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Abstract. Network clustering mechanism is one of the effective ways to save energy
for wireless sensor networks (WSN). In this paper, we propose a quantum genetic un-
even clustering algorithm (QGUC). The algorithm takes into account the calculation of
optimal cluster number, cluster head selection, calculation of cluster radius. At the same
time, the clustering parameters are optimized by quantum genetic algorithm based on
double-chain encoding method. In order to improve the adaptability to cluster structure
of wireless sensor networks, the rotation angle and fitness function of quantum gate have
been improved. Besides, we propose a solution to increase the number of initial individual
in evolution. The simulation results show its superiority in terms of network lifetime,
the number of alive nodes, and the total energy consumption.
Keywords: Wireless sensor networks, Energy optimization strategy, Quantum genetic
algorithm, Uneven clustering algorithm

1. Introduction. Wireless sensor networks (WSN) typically consist of a large number
of energy-constrained sensor nodes with limited onboard battery resources. The node
energy is difficult to renew. Therefore, energy optimization is a critical issue in the
design of wireless sensor networks [1, 2]. At present, many techniques have been proposed
to improve the energy efficiency in energy-constrained and distributed wireless sensor
networks [3, 4, 5]. Among these techniques, energy efficiency routing protocol has been
widely considered as one of the most effective ways to save energy.

LEACH protocol [6] is one of the most popular hierarchical routing protocols for wire-
less sensor networks. However, there are also some shortcomings. The residual energy of
node is not taken into consideration during the cluster head selection. Uneven distribu-
tion of cluster heads and cluster sizes may causes the decline in the balance of network
load. In large-scale network, single-hop data transmission will lead to some cluster heads
die in advance. To avoid uneven distribution problem of cluster heads and cluster sizes
in LEACH, some improved protocols are proposed, such as LEACH-C [7], LEACH-F [8],
V-LEACH [9], and LEATCH algorithm [10]. Reference [11] proposes HEED protocol.
During each iteration, a node becomes a cluster head with a certain probability which
considers the mixture of energy, communication cost, and average minimum reachable
power (AMRP). HEED creates well-balanced clusters. It has more balanced energy con-
sumption and longer network lifetime.

To avoid “hot spot” problem, reference [12] proposes an unequal clustering size (UCS)
model for network organization, which can lead to more uniform energy consumption
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among the cluster head nodes and prolong network lifetime. Reference [13] proposes and
evaluates an EEUC mechanism for periodical data gathering applications. Simulation
results show that EEUC successfully balances the energy consumption over the network
and achieves a remarkable network lifetime improvement. The EEMDC algorithm [14]
divides the network area into three logical layers by doing the partition of the network
area. The distance of the nodes to the cluster head and the cluster head to the base
station is taken into account when considering the hop-count value of the nodes. Cluster
head is elected by acquiring the average leftover energy of the nodes. The fused data
are delivered to the base station using the minimum distance path to the base station.
The mechanism is more effective in prolonging the network lifetime than LEACH and
fix the “hot spot” problem. Reference [15] reduces energy consumption by proposing a
new algorithm. It allows control and management of the topology of each network. The
architecture operation and the protocol messages are described. Measurements from a real
test-bench will show that the designed protocol has low bandwidth consumption and also
demonstrates the viability and the scalability of the proposed architecture. Reference [16]
proposes an uneven clustering routing algorithm based on optimal clustering. Some new
methods are proposed to obtain the optimal cluster number, select cluster heads, calculate
the cluster radius, and deal with isolated nodes. The experiment results show it is effective
in reducing the energy consumption and prolonging the network lifetime.

In order to optimize the clustering parameters, genetic algorithm is used as the multi-
objective optimization methodology [17]. An appropriate fitness function is developed to
incorporate many aspects of network performance. The optimized characteristics include
the status of sensor nodes, network clustering. Fitness function is designed according to
the application of open-pit mine slope detection system [18]. In the same conditions, it
uses serial genetic algorithm, parallel genetic algorithm, and quantum genetic algorithm
for network energy optimization. The clustering algorithm for energy balance based on
genetic clustering [19] combines genetic algorithm and Fuzzy C-means clustering algo-
rithm. It can form the optimal clustering, furthermore to balance the network energy
consumption and improve the performance of the network.

