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Abstract. Due to the uncertainty and fuzziness of information, the traditional cluster-
ing analysis method sometimes cannot meet the requirement in practice. The clustering
method based on intuitionistic fuzzy set has attracted more and more scholars’ attention
nowadays. This paper discusses the intuitionistic fuzzy C-means clustering algorithm.
The partition matrix is initialized by given conditions, and the cluster center matrix is
obtained through the iterative computation between the object matrix and the partition
matrix. The final results are achieved according to the membership degrees and non-
membership degrees of the objects to the partition matrix. Several important parameters
during the intuitionistic fuzzy C-means clustering process, such as the initial form of
the partition matrix, the number of classification and the threshold of terminating the
iteration, which significantly affect the clustering results, are analyzed and discussed. Fi-
nally, a case of customer satisfaction evaluation is illustrated by the intuitionistic fuzzy
C-means clustering method, and the method is compared with the fuzzy C-means cluster-
ing method as well.
Keywords: Intuitionistic fuzzy set, Fuzzy clustering, C-means algorithm, Satisfaction
evaluation

1. Introduction. Since human judgments including preferences are often vague and they
cannot express their preferences with exact numerical values. A more realistic approach is
to use the fuzzy values instead of the exact numerical values. Atanassov [1] introduced the
definition and operation rules of intuitionistic fuzzy set. Intuitionistic fuzzy set assigns to
each element in the universe both a membership degree and a non-membership degree,
thus relaxing the enforced duality from fuzzy set theory. Intuitionistic fuzzy set can
describe the ambiguity and uncertainty of problems better than that of fuzzy set.

Clustering analysis is an important branch of data mining. It classifies objects according
to the characteristics of objects, the affinity levels and the similarity degrees. Pan et
al. [2] presented a fast clustering algorithm for vector quantization. For traditional
hard clustering, each sample is strictly assigned to a class. It is not applicable to the
complicated and rapidly changing problems. Fuzzy mathematics provides a mathematical
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basis for fuzzy clustering. Fuzzy clustering can obtain the uncertainty degree of each
object in the set. Khalilia et al. [3] proposed an improved algorithm of relational fuzzy
C-means (FCM) clustering. Fuzzy clustering analysis has been widely used in many fields,
such as truck backer-upper problem [4], supplier selection [5], multi-objective optimization
[6], distributed picture fuzzy clustering [7] and forecasting enrollments [8].

In recent years, more and more scholars have studied the clustering method based on
intuitionistic fuzzy sets. Xu et al. [9] defined the concepts of association matrix and the
equivalent matrix of intuitionistic fuzzy sets, and firstly presented a clustering algorithm
based on intuitionistic fuzzy sets. Wang et al. [10] proposed a netting method to make
clustering analysis via intuitionistic fuzzy similarity matrix. To improve the accurateness
of CT scan brain images, a new objective function which is the intuitionistic fuzzy en-
tropy is incorporated in the conventional fuzzy C-means clustering algorithm [11]. Son et
al. [12] proposed a novel clustering algorithm for geo-demographic analysis based on the
results regarding intuitionistic fuzzy sets and the possibilistic fuzzy C-means. Zhao et al.
[13] introduced the concepts of graph, minimum spanning tree, intuitionistic fuzzy set and
intuitionistic fuzzy distance, and then presented an intuitionistic fuzzy and an interval-
valued intuitionistic fuzzy minimum spanning tree clustering algorithms respectively. Xu
et al. [14] defined two new methods of intuitionistic fuzzy similarity measures, and used
them to construct the intuitionistic fuzzy similarity degree matrix, by which they pre-
sented a spectral algorithm to cluster intuitionistic fuzzy information. Wang et al. [15]
analyzed the alternatives in multiple attribute decision making with intuitionistic fuzzy
triangle product, and constructed an intuitionistic fuzzy similarity matrix by the intuition-
istic fuzzy square product, and then developed an intuitionistic fuzzy clustering analysis
method. Son [16] presented a novel fuzzy clustering algorithm named as Kernel Fuzzy
Geographically Clustering that utilized both the kernel similarity function and the new
update mechanism of the spatial interaction – modification model. Thong and Son [17]
proposed a hybrid model between picture fuzzy clustering and intuitionistic fuzzy recom-
mender systems for medical diagnosis called as Hybrid Intuitionistic Fuzzy Collaborative
Filtering. Verma et al. [18] developed an improved intuitionistic fuzzy C-means (IFCM)
algorithm, which considered the local spatial information in the intuitionistic fuzzy way.
A rough set- based intuitionistic fuzzy C-means clustering algorithm is proposed for the
segmentation of the magnetic resonance brain images in reference [19]. A novel similarity
measure of intuitionistic fuzzy set is presented based on the equivalence relation in the
intuitionistic fuzzy set - interpolative Boolean algebra approach. The proposed similar-
ity measure can be combined with various intuitionistic fuzzy aggregation operators [20].
D’Urso [21] presented a systematic literature review of different uncertainty-based clus-
tering approaches -i.e. fuzzy clustering, rough set-based clustering, intuitionistic fuzzy
clustering, type-2 fuzzy clustering, and picture fuzzy clustering.

