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Abstract. Super resolution (SR) has been extensively studied these years due to its
wide applications in machine vision, medical imaging and remote sensing, etc. With a
great number of SR image reconstruction algorithms proposed, an accompanying task is
how to evaluate the quality of SR reconstructed images. Although a number of image
quality metrics have been reported, they are not specifically designed for image super res-
olution, so the are usually limited for this task. Motivated by these, this paper presents
a no-reference quality metric for SR reconstructed images by measuring structure degra-
dations and SR-relevant domain distortions. By incorporating domain knowledge, the
proposed metric is more effective than the state-of-the-art models for the quality assess-
ment of SR reconstructed images. Experimental results based on three subjectively-rated
SR image databases demonstrate the advantages of the proposed metric in terms of both
prediction performance and generalization ability.
Keywords: Quality assessment, Super resolution, Structure degradation, Ringing, blur-
ring

1. Introduction. Super resolution (SR) image reconstruction is the technique to restore
a high-resolution (HR) image from one or multiple low-resolution (LR) images [1]. SR
has wide applications in machine vision, medical imaging and remote sensing, etc. A
great number of image super-resolution algorithms have been reported [2, 3]. With these
algorithms in hand, a natural question is how to evaluate their relative performances. Up
to now, the performances of SR algorithms are mainly evaluated subjectively by visual
comparison and objectively by popular image quality metrics, e.g., Peak Signal to Noise
Ratio (PSNR) and Structural Similarity (SSIM) [4], which are often used to evaluate
the related technologies of image processing [5]-[8]. PSNR and SSIM need high-quality
reference images, which are usually not available in practical SR applications. Therefore
the full-reference image quality metrics cannot be used for the quality assessment of SR
images. While general-purpose no-reference (NR) and single distortion quality metrics
have been proposed in the literature [9]-[20], they are limited in the quality assessment of
SR images due to the lack of domain knowledge. As a result, we are devoted to the design
of a NR quality metric for single-image super-resolution (SISR) reconstructed images.
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In the past few years, a few works have been done on the quality assessment of image
super-resolution. Yeganeh et al. [21] presented a natural scene statistics (NSS) approach
to the quality assessment of super-resolved images. Yang et al. [22] conducted a bench-
mark study of the state-of-the-art SISR algorithms. Subjective study was first conducted,
producing a subjectively rated SISR database with 540 images, which we call ECCV-2014
hereafter. Fang et al. [23] proposed a reduced-reference (RR) quality metric for image
super-resolution. Markov Random Field (MRF) was first employed to obtain the pixel-
wise correspondence between LR and super-resolved HR images. Ma et al. [24] conducted
a large-scale human subjective study, producing a SISR database, which we call CVIU-
2017. More recently, Wang et al. [25] built a Super-resolution Reconstructed Image
Database (SRID), where 20 LR images were processed by six SISR algorithms and two
interpolation methods.

In real-world applications, high-quality reference images are usually not available for
SISR. Hence, the existing FR quality metrics are not applicable to the quality evalua-
tion of SISR, and NR quality metrics are needed. Although a number of general-purpose
NR image quality metrics have been proposed in the literature [9]-[16], they are mainly
designed and tested for the common distortions in images, e.g., added noise and JPEG
compression. However, super resolution image reconstruction tends to introduce addi-
tional impairments, particularly ringing and blurring effects. These combined distortions
cannot be readily measured by the existing image quality models [25]. With these inspi-
rations, this paper presents a NR image quality metric for SISR by incorporating domain
knowledge. The proposed method consists of a structure measurement module and a
SISR-relevant distortion measurement module.

2. Methods. The flowchart of the proposed quality metric is shown in Fig. 1. The idea
of the proposed metric is that we believe the quality of super-resolved images can be
evaluated from two aspects, namely structure degradation measurement and SR-induced
distortion measurement. It has been demonstrated that human eyes perceive image qual-
ity mainly based on structure changes [4]. Therefore, structure degradation measurement
is the first module of the proposed metric. Moreover, as a special image restoration tech-
nique, super-resolution tends to introduce additional impairments, typically ringing and
blurring. So these SR-induced distortion measurement constitutes the second module of
the proposed metric.

