.5 8.3 8.4
Algorithm GPCA GFDA GKPCA GKFDA GLPP
EER (%) 19.9 11.6 8.4 6.5 5.3

5. Conclusion. Feature fusion is the key problem of multimodal biometric recognition.
Comparing with the traditional feature fusion rules, complex field fusion avoids the cal-
culation consumption of the series rule, and the weight determination of the weighted
sum rule. Generalized locality preserving projection(GLPP) is proposed to extend LPP
into the complex field to perform multimodal feature fusion and classification. Comparing
with GPCA and GFDA, GLPP preserves local information and obtains a locality preserv-
ing subspace that best detects the essential sample manifold structure. Simultaneously,
GLPP avoids calculation consumption of GKPCA and GFDA. Face and palm are used
as two distinct biometric modals to test our algorithm. Experimental results show that
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the proposed algorithm achieves much better performance than two unimodal biomet-
rics (face recognition and palm recognition) and other conventional multimodal biometric
algorithms(GPCA, GFDA, GKPCA and GKFDA).
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