Intuitionistic fuzzy C-means algorithm is a clustering algorithm for Euclidean distances
among sample points in Euclidean space. It is the extension of fuzzy C-means clustering
algorithm. According to whether the cluster center, the clustered objects and the rela-
tionships between them are intuitionistic fuzzy sets or not, IFCM method can generally
be divided into three types: (1) Only the cluster centers are represented by intuitionistic
fuzzy sets. (2) The relationships between clustered objects and cluster centers are ex-
tended to intuitionistic fuzzy sets, while the clustered objects are denoted by common
sets. (3) The clustered objects, the cluster centers and the relationships between them
are represented by intuitionistic fuzzy sets simultaneously.

In the existing studies, although some literatures discussed the clustering method when
the clustered objects, cluster centers and the relationships between them are intuitionistic
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fuzzy sets simultaneously. There is no discussion about the factors that influence the in-
tuitionistic fuzzy clustering results. Therefore, this paper makes an in-depth study on the
intuitionistic fuzzy C−means clustering algorithm. Several important parameters during
the IFCM clustering process, such as the initial form of the partition matrix, the number
of classification and the threshold of terminating the iteration, which significantly affect
the clustering results, are analyzed and discussed. A case of customer satisfaction evalu-
ation is given by the intuitionistic fuzzy C−means clustering method, and the method is
compared with the fuzzy C-means clustering method as well.

2. Preliminary knowledge.

2.1. Intuitionistic fuzzy set. Definition 1 Let X = {x1, x2, . . . , xn} be a fixed non-
empty universe set, an intuitionistic fuzzy set A in X is defined as A = {< x, µA(x),
vA(x) |x ∈ X >}, which is characterized by a membership function µA(x):X → [0, 1] and
a non-membership function vA(x):X → [0, 1] with the condition 0 ≤ µA(x) +vA(x) ≤ 1
for all x ∈ X, where µA and vA represent, respectively, the degree of membership and
non-membership of element x to set A [1].

In addition, for all x ∈ X, πA(x) = 1 - µA(x)− vA(x) denotes the hesitation degree of
the element x to the set A. Especially, if πA(x) = 0, for all x ∈ X, then the intuitionistic
fuzzy set A is reduced to a fuzzy set.

2.2. Fuzzy C -partition. The fuzzy C-partition is the generalization of the ordinary
C-partition, which extends the sample space from the ordinary set to the fuzzy set. The
definition of fuzzy C-partition is as follows.

Definition 2 LetA = {A1, A2, . . . , An}, Aj = {Aj1, Aj2, . . . , Ajm},

R =

r11 · · · r1n
...

. . .
...

rc1 · · · rcn

 , (rij ∈ [0, 1], i = 1, 2, . . . , c, j = 1, 2, . . . , n) ,

if the fuzzy matrix R satisfies the following two conditions, then R is called fuzzy C-
partition matrix of A.

(1)
c∑
i=1

rij = 1, (j = 1, 2, . . . , n), which indicates that the sum of each sample Aj belongs

to all fuzzy subsets Ri is 1.

(2) 0 <
n∑
j=1

rij < n, (i = 1, 2, . . . , c), which indicates that each Ri is between the empty

set and the universal set.
A fuzzy C-partition matrix gives a way of the fuzzy C-partition of matrix A. Matrix A

can be divided into c fuzzy subsets by fuzzy C-partition matrices, named as V1, V2, . . . ,
Vc. The whole fuzzy C-partition is fuzzy C-partition space.

Let

Vi =

n∑
j=1

(rij)
qAj

n∑
j=1

(rij)q
,

then Vi is the cluster center of the ith class.
Let

J(R, V ) =
c∑
i=1

n∑
j=1

(rij)
qD2(Vi, Aj),
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where q >1, D2(Vi, Aj) is the distance from Aj to the cluster center Vi. If J(R, V ) is the
minimum, then R is the ideal fuzzy C-partition.