In this paper, we propose a quantum genetic uneven clustering routing algorithm
(QGUC) for wireless sensor networks. The rest of this paper is organized as follows.
In Section 2, the uneven clustering routing algorithm (UCRA) based on optimal cluster-
ing is analyzed. In Section 3, we present the parameters optimization method based on
quantum genetic algorithm. In Section 4, shows the simulation and numerical analysis.
Final conclusion remarks are made in section 5.

2. The Uneven Clustering Routing Algorithm (UCRA). The operation of hierar-
chical routing for WSN can be divided into set-up phase and steady-state phase. In [16],
we proposes an uneven clustering routing algorithm by taking into account the calcula-
tion of optimal cluster number, cluster head selection, cluster radius calculation. A radio
model proposed [6] in LEACH is shown in Figure 1.
where Eelec is the transmitter energy consumption per bit, l is the number of bits, εfs
is proportional constant of the energy consumption for the transmit amplifier in free
space channel model (εfs · l · d2 power loss), εmp is proportional constant of the energy
consumption for the transmitter amplifier in multipath fading channel model (εmp · l · d4
power loss), the distance between transmitter and receiver is d, the transmitter energy
consumption to run the transmitter or receiver circuitry is Eelec ·l, the energy consumption
in transmitter amplifier is εfs · l · d2 or εmp · l · d4.

Assume there are N nodes distributed uniformly in a M × M region. There are k
clusters, each has N/k nodes in average. EDA is the energy consumption for data fusion
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Figure 1. The radio energy consumption model

per bit, dtoCH is the distance between the node and the cluster head. dtoBS is the distance
between node and base station. fagg is fusion rate. In each frame, all the nodes expend
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By making the derivative of the function Etotal equal to 0, the optimal number of k can
be obtained as

k =

⌈√
εfs ·M2 ·N

2πfagg · [εmp · E (d4toBS) + Eelec]

⌉
(2)

where dae denotes the smallest integer which is greater than or equal to the argument a.
After obtaining the optimal cluster number, the next step is to choose appropriate nodes

as cluster heads which can gather data from intra-cluster nodes, compress data and send
them to the base station. Considering all the factors above, in UCRA, we introduce factor
of energy consumption Eavecon/Econ [20, 21], factor of node degreeNNN/NAN [11], factor of
distance between the node and base station (dtoBS MAX − dtoBS)/(dtoBS MAX − dtoBS MIN)
to determine the selection probability of cluster head.

PU =max
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·
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)
·
(
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)
, Pmin

)
(3)

where η1 is a constant coefficient between 0 and 1, Econ is the energy consumption of the
ith node, Eavecon is the average energy consumption of the whole network during the last
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round of data transmission, NNN is the number of neighbor nodes, NA is the number of
alive nodes.

In round R, the larger energy consumption is, the smaller Eavecon/Econ is and the lower
probability to be a cluster head in the next round. On the contrary, the probability to be
a cluster head in next round will be larger. At the same time, the larger NNN/NA is, the
larger probability to be a cluster head.

In addition, the node should have larger probability to be cluster head when its distance
from the base station is short. So (dtoBS MAX − dtoBS)/(dtoBS MAX − dtoBS MIN) is used
to solve the problem. In (3), η1is used to make PU more reasonable and will be optimized
in Section 3.

After the cluster heads have been selected, the cluster heads will broadcast an adver-
tisement message (ADV) to let all the other nodes know the cluster information for the
current round. We introduce node degree to improve the adaptation. In UCRA, the
uneven cluster radius is

RU =

(
1 +

dtoBS − E(dtoBS)

η2 · (dtoBS MAX − dtoBS MIN)

)
·
(

1− NNN

η3 ·NA ·RL

)
·RL (4)

where η2 and η3 is constant coefficients, RL is the cluster radius designed in LEACH. The
three parameters will be optimized in Section 3.

In (4), cluster radius can be adjusted according to the distance between node and base
station. When dtoBS is larger, the cluster radius is larger too. On the contrary, the radius
will be smaller. In addition, the node degree has influence on the radius. The larger the
node degree is, the smaller the cluster radius is.

Once receiving ADV, each non-cluster head node determines its cluster for this round by
choosing the cluster head that requires the minimum communication energy. After each
node having selected the cluster it belongs to, it must inform the cluster head node that it
will be a member of the cluster. Each node transmits a join-request message (Join-REQ)
to the chosen cluster head. The cluster head node sets up a TDMA schedule and transmits
this schedule to the nodes in its cluster. After the TDMA schedule has been known by all
nodes in cluster, the set-up phase is completed and the steady-state operation will begin.
Once the cluster head receives all the data, it performs data aggregation to enhance the
common signal and reduce the energy consumption. The resultant data are sent to the
base station in routing path.