Figure 1. Flowchart of the proposed quality metric for image super-resolution.

2.1. Measurement of Structure Degradation. In the literature, a number of general-
purpose NR image quality metrics have been proposed, which are mainly based on the
measurement of structure degradations. As a special case of image quality assessment,
structural distortions also occur in super-resolved images. Therefore, we include structure
degradation measurement as the first module of the proposed method. In the existing
metrics, Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) [11] has been
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shown very effective for the evaluation of general structure distortions in common images.
Therefore, we employ the BRISQUE features in this paper.

The BRISQUE features are extracted in the spatial domain based on natural scene sta-
tistics (NSS). Given an image I(i, j), i ∈ [1,M ], j ∈ [1, N ], the Mean Subtracted Contrast
Normalized (MSCN) coefficients are first computed as follows:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
, (1)

with

µ(i, j) =
K∑

k=−K

L∑
l=−L

w(k, l)Ik,l(i, j), (2)

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

w(k, l)(Ik,l(i, j)− µ(i, j))2, (3)

where i ∈ [1,M ], j ∈ [1, N ], µ(i, j) and σ(i, j) are the local mean and standard deviation
of the surrounding local patch, and {w(k, l)|k ∈ [−K,K], j ∈ [−L,L]} is the Gaussian
weighting window of size K × L. In this work, the window size is 3 × 3. C is a small
constant for preventing the denominator to be zero.

The MSCN-based normalization can highlight texture information in images by re-
ducing the dependencies between neighboring pixels, which is helpful for the subsequent
structure feature extraction. Typically, the histogram of the MSCN coefficients follows
the Generalized Gaussian Distribution (GGD) [11]. So GGD is employed to portray the
distribution of MSCN coefficients:

f(x;α, σ2) =
α

2βΓ(1/α)
exp

(
−
(
|x|
β

)α)
, (4)

where

β = σ

√
Γ(1/α)

Γ(3/α)
, (5)

and the gamma function γ(a) is defined as:

Γ(a) =

∫ ∞
0

ta−1e−tdt, a > 0. (6)

In GGD function, α denotes the shape of the distribution, and σ2 denotes the variance.
The two parameters (α, σ2) constitute the first set of features.

In additional to the direct modeling of MSCN coefficients, the statistical relationships
between neighboring MSCN coefficients are further modelled along four directions, namely
horizontal (H), vertical (V), main-diagonal (D1) and secondary diagonal (D2):

H(i, j) = Î(i, j)Î(i, j + 1), (7)

V (i, j) = Î(i, j)Î(i+ 1, j), (8)

D1(i, j) = Î(i, j)Î(i+ 1, j + 1), (9)

D2(i, j) = Î(i, j)Î(i+ 1, j − 1), (10)

where i ∈ [1,M ], j ∈ [1, N ]. Then the Asymmetric Generalized Gaussian Distribution
(AGGD) with zero mode [11] is adopted to model the neighboring MSCN coefficients:

f(x; v, σ2
l , σ

2
r) =


v

(βl+βr)Γ( 1
v )

exp
(
−
(
−x
βl

)v)
, x < 0

v

(βl+βr)Γ( 1
v )

exp
(
−
(
−x
βr

)v)
, x ≥ 0

(11)
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with

βl = σl

√
Γ(1/v)

Γ(3/v)
, βr = σr

√
Γ(1/v)

Γ(3/v)
, (12)

where v controls the shape of the distribution, while σ2
l and σ2

r control the spread on each
side of the mode. The parameters (η, v, σ2

l , σ
2
r) of the best AGGD fitting are produced,

where η is determined by:

η = (βr − βl)
Γ(2/v)

Γ(1/v)
. (13)

Since four parameters (η, v, σ2
l , σ

2
r) can be extracted for each direction, 16 features can

be obtained in total. With the consideration that the HVS exhibits obvious multi-scale
nature when perceiving the visual world, the above two groups of features are extracted
in two scales, i.e., the original scale and a downsampled version by a factor of 2. Finally, a
set of 36 features are extracted, which are used to characterize the structural degradations
in super-resolved images.

