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Abstract. In this paper, we present a unified framework of modeling and simulations
for Multi-platforms Multi-sensors Multi-objects Source Information Fusion (M3SIF) sys-
tem. The space-time registration and target tracking of multi-sensor measurement data
are studied explicitly. The registration algorithm takes the influence of the random noise
measured by the sensors into account. Compared with the traditional algorithm, the ac-
curacy of registration is improved when applying our proposed algorithm. The extended
state Kalman filter (EKF) is utilized to estimate the system state and registration error
simultaneously. The simulation results show that the accuracy of the sensor registration
error after the least-squares time registration is significantly better than that of the non-
time-registered registration error estimate. Besides, the convergence speed is faster than
the registration error estimation without time registration, which verifies the effectiveness
of the proposed algorithm.
Keywords: Multi-sensor system, Modeling and simulations, Extended Kalman filter,
Space-time registration

1. Introduction. In recent years, a variety of military or civil multi-sensor information
systems have emerged for complex application background. The combination of multi sen-
sors leads to the diversity of information forms, the increase of data and the speed of data
processing, which greatly exceeds the ability of information processing in human brain.
Therefore, data fusion has become a research hotspot, and the theory and technology of
data fusion have been paid more and more attention [1-3].

In the design of every kind of tracking system, the original information by using the
information fusion technology integrated from multiple sensors, to obtain good track-
ing performance, can reduce the false alarm rate and improve the target detection and
recognition and tracking ability and enhance the advantages of system fault tolerance and
reconstruction ability etc [4]. In the fusion process, data from multiple sensors are usually
transformed into the same spatio-temporal reference frame. If the sensor data is fused
directly, the tracking results will deteriorate due to the presence of registration errors [5].

Sensor registration includes time registration and spatial registration. Document [6, 7]
gives the time registration and fusion method based on the least square method for the
non-synchronous information, and designs the tracking filter, but does not consider the
measurement of the system error contained by the sensor. The space registration problem
of fixed radar network is studied in document [8, 10]. [8] proposed a maximum likelihood
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(EML) registration algorithm, and pointed out that the traditional registration algorithm
of the sensor measurement error is attributed to the registration error, ignoring the impact
of random error. [9] uses two level extended Kalman filter to complete the target tracking
problem, which makes the algorithm reduce the requirements of computing resources
such as time and storage space. [10] applies registration algorithm to maneuvering target
tracking problem. [11] proposed a novel two-stage nonlinear least square (LS) optimization
approach to the multi-sensor registration problem with the assumption that the target
moves in a straight line with unknown constant velocity. [12] presented a method for
sensor registration that overcomes the shortage of standard marker or artificial-feature-
based approaches by utilizing the geometric structure of the terrain surrounding the sensor
platform.

In the air ground integrated system for air combat platform, more is the tracking
problem of mobile platform. In this paper, the time and space data registration and
target tracking of Multi-sensor Based on extended Kalman filter and multiple aerial mobile
platforms are studied. Monte-Carlo simulation shows that the proposed method can
effectively estimate the target motion state and sensor registration error. Compared with
the traditional registration method, the proposed method has faster convergence speed
and higher accuracy.

2. Framework. A multi-sensor system consisting of multiple surface radars, satellites,
airborne early warning aircraft and fighter jets is a typical Multi-sensors (Multi-sensors,
Multi objects Source Information Fusion) system. Its information processing using cen-
tralized distributed structure (Figure 1). Its integration process is the first to be remotely
monitored by airborne early-warning aircraft and long-range surveillance radars, and its
data is transmitted either directly or through communications satellites to the fusion cen-
ter. The Fusion Center’s decision is sent back to these sensors and decides whether to
start a new sensor for monitoring and whether to intercept the attack. As can be seen
from Fig. 1, each sensor has multiple sources of information, the entire system includes
multiple platforms, all of the platform data through the communication data link. So
the whole system integration can be divided into two levels. Each subsystem constitutes
a platform-level integration of the platform and system-level integration of the entire
system. Airborne early warning aircraft, various ground-based radars and aircraft each
form a different sensor platform. Each platform is responsible for integrating data from
all information sources in the platform and transmitting the results of the fusion to the
fusion center in a report format. All the reports and self- System-level integration of the
database to determine the goal of the only track.