2.3. The fuzzy C -means algorithm. Suppose that the set of clustered objects A =
{A1, A2, . . . , An}, and each object Aj has m characteristic indicators, that is, Aj = {xj1,
xj2, . . . , xjm}. A will be divided into c types, and the cluster center vectors V = {V1, V2,
. . . , Vn}T , Vi = {vi1, vi2, . . . , vim}, i =1, 2, . . . , c. The FCM algorithm is as follows.

Step 1: Select c and the initial value R(0), 2 ≤ c ≤ n, R(0) is the initial fuzzy C-
partition matrix.

Step 2: Calculate the cluster center matrix V (l), l =0, 1, 2, . . . ,

V (l) =

V
(l)
1
...

V
(l)
c

 =

V
(l)
11 · · · V

(l)
1m

...
. . .

...

V
(l)
c1 · · · V

(l)
cm

 ,

where

V
(l)
i =

n∑
j=1

(r
(l)
ij )qAj

n∑
j=1

(r
(l)
ij )q

.

Step 3: Revise R(l),

r
(l+1)
ij = (

c∑
k=1

(
D(V

(l)
i , Aj)

D(V
(l)
k , Aj)

)

2
q−1

)−1.

Step 4: Compare R(l) with R(l+1), if for a given ε > 0, D2(R(l), R(l+1)) ≤ ε, then stop;
otherwise, let l = l+1, return step 2.

3. C -means clustering algorithm based on intuitionistic fuzzy sets. In this pa-
per, the clustered objects, the cluster centers, and the relationships between them are all
expressed by intuitionistic fuzzy sets. The clustered objects are represented as

Aj = (〈µAj(x1), γAj(x1)〉 , 〈µAj(x2), γAj(x2)〉 , . . . , 〈µAj(xm), γAj(xm)〉) ,
Ajk = (µAj(xk), γAj(xk)) , (1 ≤ j ≤ n, 1 ≤ k ≤ m).

The cluster centers are expressed as

Vi = (〈µV i(x1), γvi(x1)〉 , 〈µV i(x2), γV i(x2)〉 , . . . , 〈µV i(xm), γV i(xm)〉) ,
Vik = (µV i(xk), γV i(xk)) , (1 ≤ i ≤ c, 1 ≤ k ≤ m).

3.1. The intuitionistic fuzzy C -means algorithm. Intuitionistic fuzzy C-means clus-
tering method belongs to the clustering method based on the objective function, and the
result is obtained by optimizing the objective function. The clustering rule is to minimize
the objective function value. It is classified by minimizing the square error of distance
with iterative calculation. In order to avoid the generation of the ordinary solutions, the
in-class error square and the objective function are extended to the weighted in-class error
square and the weighted objective function [3]. Therefore, the objective function of the
IFCM clustering algorithm is as follows:

min J(R, V ) =
n∑
j=1

c∑
i=1

(µij)
q + (1− γij)q

2
D(Aj, Vi)

2 q ∈ [1,∞]

µij ∈ [0, 1], γij ∈ [0, 1],

0 <
n∑
k=1

µik ≤ n, 0 <
n∑
k=1

γik ≤ n,∀ i, ∀ k.

(1)
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Where q indicates the smoothing parameter, usually q = 2; µij is the membership
degree of the clustered object j belongs to the class i, and γij is the non-membership
degree of j to the class i; D(Aj,Vi) denotes the distance from the clustered objectAj to
the cluster center Vi, and the Euclidean distance formula [22] is adopted.

D(Aj, Vi) =(
m∑
k=1

wk[α(µAj(xk)− µvi(xk))2 + β(γAj(xk)− γV i(xk))2

+ λ(πAj(xk)− πV i(xk))2])1/2.

When the clustered objects are divided into different categories, the object Aj has
a specific membership degree and non-membership degree for each type, that is, the
possibilities of the object Aj belonging to the category are expressed by intuitionistic
fuzzy sets. The intuitionistic fuzzy matrix for the possibilities is the association matrix
between the clustered object set A and the cluster center V . Each clustering will generate
an intuitionistic fuzzy association matrix, which is called the intuitionistic fuzzy partition
matrix, named as R = µij, γijc× n, and R satisfies:

(1) µij + γij + πij = 1;
(2)
∑c

i=1 µij = 1, which indicates that each clustered object must belong to one of the
categories;

(3)
∑n

j=1 µij > 1, (1 ≤ i ≤ c), which indicates that there are always some objects
belong to the category with different levels.