3. Parameters Optimization Based on Quantum Genetic Algorithm. Quantum
Genetic Algorithm (QGA), is a probability optimization algorithm combining Genetic
Algorithm (GA) and Quantum Algorithm (QA). In QGA, the chromosomes are encoded
by quantum bits and updated by quantum rotation gates. Then each chromosome is
evaluated by its fitness value. The fitness of a chromosome depends on some fitness fac-
tors. The best chromosomes are selected by using a specific selection method based on
their fitness values. QGA applies crossover and mutation to produce a new population
better than the previous one for the next generation [22]. QGA has been proposed for
some combinatorial optimization problems. It still has some shortcomings. Firstly, binary
coding has randomness and blindness to measure the state of quantum bit. Some chro-
mosomes are possible to degenerate as the majority of chromosomes in population evolve.
Secondly, binary coding is not suitable for numerical value optimization such as function
extreme and neural network weight optimization. Thirdly, the direction of rotation angle
is usually determined by a query table, which is inefficient to deal with many conditional
judgments. In this paper, we propose a self-adaptive updating method for rotation angle.
The rotation angle gradually decreases with the increase of the optimization steps.



600 J.P. Li, X.D. Hou, Y.J. Wang, and J.Y. Huo

Aiming at the above parameter optimization, we propose an parameter optimization
method based on improved double-chain encoding QGA. The steps of parameter opti-
mization are described as the following.

3.1. Encoding quantum chromosome and initializing the population with new
method. In quantum computation, the basic unit of information is described by a quan-
tum bit, which coded in binary can be expressed as

|φ〉 = α |0〉+ β |1〉 (5)

where the pair of α and β is called quantum bit probability amplitude of the |φ〉. Many
QGAs proposed currently are coded in binary. To avoid its randomness and blindness, the
probability amplitudes of quantum bits are directly regarded as the coding of chromosome.
According to the nature of probability amplitude, the quantum bit can also be expressed
as [

α
β

]
=

[
cosφ
sinφ

]
(6)

where the quantum bit |φ〉 is |cosφ〉 or |sinφ〉.
The chromosome in our quantum genetic algorithm is coded as

pi =

[
cos(ti1)
sin(ti1)

∣∣∣∣ cos(ti2)
sin(ti2)

∣∣∣∣ · · ·· · ·
∣∣∣∣ cos(tin)

sin(tin)

]
(7)

where tij = 2π · Rnd, Rnd represents a random number in (0, 1), i = 1, 2, · · · ,m, j =
1, 2, · · · , n. m represents the number of initial population and n represents the number
of quantum bits. The whole network in one round with one set of parameter values will
be one individual in evolution. The energy consumption in each round is different. So
we set one same set of parameters for every five rounds and calculate the average energy
consumption in fitness function. Besides there are 4 parameters in the new clustering
routing algorithm. Considering the above conditions, m is set to 16, n is set to 4. The
chromosome is encoded as

pi =

[
αi1

βi1

∣∣∣∣ αi2

βi2

]
=

[
cos(ti1)
sin(ti1)

∣∣∣∣ cos(ti2)
sin(ti2)

]
(8)

where

[
αi1

βi1

]
represents parameter η1,

[
αi2

βi2

]
represents parameter η2,

[
αi3

βi3

]
represents

parameter η3,

[
αi4

βi4

]
represents parameter RL.

Each chromosome contains 2n probability amplitudes of n quantum bits. Each of
probability amplitudes corresponds to an optimization variable in solution space. If the
quantum bit on chromosome is [αij, βij]

T , the corresponding variables in solution space Ω
can be computed as

Xj
ic =

1

2
[Amin(1 + αij) + Amax(1− αij)]

Xj
is =

1

2
[Amin(1 + βij) + Amax(1− βij)]

(9)

where, Amin = 0.2, Amax = 0.9 for coefficient η1 in (3), Amin = 0.2, Amax = 0.9 for
coefficient η2 in (4), Amin = 1, Amax = 5 for coefficient η3 in (4), Amin = 35, Amax = 86
for parameter RL in (4).
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3.2. Calculating the fitness with proposed self-adaptive fitness function. After
initializing the chromosome and population, the chromosome need to be evaluate by
fitness value. In order to make the algorithm clear and concise, the fitness function f (r)
at round r only involves the average energy consumption of the whole network. The
less the average energy consumption is, the larger change rate of fitness function is. The
rotation angle should be inversely proportional to Eavecon. So the fitness function can be
defined as

f (r) = exp(−Eavecon(r)/Emax) (10)

where Eavecon is the average energy consumption of the whole network during the past
five rounds. Emax is a reference maximum energy consumption of the whole network.