Fig. 2 shows the fusion of the entire system block diagram, which gives the fusion
function model of each sensor or platform in the system. In the whole system research,
the sensors (belonging to the same platform or different platforms) work independently
and asynchronously, and their sampling rates are not all the same. The primary fusion
(preprocessing) of the platforms is carried out in their own reference frame (for example,
the reference frame of the aircraft can take the frame of the loader). Moreover, each
platform asynchronously provides a report to the Fusion Center. So in the fusion before
the need for time and space alignment, in order to form a unified observation point of
time and space.

The task of time alignment is to synchronize the measurement information that is
asynchronous to each sensor of the same target to the same reference standard. Since the
measurement of targets is done independently of each other for different sensors and on
different platforms, the time they report to the fusion center is mutually exclusive and
the time it takes to transmit information between platforms and fusion centers varies,
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Figure 1. Typical Information Processing Centralized Distribution Structure.

Figure 2. System integration diagram.

so There may be a time difference between each sensor report. Therefore, before the
integration of information should be out of sync at the merging moment of the message.

The task of spatial alignment is to coordinate the space target. For the measurement
of each sensor with different coordinate system in the same platform, the platform must
be converted into the data in the same coordinate system when it is fused. For different
platforms, the coordinate system is different. Therefore, before merging the information
of all platforms, it is necessary to convert them into the unified observation coordinate
system. After merging, the fusion result needs to be transformed back to the coordinate
data of different platforms. Posted to each platform. Therefore, data alignment can be
divided into: platform-level alignment and system-level alignment.

2.1. Coordinate Transformation of Multiple Platforms and Sensors. Consider-
ing two airborne mobile platforms, sensors A and B are located on different platforms.
Without losing generality, it is assumed that the sensor A is located at the origin of the
coordinate (in absolute coordinates, the position of A is always changing, i.e. the position
of the coordinate origin is always changing), and the position of the sensor B relative to
the sensor A is [u(k),v(k)]. The target is Tk, as shown in Fig. 3.

The distances and azimuths of target Tk measured by sensors A and B in the figure
are [rA(k), θA(k)] and [rB(k), θB(k)], ηA = [∆θA,∆rA] andηB = [∆θB,∆rB respectively.
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Figure 3. The geometric relationship of registration error.

Define [r ¯
A(k), θ ¯

A(k)][r ¯
B(k), θ ¯

B(k)], [xA(k), yA(k)] and [xB(k), yB(k)] for the sensors A and
B and [xk̄, yk̄] is the true Cartesian coordinate of the target relative to sensor A.

2.2. Target’s motion model. In the Cartesian inertial coordinate system, the trajec-
tory of the target can be accurately described by polynomial , but for polynomials with
too high order, the calculation is too large and the tracking filter is not easy to adjust.
In order to simplify the analysis we can assume that in a small time interval , the target
sits in an accelerating linear motion in three-dimensional space with initial velocity at ,
acceleration , azimuth , and elevation angle ( As shown in Fig. 4), the polynomial can be
simplified to:

xm2 = xm1 + (vt+
1

2
at2) sinα sin β + ω1(t) (1)

ym2 = ym1 + (vt +
1

2
at2) cosα sin β + ω1(t) (2)

zm2 = zm1 + (vt +
1

2
at2) cos β + ω3(t) (3)

Assuming that the true coordinates of target Tk are [xk̄, yk̄] and the true velocity of
the target is [xk̄, yk̄], the state vector of the target is denoted by ξ(k) = [xk̄, xk̄, yk̄, yk̄].
The dynamic model of the target movement is

ξ(k + 1) = Φξ(k) + Γω(k) (4)

Φ =


1 T 0 0
0 1 0 0
1 0 0 T
1 0 0 1

 ,Γ =


T 2

2
T
T 2

2
T

 (5)