The algorithm of intuitionistic fuzzy C-means is as below.
Step 1: Define the attribute indices matrix A of the clustered objects, and select the

number of classification and the initial intuitionistic fuzzy partition matrix R(0).
Step 2: Calculate the characteristic matrix of the cluster center V (I) according to the

intuitionistic fuzzy partition matrix R(l), V (l) = (Vik(l))c×m, l = 0, 1, 2, . . .
Where,

µV i(xk)
(l) =

n∑
j=1

(µ
(l)
ij )q+(1−γ(l)ij )q

2
µAj(xk)

n∑
j=1

(µ
(l)
ij )q+(1−γ(l)ij )q

2

(1 ≤ i ≤ c, 1 ≤ k ≤ m), (2)

γV i(xk)
(l) =

n∑
j=1

(µ
(l)
ij )q+(1−γ(l)ij )q

2
γAj(xk)

n∑
j=1

(µ
(l)
ij )q+(1−γ(l)ij )q

2

(1 ≤ i ≤ c, 1 ≤ k ≤ m). (3)

Step 3: Revise the intuitionistic fuzzy partition matrix.
(1) For ∀ i, i = 1, 2, . . . , c, if D(Aj, Vi) > 0, then

µ
(l+1)
ij =

1

c∑
k=1

(
D
(
Aj ,V

(l)
i

)
D
(
Aj ,V

(l)
k

)
) 2

q−1

(1 ≤ i ≤ c, 1 ≤ j ≤ n), (4)

γ
(l+1)
ij = µ

(l)
ij + γ

(l)
ij −

1

c∑
k=1

(
D
(
Aj ,V

(l)
i

)
D
(
Aj ,V

(l)
k

)
) 2

q−1

(1 ≤ i ≤ c, 1 ≤ j ≤ n). (5)
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(2) If ∃ k, k =1, 2, . . . , c, makes D(Aj,Vi) = 0, then{
µij = 1, γij = 0, i = k;

µij = 0, γij = 1, i 6= k.

Step 4: Compare R(l) with R(l + 1), if for the threshold ε >0,

max
{∣∣∣µ(l+1)

ij − µ(l)
ij

∣∣∣ | i = 1, . . . , c; j = 1, . . . , n
}
≤ ε,

then the optimal solution is achieved. Otherwise, let l = l+1, return to step 2.

Property 1. When intuitionistic fuzzy set degenerates into fuzzy set, the IFCM algorithm
degrades into FCM algorithm.

When the intuitionistic fuzzy set degenerates into fuzzy set in the IFCM algorithm,
formula (1) degrades as,

min J(R, V ) =
n∑
j=1

c∑
i=1

(µij)
qD(Aj, Vi)

2, q ∈ [1,∞]

c∑
i=1

µij = 1, 1 ≤ j ≤ n.

Formula (2) degrades as,

µV i(xk)
(l) =

n∑
j=1

(µ
(l)
ij )

q
µAj(xk)

n∑
j=1

(µ
(l)
ij )q

.

Formula (4) remains unchanged,

µ
(l+1)
ij =

1

c∑
k=1

(
D
(
Aj ,V

(l)
i

)
D
(
Aj ,V

(l)
k

)
) 2

q−1

(1 ≤ i ≤ c, 1 ≤ j ≤ n)

Formula (3) and (5) are gone. Hence IFCM algorithm degenerates into FCM algorithm.

For the computation complexity, although the intuitionistic fuzzy C-means clustering
method is the extension of fuzzy C-means clustering method, the IFCM algorithm is not
more complicated than FCM algorithm. They have the same computation complexity. In
the case study, IFCM algorithm is compared with FCM algorithm.

3.2. The influences of several parameters on the clustering results in IFCM
algorithm.

3.2.1. The initial intuitionistic fuzzy partition matrix. The partition matrix represents
the membership degrees and non-membership degrees of the clustered objects to the
categories. Although the initial partition matrix R(0) has the following constraints:

(1) µij + γij + πij = 1;

(2)
c∑
i=1

µij = 1;

(3)
n∑
j=1

µij > 1(1 ≤ i ≤ c).

However, there is no specific method to determine R(0) and no numerical specifications
as well. Therefore, whether the initial partition matrix affects the iterations and the final
clustering results or not, is a question worth considering. In the case study, different initial
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partition matrices will be selected to test their influences on the iterations and clustering
results.

3.2.2. The number of classification. The number of classification c is an important param-
eter in the IFCM algorithm. When the number of classification increases (or decreases),
the clustering results will change. In general, the number of classification depends on the
requirements of the decision maker. If the decision maker does not have specific require-
ments, it is necessary to determine the appropriate number of category by some means,
such as historical data and experience. In the case study, the influence of the number of
classification on the clustering results will be discussed.