3.3. Evolving into the next generation group by improved self-adaptation quan-
tum rotation gate. When Q-gate is

U (θ) =

[
cos θ − sin θ
sin θ cos θ

]
(11)

The quantum bit in next generation will be[
α
β

]
=

[
cos θ − sin θ
sin θ cos θ

] [
cosφ
sinφ

]
=

[
cos (θ + φ)
sin (θ + φ)

]
(12)

It is clear that the Q-gate U (θ) causes the phase rotation of θ.
In U (θ) , the phase rotation of θ can be defined as

θ = −sgn(A) · θ0 · exp(−|∇f(r)| − ∇fmin

∇fmax −∇fmin

) · exp(− r

rmax

) (13)

where A is defined as

A = sin(θ − θopt) (14)

and θopt is the probability amplitude of a quantum bit in the global optimum solution, θ
is the probability amplitude of the corresponding quantum bit in the current solution. θ0
is the initial value of rotation angle and θ0 ∈ (0.005π ∼ 0.1π). ∇f(r) is the gradient of
fitness function at round r. ∇fmin and ∇fmax are respectively defined as

∇fmin = min

{∣∣∣∣f (80)− f (0)

x(80)− x(0)

∣∣∣∣ , ∣∣∣∣f (81)− f (1)

x(81)− x(1)

∣∣∣∣ , · · · , f (r)− f (r − 80)

x(r)− x(r − 80)

}
(15)

∇fmax = max

{∣∣∣∣f (80)− f (0)

x(80)− x(0)

∣∣∣∣ , ∣∣∣∣f (81)− f (1)

x(81)− x(1)

∣∣∣∣ , · · · , f (r)− f (r − 80)

x(r)− x(r − 80)

}
(16)

where x(r) represents the vectors η1, η2, η3, RL in solution space. If the current optimum
solution is cosine solution, then x(r) = xjic, else x(r) = xjis. x

j
ic and xjis can be computed

by (9) respectively.

3.4. Judging whether it meets with the termination condition. If the stop con-
dition is met, the iteration ends. Otherwise updating the global optimum solution and
the corresponding chromosome. The results can be encoded. The system returns to step
a) and repeats the procedure of iteration.
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4. Simulation and Numerical Analysis. In NS2, we distribute randomly 100 nodes
(N = 100 in (1)–(3)) in the area of 100 × 100 m2 (M = 100 in (1) and (2)). The
initial energy of all the sensor nodes is equal (Emax = 2J in (3)). In (1) and (2), εfs =

10 pJ/bit/m2, εmp = 0.0013 pJ/bit/m4, fagg = 1, Eelec = 50 nJ/bit. In (3), pmin = 0.0005.
Figure 2 shows the maximum value of fitness for 16 individuals in QGUC algorithm.

If a certain individual has a new maximum value of fitness in the current generation, the
individual will replace the best one. The others will record the value and iterate towards
the best individual. The iteration will end until the maximum value tends to 1 or remains
unchanged. The simulation results show that the maximum fitness is 0.8827 at 1094th
round. It remains unchanged after 1094th round. The iteration ends.
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Figure 2. The maximum
value of fitness for 16 individ-
uals in QGUC algorithm
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Figure 3. The value of fit-
ness in each round for 16 in-
dividuals in QGUC algorithm

Figure 3 shows the value of fitness in each round for 16 individuals in QGUC algorithm.
Each curve represents the value of fitness in each round for one individual. The best
individual is selected by comparing its value of fitness in each generation and recorded
by other individuals. Then other individuals iterate towards the best individual. After
many times of iterations, the population starts to evolve towards an optimal solution.
The simulation results show that the value of fitness grows rapidly in the beginning and
turns into small fluctuations as time goes on.

Figure 4 shows, for cluster head selection, the value of η1 in each round for 16 individuals
in QGUC algorithm. Each curve represents the value of η1 in each round for one individual.
After many times of iterations, the population starts to evolve towards an optimal solution.
The maximum value of fitness remains unchanged after 1094th round. The parameters in
1094th round are the optimal parameters. The simulation results show that the value of
η1 is 0.2996 at 1094th round when the value of fitness is maximum.