3. Time and space alignment algorithm. Time alignment, whether platform-level or
system-level, synchronizes measurement information that is not synchronized to sensors
of the same target to the same benchmark. Under normal circumstances the sensor data
will be unified to scan a longer period of a sensor data. The following two different
methods can be used according to the sensor data when registering: (1) least squares rule
registration method; (2) interpolation extrapolation.
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Due to the close placement of sensors inside the platform and the alignment of data
from different sensors inside the platform, the origins of different coordinate systems can
be considered as common points. Therefore, the spatial alignment is to rotate their
coordinate system to a coordinate system parallel to the selected coordinate system of
the fusion center. Let OX’Y’Z’ be the coordinate system corresponding to the fusion
center coordinate system, θ′, η′, Is the azimuth and elevation angle of the target M in the
OX’Y’Z’ coordinate system; is the sensor coordinate system to be converted, θ′ and η′ are
the azimuth and elevation angle of the target M in the coordinate system, respectively.
It is assumed that the coordinate system is obtained by rotating the OX’Y’Z’ coordinate
system angle counterclockwise about the three axes X,Y,Z respectively. Because the target
M point before and after the coordinate system transformation of its radial distance from
O unchanged, so the reference given by the literature3 can be obtained before and after the
rotation angle relationship. Under normal circumstances, the coordinate system OXYZ
coordinate system is only rotated around the Z axis (that is: the Z axis of different
coordinate system is parallel, the aircraft level flight), so α = δ = 0, then η = η′ ,
θ = θ′− β , if the coordinates of M point in OX’Y’Z’ coordinate system are (x′M , y

′
M , z

′
M)

Then the coordinate converted to OXYZ coordinate system is (xM , yM , zM), Then:

xM = x′M cos β + y′M sin β + n1(t) (6)

yM = −x′M sin β + y′M cos β + n2(t) (7)

zM = z′M cos β + n3(t) (8)

where ni(t), (i = 1, 2, 3, ...) is the measurement noise.
After platform level alignment, system level alignment is possible. Under normal cir-

cumstances, the target position coordinatesy (xM , yM , zM) obtained by platform-level fu-
sion can be translated to the fusion center coordinate system to obtain the position coordi-
nates of the target M point in the fusion center coordinate system. But this method needs
to be the sensor to get the radial distance, azimuth, elevation angle into (x′M , y

′
M , z

′
M) ,

And in the conversion process will bring the calculation error. The following describes a
two platform sensor direct alignment algorithm.

Suppose the sensor A is at the origin O of the coordinate system OA, XA, YA, ZA of the
platform A, and the slope, azimuth and elevation angles of the kth target are respectively
rA, θA, ηA; the sensor deviation is ∆rM ,∆θM ,∆ηM . The sensor B is located at u, v, ω of the
coordinate system OAXAYAZA at the origin OB, OB of the coordinate system OAXAYAZA
of the platform B. The sensor B measures the slope distance, azimuth, High and low
angle measurements were rB, θB, ηB (Fig. 4); sensor bias ∆rB,∆θB,∆ηB. The target
M is represented by r′A(k), θ′A(k), ηA(k) and r′B(k), θ′B(k), ηB(k) True Slope, Azimuth and
Elevation to Sensor A and B.

And assuming that the measurement noise is subject to a normal distribution with
variance σ2

n and independent of each other, for small deviation systems, the first-order
approximation to Eqs. (10) and (11) is simplified and expressed in matrix form as:

X(k) = A(k)oη +B(k) + n(k) (9)

where X(k) = (xA(k), yA(k), zA(k), xB(k), yB(k), zB(k)) is a target measurement vector.
n(k) = (n1(k), n2(k), n3(k), n4(k), n5(k), n6(k))T is the target random measurement error
vector, whose variance matrix is σ2

nI.η = (∆rA,∆θA,∆ηB,∆lB,∆θB,∆ηB) is the system
deviation vector. B(k) = (x′(k), y′(k), z′(k), x′(k), y′(k), z′(k))T is a target real position
vector.A(k) = diag(A11(k), A22(k)) is a diagonal matrix, where
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Figure 4. Rectangular coordinate system sensor registration relationship.

