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Abstract. Compressive sensing (CS) theory is widely employed in channel estimation
of massive multiple-input multiple-output (MIMO) systems to reduce training pilot and
feedback overhead. Compressive sensing based on Tucker model (Tucker-CS) is an emerg-
ing approach for high-order data representation. In this paper, we propose an improved
estimation algorithm based on Tucker-CS for noisy channels. We first introduce trun-
cated higher-order singular value decomposition (T-HOSVD) and hard threshold selection
strategy. The optimal hard threshold of singular value is then used to reconstruct channel
state information (CSI) from noise. Finally, we apply this algorithm to downlink CSI
estimation for frequency-division duplexing (FDD) multi-user massive MIMO systems.
Simulation results demonstrate that this proposed system outperforms state of the art.
Keywords: Multi-user massive MIMO, Channel estimation, Tucker model, Compressive
sensing, Optimal threshold

1. Introduction. A higher demand for communications has followed the rise of com-
mercial 4G. Massive MIMO is the new wireless network technology proposed in this
background. Compared with traditional MIMO, massive MIMO has higher spectrum uti-
lization composed of hundreds of antennas on the base station (BS) side [1-2]. It provides
users with high transmission rate and satisfies the high traffic density demand of the
network. Precise knowledge of reliable CSI at the transmitter is necessary to fully utilize
the spatial multiplexing gains and the array gains of massive MIMO [3]. However, due to
the large number of antennas at BS side, the traditional pilot-based channel estimation
algorithm used in multi-user massive MIMO systems leads to excessive pilot consumption
and takes up too much bandwidth. Thus, acquiring CSI with a small amount of training
pilot is currently a huge challenge for massive MIMO technology.

In time-division duplexing (TDD) massive MIMO systems, CSIT can be obtained by
exploiting the channel reciprocity using uplink pilots [4-5]. Most cellular systems today
employ FDD because it is considered more effective for systems with traffic and delay-
sensitive applications [6]. It is thus important to explore effective channel estimation
methods in massive MIMO systems with FDD. However, the coefficients of unknown
downlink CSI are very high due to the large number of transmitting antenna in BS [7].
Direct channel estimation leads to high computational complexity, and causes excessive
pilot and feedback overhead. Least square (LS) and minimum mean square error (MMSE)
are two kinds of conventional CSI estimation algorithms [8]. These algorithms, however,
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are not suitable for massive MIMO systems, because the number of training pilots required
increases as the number of transmitting antenna increases, and the noise in channel is
completely ignored. Thus, an applicable CSI estimation approach is needed for FDD
multi-user massive MIMO systems.

Compressive sensing technique has been known to recover sparse signals from a small
number of linear measurements [9]. The application of CS to wireless communication and
networks has been extensively studied, including wireless channel estimation, wireless sen-
sor network, and network tomography. In massive MIMO system, the channel matrices
tend to be sparse as the transmitting antenna increases at the BS side [10]. A number of
CSI estimation algorithms based on CS have been proposed to improve estimation pre-
cision and reduce pilot and feedback overhead. For example, Nguyen et al. [11] built a
low-rank matrix approximation based on CS and solved it via a quadratic semidefine pro-
gramming (SDP). However, this algorithm applies only to TDD massive MIMO systems.
Some channel estimation algorithms for FDD massive MIMO systems have been proposed
in recent years. A modified subspace pursuit (SP) algorithm was proposed to solve con-
ventional CS based CSI estimation problems by exploiting the prior support adaptively
based on quality information in reference [12]. Rao et al. [13] proposed a new CSI feedback
and estimation scheme for FDD massive MIMO system made up of three parts: 1) BS
broadcasts training pilot to all users; 2) Each user obtains the compressive measurement
and feeds back to BS; 3) BS jointly recovers the CSI based on measurements. In addition,
joint orthogonal matching pursuit (Joint-OMP) is presented for CSI reconstruction. In a
recent study [14], a weighted block L1- minimization based estimation approach is pro-
posed for the same sparsity structure and CSI feedback and estimation protocol as [13].
Whether based on greedy algorithm like OMP, SP or convex optimization algorithm in
CS, the CSI estimation algorithms for large and high-order channel coefficient matrices
in multi-user massive MIMO cause excessive pilot and feedback consumption due to the
fact that each individual user must be considered. They are further inadequate because
they do not consider channel noise. Moreover, the two CS algorithms also result in high
computational complexity as the iterations progress.