2.2. Measurement of SR-induced Artifacts.

2.2.1. Ringing Effect. Ringing effect is a dominated distortion in super-resolved images,
especially for high scaling ratios. Fig. 2 shows some example images after super-resolution
reconstruction with ringing distortions around edges. In order to effectively measure the
quality of super-resolved images, the ringing effect should be properly measured.

In this paper, we propose a no-reference approach to measure the ringing effects in
the Log-Gabor transform domain [16]. It has been shown that the Log-Gabor filters
resemble the human visual system (HVS) in terms of multi-scale and multi orientation
representations of images. The Log-Gabor filter is defined as:

Gs,o(ω, θ) = exp

{
− [log(ω/ωs)]

2

2[log(σs/ωs)]2

}
× exp

[
−(θ − µ0)

2

2σ2
0

]
, (14)

where Gs,o represents the Log-Gabor filter with scale s and orientation o, ω is the nor-
malized radial frequency and θ denotes the orientation. ωs is the centre frequency of filter
and σs/ωs is used to determine the radial bandwidth, where ωs and σs/ωs are set to 2/3
and 0.65 in this work. σ0 = π

1.5·max(o)
determines the pattern bandwidth.

In this work, we adopt the Log-Gabor filter to decompose the image with two scales
(s = 1, 2) and four orientations (o = 1, 2, 3, 4). The two scales are the original scale
(s = 1) and the downsampled version (s = 2) by a factor of 2. The four orientations are
calculated based on µ0 = (o−1)π

4
, which correspond to 0◦, 45◦, 90◦ and 135◦, respectively.

Then the ringing effect is measured based on the decomposed images. Fig. 3 shows an
example of the Log-Gabor decomposition in the four directions. In this paper, ringing
effect is measured based on the decomposed subband images.

In the proposed method, the ringing effect is evaluated using the Log-Gabor subbands
in four directions simultaneously. Let us take Fig. 3(b) as an example. The ringing
is evaluated row by row. Fig. 4 shows the projection of Log-Gabor coefficients in one
row of Fig. 3(b). Since ringing effects typically occur around edges, regions that may
have ringing effects are marked by A, B, C, ..., G. Fig. 4(b) further shows the detailed
distribution of coefficients of region B in Fig. 4(a). Since real edge regions in images
usually have large oscillations, it is intuitive that local extreme points H8-H10 correspond
to real edge. Oscillations around them are very likely to be ringings.
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Figure 2. Super resolution reconstructed images with ringing effects (best
viewing after zooming in).

Figure 3. An example of Log-Gabor decomposition in four directions.

Figure 4. (a) Log-Gabor coefficients in one row of subband image
Fig.3(b), (b) Magnified view of region B in (a).

In this work, the local extreme values are first determined and denoted by Hi, i =
1, 2, · · · , n. Then the differences between adjacent extreme points are calculated as

Ti = |Hi+1 −Hi|, i = 1, 2, 3 · · ·n− 1. (15)

Then the ringing score in a row is computed by:

Qrow =
M∑
i=1

T1(i)−
N∑
j=1

T2(j), (16)

with

T1 = {Ti|Ti > α ·max(T1, T2, · · · , Tn−1), i = 1, 2, · · · ,M}, (17)

T2 = {Tj|Tj > β ·max(T1, T2, · · · , Tn−1), j = 1, 2, · · · , N}, (18)

where α = 0.45 and β = 0.6 are set empirically, which are used to alleviate the impact of
smooth regions on the accuracy of ringing evaluation.