3.2.3. The threshold of iteration termination. Whether the IFCM algorithm continues or

not, the threshold ε is the judgment criterion. That is, if max{|µ(n+1)
ij − µ(n)

ij ||} ≤ ε holds,
then we stop calculation and the optimal partition matrix is achieved. The accuracy
of the algorithm and the size of the error are determined by the threshold. A smaller
threshold can generally get a more accurate result. Meanwhile, the times of iteration and
amount of calculation will increase together. Whether the larger threshold will affect the
final clustering is also worth discussing.

4. Satisfaction evaluation based on the IFCM algorithm.

4.1. Problem description. In order to illustrate the effectiveness of the proposed meth-
od, this paper has adopted the case in reference [23]. Suppose there are eight commodities,
named as Ai (i = 1, 2, . . . , 8). We need to classify these goods according to the results of
customer satisfaction evaluation. Each commodity has four evaluable attributes, namely
price (G1), shape (G2), quality (G3) and function (G4). The characteristic information
of the commodities under the evaluation indices are represented by intuitionistic fuzzy
values, as shown in Table 1.

Table 1. Customer satisfaction evaluation for the eight commodities

Goods G1 G2 G3 G4

A1 (0.56, 0.34) (0.40, 0.50) (0.30, 0.40) (0.70, 0.10)
A2 (0.41, 0.40) (0.08, 0.80) (0.05, 0.75) (0.20, 0.50)
A3 (0.38, 0.52) (0.90, 0.10) (0.80, 0.10) (0.01, 0.80)
A4 (0.31, 0.60) (0.40, 0.50) (0.30, 0.50) (0.63, 0.15)
A5 (0.31, 0.61) (0.74, 0.22) (0.70, 0.25) (0.00, 0.90)
A6 (0.44, 0.45) (0.11, 0.80) (0.06, 0.80) (0.31, 0.52)
A7 (0.58, 0.30) (0.37, 0.52) (0.30, 0.50) (0.45, 0.35)
A8 (0.43, 0.45) (0.14, 0.72) (0.07, 0.70) (0.25, 0.55)

In Table 1, the intuitionistic fuzzy values represent the ratios of the customers support-
ing or opposing the attributes of commodities. For example, the membership degree of
goods A1 under the price attribute G1 is 0.56, which indicates that the customers in favor
of the price of the goods A1 is 0.56, in other words, 56% of all the customs are satisfied
with price; the non-membership degree is 0.34, which indicates that 34% of all the cus-
toms are dissatisfied with price; and the hesitation degree is 0.10 (1− 0.56− 0.34 = 0.10),
which indicates that 10% of all the customs are keeping neutral with price. The mean-
ings of other intuitionistic fuzzy values are similar. The optimal solutions in the final
partition matrix are achieved by the membership degrees and non-membership degrees of
intuitionistic fuzzy values.
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According to Table 1, the characteristic matrix of the clustered objects is

A =



(0.56, 0.34) (0.40, 0.50) (0.30, 0.40) (0.70, 0.10)
(0.41, 0.40) (0.08, 0.80) (0.05, 0.75) (0.20, 0.50)
(0.38, 0.52) (0.90, 0.10) (0.80, 0.10) (0.01, 0.80)
(0.31, 0.60) (0.40, 0.50) (0.30, 0.50) (0.63, 0.15)
(0.31, 0.61) (0.74, 0.22) (0.70, 0.25) (0.00, 0.90)
(0.44, 0.45) (0.11, 0.80) (0.06, 0.80) (0.31, 0.52)
(0.58, 0.30) (0.37, 0.52) (0.30, 0.50) (0.45, 0.35)
(0.43, 0.45) (0.14, 0.72) (0.07, 0.70) (0.25, 0.55)


.

4.2. The influence of the initial partition matrix on clustering results. The
partition matrix R indicates the membership degrees and non-membership degrees of the
classified objects to each category. The following are discussed with two different initial
partition matrices.

(1) Let the cluster center V = {V1, V2, V3}, n =8, c =3, q =2, ε =0.01, and the initial
partition matrix adopts formula (6).