Most of the development of channel estimation based on CS is focused on the 2D
channel coefficient matrix. However, the multi-user massive MIMO system channel coef-
ficient has higher dimensional tensors resulting from the large-scale antennas and users.
Channel estimation based on traditional CS calculates each user’s channel state infor-
mation respectively, resulting in pilot waste and high computational complexity. Tensor
decomposition makes it possible to extend CS to a higher dimensional. Recently, Cesar
et al. [15] provided a Tucker-model based CS algorithm that multiplies the data tensor
by a different sensing matrix in each mode, then recovers the original tensor from multi-
linear projections. Compared to existing sparsity-based CS methods [16], this Tucker-CS
algorithm does not require assuming sparsity or a dictionary based representation. Fur-
thermore, due to involve no iterations, it is fast and that makes it suitable for high-order
data problems.

Current channel estimation methods based on CS require that each individual user
be accounted for resulting in training pilot waste and excessive feedback overhead. In
addition to, these methods do not consider the effects of channel noise. This paper thus
proposes a novel CSI estimation approach that regards the channel coefficient in FDD
multi-user massive MIMO systems as a 3D tensor, then truncated higher-order singular
value decomposition (T-HOSVD) and hard threshold selection strategy are introduced.
Finally, the optimal hard threshold of singular value is used for the reconstruction of CSI
from the noise.
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The remainder of this paper is organized as follows: Section II introduces the re-
lated notation, system model and basic theory used throughout the paper. In Section III,
the truncated higher-order singular value decomposition (T-HOSVD) and selection strat-
egy of hard threshold are proposed, then the application of this truncated Tucker based
compressive downlink CSI recovery is presented. Section IV provides several numerical
results which verify our theoretical results and our evaluation of the proposed algorithms
performance. In Section V, the main conclusions are outlined.

2. Basic theory and system model.

2.1. Compressive Sensing. Traditional CS is an approach for reconstruction of sparse
signals or signals with sparse representation in some domain [17]. A signal x ∈ RM is called
k -sparse if it only has k nonzero entries. The signal is then measured not via standard
point samples but rather through the projection by a measurement matrix Φ ∈ RN×M

where N < M and the measurement value can be written as:

y = Φx (1)

The final goal of CS is to recover the signal x from the fewest possible measurements y.

2.2. Tensor notations. A tensor is a multi-dimensional matrix, e.g. X ∈ RI1×I2×···×IN

is an N -th order tensor. A vector and a matrix can be regarded as a one-order tensor
and a second-order tensor respectively, e.g.x ∈ RI and X ∈ RI1×I2 . The order of a
tensor is the number of modes[18]. For instance, tensor X ∈ RI1×I2×···×IN has order
N and the dimension of its n-th mode is In. The element of a tensor is referred as
xi1,i2,··· ,in . Tensor is high-order complex problem and cannot be calculated by general
methods. It is necessary to unfolding the tensor to the matrix to apply the higher-order
singular value decomposition technique to the tensor and simplify the product of tensor
and measurement matrix. Namely, the tensor should be rearranged to matrices according
to the different modes.

Definition 1 (n-mode unfolding of tensor): n-mode unfolding of tensor is a process
that the elements in n-mode of the tensor are arranged in a matrix of column vectors
to obtain a new matrix. Given a tensor X ∈ RI1×I2×···×IN , its mode-n fibers are the
vectors obtained by fixing all indices except which correspond to columns (n=1), rows
(n=2) and so on [15]. Tensor elements (i1, i2, · · · , in) maps to matrix elements (in, j),

with j = 1 +
∑

k 6=n(ik − 1)Jk where Jk =
∏k−1

m 6=n Im.