The ringing score of a subband image is defined as:

Q1 =
K∑
k=1

Qrow(k), (19)

where K denotes the number of rows in the subband image, Qrow(k) denotes the ringing
score in row k.
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Similarly, the ringing scores in the other three subband images can be calculated, which
are denoted by Q2, Q3 and Q4, respectively. Finally, the overall ringing score of an image
is calculated as follows:

Qr =
∑
s=1,2

(Qs,1 +Qs,2 +Qs,3 +Qs,4) , (20)

where s denotes the scale, scale 1 represents the original scale, scale 2 is obtained by
downsampling the original image by a factor of 2.

Fig. 5 shows an example of ringing effect evaluation using the proposed method on
three images with different extents of ringing distortions. From Fig. 5(a) to Fig. 5(c),
the ringing effects increase. Meantime, the predicted ringing scores increase accordingly.
This indicates that the proposed method can evaluate the ringing distortions consistently
with the perceived quality.

Figure 5. Ringing scores predicted by the the proposed method.

2.2.2. Blurring Effect. In image super-resolution, blurring is one of the dominated side
effects, especially for high scaling factors. Generally, the higher the scaling factors, the
more severe the blurring effects. In this paper, we employ the Fast Image SHarpness
(FISH) model [26] to evaluate the blurring effect in super-resolved images, due to its
computational efficiency and consistent good performances across images.

The FISH model is achieved in the Discrete Wavelet Transform (DWT) domain by
measuring the log-energies of the subbands. For an image, it is first transformed into the
DWT domain with three levels, and the high-frequency subbands are denoted by SLHn ,
SHLn and SHHn , n=1, 2, 3. Then the log-energy of each subband at level n is computed
as:

EXYn = log10

(
1 +

1

Nn

∑
i,j

S2
XYn

(i, j)

)
, (21)

where XY is LH, HL or HH, and Nn denotes the number of coefficients in the subband at
level n. Then the total energy of the high-frequency subbands is obtained by:

En = (1− α)
ELHn + EHLn

2
+ αEHHn , (22)

where α is set to 0.8 to give more weights to the HH subband. Finally, the sharpness
score is defined as:

FISH =
3∑
i=1

23−nEn. (23)

In this paper, we use the raw FISH score as a feature for measuring the blurring effect
in super-resolved images.
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2.3. Model Training and Quality Prediction. After obtaining the aforementioned
features, they are further concatenated to form a feature vector. Then a quality regression
model can be trained. In this paper, we employ two of the most commonly used regression
approaches to train the quality model, i.e., Support Vector Regression (SVR) [27] and
Random Forest (RF) [28].

3. Experimental Results and Discussion.

3.1. Evaluation Protocols.

3.1.1. Databases. In this work, we employ three SISR databases to evaluate the per-
formance of the proposed metric and compare the results with those of other relevant
state-of-the-art quality metrics. The databases are briefly reviewed here.

• CVIU-2017 database [24]. This database consists of 1620 super-resolved color images
from 30 source images. Specifically, each source image is first processed by six
different combinations of downsampling and blurring to generate six LR images.
Then nine super-resolution image reconstruction algorithms are adopted to generate
the HR images.
• ECCV-2014 database [22]. This database consists of 540 super-resolved monochrome

images from 10 source images. Specifically, each source image is processed by nine
different combinations of downsampling and blurring to generate nine LR images.
Then six super-resolution image reconstruction algorithms are adopted to generate
the HR images.
• SRID database [25]. In CVIU-2017 and ECCV-2014 databases, the LR images are

generated by conducting downsampling and blurring based on HR original images.
However, this process is not natural. In order to simulate the real application sce-
nario, the authors built another super-resolution image database in [25].