R(0) =

(0.7, 0.1) (0.1, 0.5) (0.2, 0.3) (0.7, 0.1) (0.2, 0.3) (0.1, 0.5) (0.7, 0.1) (0.2, 0.3)
(0.2, 0.3) (0.7, 0.1) (0.1, 0.5) (0.2, 0.3) (0.1, 0.5) (0.7, 0.1) (0.1, 0.5) (0.7, 0.1)
(0.1, 0.5) (0.2, 0.3) (0.7, 0.1) (0.1, 0.5) (0.7, 0.1) (0.2, 0.3) (0.2, 0.3) (0.1, 0.5)


(6)

According to the equation (2) and (3), the characteristic matrix V (0) of the cluster
center can be calculated by Matlab software,

V (0) =

(0.467, 0.428) (0.403, 0.499) (0.318, 0.465) (0.517, 0.283
(0.427, 0.439) (0.172, 0.717) (0.116, 0.694) (0.283, 0.499
(0.375, 0.525) (0.668, 0.289) (0.600, 0.293) (0.104, 0.733

 .

The iterative operation is performed according to section 3.1, and it is stopped until

max{|µ(4)
ij − µ

(3)
ij ||} ≤ 0.01. Then the optimal partition matrix

R(4) =

(0.939, 0.051) (0.012, 0.978) (0.015, 0.975) (0.858, 0.132) (0.017, 0.973) (0.013, 0.977) (0.786, 0.204) (0.013, 0.977)
(0.043, 0.948) (0.984, 0.006) (0.011, 0.979) (0.102, 0.888) (0.014, 0.976) (0.984, 0.007) (0.166, 0.825) (0.983, 0.007)
(0.019, 0.972) (0.004, 0.986) (0.974, 0.017) (0.041, 0.949) (0.969, 0.021) (0.004, 0.987) (0.048, 0.942) (0.004, 0.986)


(7)

According to formula (7) and the principle of maximum membership degree, the clas-
sified goods can be divided into three categories: {A1, A4, A7}, {A2, A6, A8} and {A3,
A5}.

(2) The initial partition matrix adopts formula (8), and the other conditions are the
same as above. Compared with formula (6), the membership degrees and non-membership
degrees of the classified goods belonging to a category are vaguer in formula (8).

R(0) =

(0.4, 0.3) (0.4, 0.1) (0.4, 0.1) (0.2, 0.5) (0.4, 0.3) (0.4, 0.3) (0.2, 0.5) (0.2, 0.5)
(0.4, 0.1) (0.4, 0.3) (0.2, 0.5) (0.4, 0.1) (0.4, 0.1) (0.2, 0.5) (0.4, 0.3) (0.4, 0.1)
(0.2, 0.5) (0.2, 0.5) (0.4, 0.3) (0.4, 0.3) (0.2, 0.5) (0.4, 0.1) (0.4, 0.1) (0.4, 0.3)


(8)

The characteristic matrix of the cluster center is calculated according to the equation
(2) and (3),

V (0) =

(0.420, 0.461) (0.426, 0.497) (0.359, 0.475) (0.263, 0.536)
(0.424, 0.465) (0.385, 0.521) (0.314, 0.498) (0.357, 0.449)
(0.439, 0.450) (0.369, 0.542) (0.297, 0.528) (0.332, 0.474)
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The optimal partition matrix can be acquired in the same manner. The optimal parti-
tion matrix

R(8) =

(0.018, 0.972) (0.004, 0.986) (0.974, 0.016) (0.039, 0.951) (0.969, 0.021) (0.004, 0.987) (0.051, 0.940) (0.004, 0.986)
(0.941, 0.049) (0.012, 0.978) (0.015, 0.975) (0.863, 0.127) (0.017, 0.973) (0.013, 0.977) (0.776, 0.214) (0.013, 0.977)
(0.041, 0.949) (0.984, 0.006) (0.011, 0.979) (0.098, 0.892) (0.014, 0.976) (0.984, 0.006) (0.174, 0.816) (0.983, 0.007)


(9)

According to formula (9), the classified goods can be divided into three categories:
{A1, A4, A7}, {A2, A6, A8} and {A3, A5}. The clustering results are the same as that of
formula (7). Different initial partition matrix does not affect the final clustering results,
although the membership degrees and non-membership degrees of the classified objects
to each category are different. However, we need to note that, the first experiment only
performs four iterations to get the optimal clustering results, but the second experiment
needs eight times. Therefore, if the membership degrees and non-membership degrees
of the classified objects to the categories are obviously different in the initial partition
matrix, the iterations will be reduced accordingly.