Figure 5 shows, for cluster radius calculation, the value of η2 in each round for 16
individuals in QGUC algorithm. Each curve represents the value of η2 in each round
for one individual. The parameters in 1094th round are the optimal parameters. The
simulation results show that the value of η2 is 0.7015 at 1094th round when the value of
fitness is maximum.

Figure 6 shows, for cluster radius calculation, the value of η3 in each round for 16
individuals in QGUC algorithm. Each curve represents the value of η3 in each round
for one individual. The parameters in 1094th round are the optimal parameters. The
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Figure 4. The value of η1 in
each round for 16 individuals
in QGUC algorithm
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Figure 5. The value of η2 in
each round for 16 individuals
in QGUC algorithm

simulation results show that the value of η3 is 2.003 at 1094th round when the value of
fitness is maximum.

Figure 7 shows the average value of RL in each round for 16 individuals in QGUC
algorithm. Each curve represents the value of RL in each round for one individual. The
parameters in 1094th round are the optimal parameters. The simulation results show that
the average value of RL is 40.01 at 1094th round when the value of fitness is maximum.
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Figure 6. The value of η3
each round in 16 individuals
in the QGUC algorithm
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Figure 7. The average value
of RL in each round for 16 in-
dividuals in QGUC algorithm

Figure 8 shows the average number of alive nodes in LEACH (k = 4), UCRA (η1 = 0.5,
η2 = 0.7, and η3 = 2), and QGUC algorithm. The quality of energy optimization strategy
can be judged by the average number of alive nodes. We hope that the time that the
first node dies and the network no longer provides acceptable quality all is put off. The
simulation results show the time that the first node dies is about 330th round in QGUC,
which is prolonged by about 175% than that in LEACH (k = 4) and about 37.5% than
that in UCRA. The time that the network no longer provides acceptable quality results is
about 1230th round in QGUC, which is prolonged by about 44.3% than that in LEACH
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Figure 8. The average num-
ber of alive nodes in LEACH,
UCRA, and QGUC algorithm
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Figure 9. The average to-
tal energy consumption in
LEACH, UCRA, and QGUC
algorithm

(k = 4) and about 5.4% than that in UCRA. So the QGUC algorithm has the superiority
in terms of network lifetime and the number of alive nodes.

Figure 9 shows the average total energy consumption in LEACH (k = 4), UCRA
(η1 = 0.5,η2 = 0.7, and η3 = 2) , and QGUC algorithm. It reflects the balance of
energy consumption. The bigger the slope of a curve is, the poorer the balance of energy
consumption. The simulation results show that the total energy consumption in QGUC
grows more slowly than that in LEACH and UCRA. The average energy consumption in
QGUC decreases by 30.7% than that in LEACH and 9.4% than that in UCRA. So the
QGUC algorithm has the superiority in terms of network lifetime and the total energy
consumption.

5. Conclusion. In this paper, we propose a quantum genetic uneven clustering routing
algorithm (QGUC) for wireless sensor networks. The algorithm takes into account the
calculation of optimal cluster number, cluster head selection, cluster radius calculation.
At the same time, the clustering parameters are optimized by quantum genetic algorithm
based on double-chain encoding method. In order to improve the adaptability for wireless
sensor network cluster structure, the rotation angle and the fitness function of quantum
gate have been improved. The time that the first node dies in QGUC is prolonged by
about 175% than that in LEACH and about 37.5% than that in UCRA. The time that
the network no longer provides acceptable quality results in QGUC is prolonged by about
44.3% than that in LEACH and about 5.4% than that in UCRA. The number of data
received at the base station in QGUC is 42.7% more than that in LEACH and 5.5% more
than that in UCRA. The average energy consumption in QGUC decreases by 30.7% than
that in LEACH and 9.4% than that in UCRA. All these show the QGUC algorithm has the
superiority in terms of network lifetime, the total energy consumption, the number of alive
nodes, and data transmission. Although the proposed algorithm has some advantages in
network lifetime, balance of energy consumption, and data transmission, there is still
plenty of work to do in the future. Firstly, we will further study the optimizing algorithm
for cluster parameters. Secondly, we will take some measures to improve the search
efficiency and convergence rate by optimizing fitness function and the rotation angle of
quantum gate.
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