3.1.2. Performance Criteria. Four commonly used criteria are utilized to measure the
performance of the proposed quality metric. Specifically, Spearman Rank order Correla-
tion Coefficient (SRCC) and Kendalls Rank Correlation Coefficient (KRCC) are used to
measure prediction monotonicity, while Pearson Linear Correlation Coefficient (PLCC)
and Root Mean Square Error (RMSE) are used to measure prediction accuracy. Before
computing these values, a logistic fitting is first conducted between the predicted objective
scores and the subjective scores. In this work, the five-parameter logistic fitting function
is adopted [29]:

f(x) = τ1

(
1

2
− 1

1 + eτ2(x−τ3)

)
+ τ4x+ τ5, (24)

where x denotes the predicted score, f(x) denotes the corresponding subjective score, and
τi, i = 1, 2, 3, 4, 5, are the parameters to be fitted. A good quality metric produces high
SRCC, KRCC, PLCC values, as well as low RMSE value.

To test the performance of the proposed metric on a specific database, 80% of the
images are randomly selected for training, and the rest 20% images are used for testing,
based on which the above performance values are obtained. In order to avoid bias, this
operation is repeated 1, 000 times and the median values are reported.
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3.2. Performance Evaluation. In order to demonstrate the effectiveness and advan-
tage of the proposed metric, we compare it with the state-of-the-art general-purpose
no-reference image quality metrics, including BIQI [9], DIIVINE [10], BRISQUE [11],
BLIINDS-II [12], NIQE [14], NFERM [15] and DESIQUE [16]. The performance of a
recent SISR quality metric [24] is also included. For the proposed metric, we provide
the results based on both SVR and RF regression models. Tables 1 to 3 summarize the
experimental results on CVIU-2017, ECCV-2014 and SRID databases, where the best
results are marked in boldface.

Table 1. Performances of different quality metrics on CVIU-2017 database.

Criterion BIQI [9] DIIVINE [10] BRISQUE [11] BLIINDS-II [12] NIQE [14]

SRCC 0.7429 0.7699 0.8728 0.8180 0.6257

KRCC 0.5483 0.5791 0.6927 0.6223 0.4575

PLCC 0.7461 0.7889 0.8887 0.8292 0.6440

RMSE 1.5856 1.4775 1.1018 1.3442 1.8391

Criterion NFERM [15] DESIQUE [16] Ref. [24] Proposed (RF) Proposed (SVR)

SRCC 0.8718 0.8310 0.8923 0.9215 0.8907

KRCC 0.6845 0.6426 0.7213 0.7624 0.7099

PLCC 0.8829 0.8569 0.9095 0.9344 0.9024

RMSE 1.1071 1.2474 0.9944 0.8554 1.0494

It is observed from the results that the proposed metric achieves the best performances
in three databases. The state-of-the-art general-purpose NR image quality metrics only
perform moderately in these databases.

With respect to the regression models, the RF-based approach achieves slightly better
results than SVR-based approach in all databases. Meantime, it should be noted that the
proposed metric with SVR achieves the second best results in both ECCV-2014 and SRID
databases. In CVIU-2017 database, the proposed metric ranks the third and it is only
slightly worse than Ref. [24], which is also designed specifically for SISR images. From
these results, we know that the proposed method with RF achieves the best performances
in all three databases.

3.3. Generalization Ability. In this subsection, the quality model is first trained using
the whole CVIU-2017 database, which contains the most images. Then the trained model
is used for quality evaluation on the other two databases. In implementation, we test
both RF-based and SVR-based approaches. The experimental results are summarized in
Tables 4 and 5, where the best results are marked in boldface.

It is observed from Tables 4 and 5 that the proposed metric (SVR-based) achieves
the best performance in both cross-database tests. This indicates that the generalization
ability of the proposed metric is better than those of the state-of-the-art metrics. For
the RF-based approach, the performance ranks the second in the first cross-database
test. However, it does not perform very well in the second test. The reason may be
that the distortion characteristics of CVIU-2017 and SRID databases are more different.
Especially, the SRID database consists of super-resolved images with obvious ringing
effects when the scaling factor is 8. By comparison, CVIU-2017 does not have SR images
with obvious ringing effects. As a result, the model trained based on CVIU-2017 cannot
effectively capture the characteristics of ringing effects.