4.3. The influence of the classification number on clustering results. The clas-
sified goods are clustered with the classification number c =3 in section 4.2. Suppose the
cluster centers are V = {V1, V2, V3, V4}, let c =4, q =2, ε =0.01, and the initial partition
matrix

R(0) =


(0.4, 0.1) (0.1, 0.7) (0.2, 0.5) (0.3, 0.6) (0.2, 0.5) (0.1, 0.7) (0.4, 0.1) (0.2, 0.5)
(0.3, 0.6) (0.3, 0.6) (0.1, 0.7) (0.4, 0.1) (0.1, 0.7) (0.4, 0.1) (0.3, 0.6) (0.4, 0.1)
(0.2, 0.5) (0.4, 0.1) (0.1, 0.7) (0.2, 0.5) (0.4, 0.1) (0.3, 0.6) (0.1, 0.7) (0.3, 0.6)
(0.1, 0.7) (0.2, 0.5) (0.4, 0.1) (0.1, 0.7) (0.3, 0.6) (0.2, 0.5) (0.2, 0.5) (0.1, 0.7)


(10)

According to section 3.1, the characteristic matrix of the cluster center can be calculated
as,

V (0) =


(0.489, 0.403) (0.424, 0.483) (0.345, 0.447) (0.432, 0.377)
(0.415, 0.474) (0.261, 0.634) (0.189, 0.619) (0.387, 0.412)
(0.392, 0.486) (0.401, 0.515) (0.345, 0.499) (0.229, 0.574)
(0.425, 0.473) (0.550, 0.393) (0.476, 0.382) (0.187, 0.619)

 .

And the optimal partition matrix

R(23) =


(0.578, 0.412) (0.013, 0.977) (0.016, 0.974) (0.010, 0.981) (0.018, 0.972) (0.014, 0.976) (0.904, 0.086) (0.018, 0.972)
(0.054, 0.936) (0.975, 0.015) (0.010, 0.980) (0.003, 0.987) (0.014, 0.976) (0.971, 0.019) (0.032, 0.958) (0.965, 0.025)
(0.344, 0.646) (0.010, 0.981) (0.014, 0.976) (0.987, 0.004) (0.017, 0.973) (0.011, 0.979) (0.055, 0.935) (0.013, 0.977)
(0.024, 0.966) (0.003, 0.987) (0.960, 0.030) (0.001, 0.989) (0.951, 0.039) (0.003, 0.987) (0.010, 0.981) (0.004, 0.986)


(11)

The classified goods can be divided into four categories: {A1, A7}, {A2, A6, A8}, {A3,
A5} and {A4}. Therefore, when the number of classification changes, the clustering results
change. If the number of classification increases, then some objects belonging to a certain
category will be separated from the original class.

4.4. The influence of the threshold on clustering results. Whether the IFCM
algorithm terminates or not depends on the threshold. Compared with section 4.3, except
for the threshold, other conditions remain the same in this section. We select ε =0.1 and
ε =0.3 respectively, to analyze the influences of different thresholds on the final clustering
results.
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(1) If ε =0.1, then the optimal partition matrixR(6) is calculated as,
(0.802, 0.188) (0.011, 0.979) (0.015, 0.976) (0.005, 0.985) (0.017, 0.974) (0.012, 0.978) (0.717, 0.273) (0.014, 0.976)
(0.028, 0.962) (0.976, 0.014) (0.010, 0.980) (0.001, 0.989) (0.014, 0.976) (0.973, 0.017) (0.095, 0.896) (0.969, 0.021)
(0.158, 0.832) (0.010, 0.980) (0.014, 0.976) (0.987, 0.004) (0.017, 0.973) (0.012, 0.978) (0.161, 0.830) (0.013, 0.977)
(0.012, 0.978) (0.003, 0.987) (0.961, 0.029) (0.001, 0.990) (0.952, 0.038) (0.003, 0.987) (0.028, 0.962) (0.004, 0.986)


(12)

The membership degrees and non-membership degrees of the classified goods in the op-
timal partition matrix, that is formula (12), are obviously different with formula (11).
However, the classified goods can be divided into the identical four categories: {A1, A7},
{A2, A6, A8}, {A3, A5} and {A4}. The clustering results are exactly the same as that of
ε =0.01.

(2) If ε =0.3, then the optimal partition matrix R(1) is calculated as,
(0.480, 0.510) (0.160, 0.830) (0.191, 0.799) (0.393, 0.597) (0.157, 0.833) (0.151, 0.839) (0.659, 0.331) (0.136, 0.854)
(0.239, 0.751) (0.519, 0.471) (0.127, 0.863) (0.301, 0.690) (0.112, 0.878) (0.566, 0.424) (0.164, 0.826) (0.575, 0.415)
(0.156, 0.834) (0.217, 0.774) (0.233, 0.757) (0.181, 0.809) (0.239, 0.751) (0.191, 0, 799) (0.111, 0.879) (0.204, 0.786)
(0.125, 0.865) (0.104, 0.886) (0.449, 0.541) (0.126, 0.864) (0.491, 0.499) (0.092, 0.898) (0.066, 0.924) (0.085, 0.905)


(13)

The classified goods can only be divided into three categories: {A1, A4, A7}, {A2, A6,
A8} and {A3, A5}. At this point we cannot achieve the fourth category.