A11(k) =


x′(k)
r′A(k)

y′(k) z′(k)o sin θ′A(k)
y′(k)
r′A(k)

−x′(k) −z′(k)o cos θ′A(k)
y′(k)
r′A(k)

0 r′(k)o cos η′A(k)

 (10)

A22(k) =


x′(k)−u
r′B(k)

y′(k) − v −(z′(k) − ω)o sin θ′B(k)
y′(k)−v
r′B(k)

−(x′(k) − u) −(z′(k)o − ω) cos θ′B(k)
z′(k)o

r′B(k)
0 r′B(k)o cos η′B(k)

 (11)

It can be seen that both A(k) and B(k) are independent of system deviation and relate
only to the actual position of the target in the system.

4. Simulation results. Fig. 5 shows the simulation results of the estimation of the
registration error of the distance and angle measurement of the sensor A. Among them,
the dotted line indicates the true value of the registration error, the solid line indicates
the registration error estimate without time registration, and the dotted line indicates the
registration error estimate value after using the time registration method in this paper.

Figure 5. Estimation of registration error.

As can be seen from the figure, compared with the estimation of the registration error
of the sensor without the time registration by the least square method, the convergence
precision is high and the convergence speed is fast. This is because the least-squares
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method filters the noise while registering the sensor time, reducing the impact of noise on
the registration error.

Figure3 shows the estimation of the target state variables, including the target bits.Set
and speed. Due to space limitations, only the status of the abscissa direction is given.

The simulation results show that the algorithm can estimate the registration error and
state simultaneously, and the results of the registration of multi-sensor data of air mobile
platform after the time registration in this paper are better than the results of non-
time registration. Supposed that the basic deviations of each sensor are ∆r = 1km,∆θ =
0.0087radand∆η = 0.0175rad. Sensor A is at the origin and sensor B is at the point u,v,w
in the coordinate system, as shown in Fig. 6. The simulation results of the registration
bias of sensor A and sensor B at different sets of K are shown in Table 1 respectively.
Clearly, the Sensor B performs better than the sensor A at each threshold of K with lower
registration bias.

Based on the deviations given in Table 1, ζ(k) = (x′(k), y′(k), z′(k))when u = 100km, v =
20km, values shown in Fig. 7 (next to two is the A, B sensor measured measurement tra-
jectory, the middle one is the registration of the trajectory). Suppose the number of
measurements and the noise deviation from 0 to 2 km. A similar result to Table 1 is
obtained when u = 50km, v = 10km,w = 0km .

Figure 6. Estimate of target state variables.

Figure 7. After registration and A, B track the relationship between the trajectory.

5. Conclusion. In this paper, the space-time registration and target tracking of multi-
sensor measurement data are studied. The registration algorithm takes into account the
influence of the random noise measured by the sensor. Compared with the traditional
registration algorithm, the accuracy is improved. The extended state Kalman filter is
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Table 1. Different kernel function classification results.

K
Sensor A Sensor B

∆r ∆θ ∆η ∆r ∆θ ∆η

10 1.1542 0.0094 0.0199 -0.2934 0.0072 0.0183
20 1.2234 0.0088 0.0199 -0.2245 0.0073 0.0185
30 1.1636 0.0089 0.0176 -0.1549 0.0076 0.0184
40 1.0925 0.0092 0.0185 -0.0996 0.0074 0 .0178
50 1.1039 0.0087 0.0187 -0.1227 0.0081 0 .0174
60 1.0799 0.0087 0.0176 -0.0678 0.0081 0 .0172
70 1.0232 0.0078 0.0167 -0.0282 0.0082 0 .0173
80 0.9876 0.0078 0.0175 0.0269 0.0082 0 .0172
90 1.0054 0.0087 0.0179 -0.0112 0.0084 0 .0170
100 1.0187 0.0089 0.0176 0.0476 0.0082 0 .0172

used to estimate the system state and registration error simultaneously. The simulation
results show that the accuracy of the sensor registration error after the least-squares time
registration is significantly better than that of the non-time-registered registration er-
ror estimate, And the convergence speed is faster than the registration error estimation
without time registration, which verifies the effectiveness of the proposed algorithm.
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