4. Conclusion. In this paper, we have been devoted to the objective quality evaluation
of super-resolution reconstructed images. Distortions in super-resolved images can be
classified into general structure distortions and domain-specific distortions. Based on these
observations, we have proposed a learning-based quality metric to quantify both aspects
of the distortions. We have evaluated the performance of the proposed metric on three
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Table 2. Performances of different quality metrics on ECCV-2014 database.

Criterion BIQI [9] DIIVINE [10] BRISQUE [11] BLIINDS-II [12] NIQE [14]

SRCC 0.4165 0.6040 0.8045 0.5940 0.4925

KRCC 0.2904 0.4351 0.6280 0.4371 0.3387

PLCC 0.5508 0.7172 0.8818 0.7412 0.6295

RMSE 1.6025 1.3063 0.9221 1.3047 1.4968

Criterion NFERM [15] DESIQUE [16] Ref. [24] Proposed (RF) Proposed (SVR)

SRCC 0.7593 0.7433 0.7210 0.8637 0.8520

KRCC 0.5630 0.5600 0.5474 0.6919 0.6762

PLCC 0.8206 0.8219 0.8423 0.9193 0.9177

RMSE 1.0813 1.0739 1.0331 0.7528 0.7693

Table 3. Performances of different quality metrics on SRID database.

Criterion BIQI [9] DIIVINE [10] BRISQUE [11] BLIINDS-II [12] NIQE [14]

SRCC 0.6281 0.6724 0.8287 0.6995 0.4606

KRCC 0.4623 0.4956 0.6556 0.5216 0.3296

PLCC 0.6806 0.6993 0.8521 0.7443 0.4639

RMSE 1.1645 1.1535 0.8431 1.0620 1.4328

Criterion NFERM [15] DESIQUE [16] Ref. [24] Proposed (RF) Proposed (SVR)

SRCC 0.8164 0.7639 0.6597 0.8793 0.8720

KRCC 0.6347 0.5823 0.4765 0.7025 0.6942

PLCC 0.8479 0.8062 0.7413 0.9052 0.8929

RMSE 0.8498 0.9348 1.0899 0.6780 0.7216

Table 4. Performances of different quality metrics when trained on CVIU-
2017 database and tested on ECCV-2014 database.

Criterion BIQI [9] DIIVINE [10] BRISQUE [11] BLIINDS-II [12] NFERM [15]

SRCC 0.4105 0.4981 0.6346 0.5841 0.5770

KRCC 0.2821 0.3455 0.4545 0.4100 0.4008

PLCC 0.5638 0.6502 0.7729 0.6445 0.7244

RMSE 1.5911 1.4638 1.2225 1.4729 1.3282

Criterion DESIQUE [16] Ref. [24] Proposed (RF) Proposed (SVR)

SRCC 0.5771 0.6040 0.7114 0.7506

KRCC 0.4127 0.4200 0.5310 0.5578

PLCC 0.7255 0.7714 0.8123 0.8503

RMSE 1.3259 1.2260 1.1236 1.0139

Table 5. Performances of different quality metrics when trained on CVIU-
2017 database and tested on SRID database.

Criterion BIQI [9] DIIVINE [10] BRISQUE [11] BLIINDS-II [12] NFERM [15]

SRCC 0.3043 0.4912 0.7151 0.5821 0.6585

KRCC 0.2085 0.3433 0.5205 0.4242 0.4737

PLCC 0.2539 0.4480 0.7496 0.5923 0.6610

RMSE 1.5644 1.4461 1.0705 1.3033 1.2137

Criterion DESIQUE [16] Ref. [24] Proposed (RF) Proposed (SVR)

SRCC 0.4599 0.2338 0.5495 0.7822

KRCC 0.3164 0.1445 0.3781 0.5740

PLCC 0.4396 0.2500 0.5364 0.8260

RMSE 1.4528 1.5661 1.3650 0.9118

subjectively rated public super-resolution image databases. The experimental results and
comparisons with the state-of-the-art metrics have demonstrated the advantages of the
proposed method. The proposed metric also features good generalization ability, which
is a highly desired property in practical applications.
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