Therefore, the threshold does not have an effect on the clustering results within a
certain range, but it affects the membership degrees and non-membership degrees of the
final partition matrix. When the threshold exceeds the certain range, it is impossible to
obtain the clustering results satisfying the conditions.

5. Compared with fuzzy C -means clustering algorithm. Intuitionistic fuzzy set is
the extension of fuzzy set. When intuitionistic fuzzy set degrades to fuzzy set, the IFCM
algorithm reduces to the FCM algorithm. The case in section 4.1 is clustered by the FCM
clustering algorithm at the following.

The characteristic matrix of the classified objects and the partition matrix in FCM are
fuzzy values. The fuzzy characteristic matrixA′ can be formed by the membership degrees
of the classified objects in matrix A.

A′ =



0.56 0.40 0.30 0.70
0.41 0.08 0.05 0.20
0.38 0.90 0.80 0.01
0.31 0.40 0.30 0.63
0.31 0.74 0.70 0.00
0.44 0.11 0.06 0.31
0.58 0.37 0.30 0.45
0.43 0.14 0.07 0.25


Let the cluster center V = {V1, V2, V3}, n =8, c =3, q =2, ε =0.01, and the initial

partition matrix

R =

0.6 0.4 0.2 0.3 0.6 0.4 0.1 0.4
0.3 0.4 0.4 0.6 0.1 0.2 0.3 0.4
0.1 0.2 0.4 0.1 0.3 0.4 0.6 0.2

 .

The characteristic matrix of the cluster center can be calculated as,

V ′ =

0.423 0.402 0.336 0.325
0.402 0.378 0.298 0.389
0.472 0.435 0.367 0.281

 .
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According to section 2.3, the optimal fuzzy partition matrix

R′ =

0.939 0.012 0.112 0.468 0.017 0.013 0.786 0.013
0.043 0.984 0.011 0.402 0.014 0.584 0.166 0.983
0.019 0.004 0.877 0.131 0.969 0.404 0.048 0.004

 (14)

The classified goods can be divided into three categories: {A1, A4, A7}, {A2, A6, A8}
and {A3, A5}. The clustering results of FCM are the same as that of IFCM. Compared
with formula (7), it is obvious that the membership degrees of {A2, A5, A6, A8} are
more similar, but the membership degrees of {A3, A5} are less similar in formula (14).
This will result in the confused classification for the FCM algorithm. However, as far as
IFCM algorithm is concerned, the membership degrees of {A2, A6, A8} and {A3, A5} are
individually similar, and the divisions of each goods in the optimal partition matrix are
very clear. That is, IFCM algorithm can avoid the confusion of classification. The reason
is that intuitionistic fuzzy set express more abundant and richer information than that of
fuzzy set. Therefore, Intuitionistic fuzzy set can describe the ambiguity and uncertainty
of problems better than that of fuzzy set.

6. Conclusions. This paper studies the intuitionistic fuzzy C-means clustering algo-
rithm. Several important parameters during the IFCM clustering process, such as the
initial form of the partition matrix, the number of classification and the threshold of ter-
minating the iteration, which significantly affect the clustering results, are analyzed and
discussed. A case of customer satisfaction evaluation is given by the IFCM clustering
method, and the method is compared with the FCM clustering method.

Since the intuitionistic fuzzy C-means clustering algorithm is a non-reference classifi-
cation method, the initial partition matrix does not affect the final clustering results, but
it affects the iteration times. For the initial partition matrix, if the membership degrees
and non-membership degrees of the classified objects to the categories are obviously dif-
ferent, the iteration times will be reduced accordingly. When the number of classification
increases, the clustering results change, and some objects are separated from the original
category. The threshold value does not affect the clustering results in a certain range, but
it has an impact on the membership degrees and non-membership degrees of the optimal
partition matrix. When the threshold value is out of certain range, it is impossible to
obtain the clustering results satisfying the condition. Compared with FCM clustering
algorithm, IFCM algorithm can classify objects more accurately. This study can help to
understand and master the factors that affect the intuitionistic fuzzy clustering results,
and help to promote the further research and application of IFCM clustering method.
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