Definition 2 (n-mode product of tensor and matrix): tensor cannot be multiplied
by matrix directly. Thus, the product of tensor and matrix is the n-mode unfolding of
the tensor multiplied by the matrix in same dimension. Assigning X ∈ RI1×I2×···×IN and
U ∈ RR×In as the tensor and the matrix respectively, the n-mode product of them is
Y = X ×n U ∈ RI1×···×In−1×R×In+1×···×IN defined by:

yi1i2···in−1rin+1···iN =
In∑
in=1

xi1i2···in···iNurin (2)

2.3. System model. The existing channel estimation algorithms [13-14], consider a
multi-user massive MIMO system with FDD consisting of M transmitting antennas in
the BS side and K users, each including N receiving antennas. The BS broadcasts a
sequence of T training pilots through M antennas to estimate the downlink channels. At
each user side, the received measurement can be expressed as:

Yi = HiX + Ni, i = 1, · · · , K (3)
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Where Hi ∈ RN×M is downlink channel matrix from BS to each user side, X ∈ RM×T

is training pilot and Ni ∈ RN×T is Gaussian random noise matrix with zero mean and
variance σ2

n.
In this paper, we propose a novel 3D channel model H ∈ RN×M×K for multi-user

massive MIMO system, in which modes are the number of receiving antennas N, trans-
mitting antennas M, and users K. We have considered all channels as a whole tensor to
measure and estimate. First, as discussed in [13-14], the BS broadcasts a sequence of T
training pilot to the users. In our proposed system model, this process can be regarded
as the mode-2 unfolding of the tensor CSI H ∈ RN×M×K is measured by the training pilot
from BS directly and the measurement is formulated as:

Y = H×2 X + N (4)

Where N ∈ RNK×T is a Gaussian random noise matrix. Each user then feeds back the
observed values which comprise the final result Y ∈ RNK×T to the BS side. Finally, other
two Gaussian sensing matrices are utilized to measure the two remaining modes of the
measured tensor. With this, all measurements for 3D channel model of multi-user massive
MIMO system are completed. Considering this measurement process is done in the BS,
no additional bandwidth or cost results from the training pilot or feedback.

3. Proposed estimation algorithm. In this section, an improved CSI reconstruction
algorithm based on Tucker-CS is introduced. It consists of two parts: 1) Truncation in
higher-order singular value decomposition; 2) Selection of optimal hard threshold.

3.1. Truncated higher-order singular value decomposition. Higher-order singular
value decomposition (HOSVD) is a generalization of the matrix singular value decom-
position (SVD) to higher order matrices. It is an excellent method to approximately
decompose the tensor into a core tensor product with multiple matrices. In this paper,
we only consider three-order tensor with modes M, N, and K, as described in Section II.
For 3D CSI H ∈ RN×M×K with noise, we utilize the Tucker-CS [17] to decompose and
reconstruct H:

Y = H×1 Φ1 ×2 Φ2 ×3 Φ3 (5)

H̃ = Y ×1 Z1Y
†
1 ×2 Z2Y

†
2 ×3 Z3Y

†
3 (6)

Where Φn is measurement matrix, and Y†(n) is truncated MP pseudo-inverse matrix of

Y(n) which is mode-n unfolding matrix of core tensor. The other parameters mentioned
in (6) are as follows:

Z(n) =


H×2 Φ2 ×3 Φ3, for n=1

H×1 Φ1 ×3 Φ3, for n=2

H×1 Φ1 ×2 Φ2, for n=3

(7)

Zn = (Z(n))(n) (8)

The most important part of truncated higher-order singular value decomposition in Tucker-
CS are to eliminate noise and keep channel coefficients. After the SVD, Y(n) and Y†(n) can

be described as:
Y(n) = UnSnVT

n (9)

Y†(n) = VnS̃
n
i UT

n (10)

With Un and Vn are unitary matrices, Sn is the diagonal matrix composed by singular

values sni and S̃ni in (10) is defined as:

S̃ni =

{ 1
sni
, for sni > τn

0, for sni ≤ τn
(11)
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Where τn is the hard threshold. How to choose the optimal hard threshold of singular
values is discussed below.

3.2. Optimal hard threshold. In recent years, a few different approaches have been
proposed regarding optimal hard threshold selection in SVD [19-20]. Gavish et al [20] pre-
sented a method to choose the optimal hard threshold for matrix A ∈ RN×M in unknown
noise level with coefficient β = N

M
. We extend this method into 3D tensor as follows:

τn = λn(βn)
√
nσ (12)

σ̃(Yn) =
ynmed√
n× µn

(13)

Where ynmed is the median singular value of Y(n) and µn is the median of the Marcenko-
Pastur distribution, namely, the unique solution in βn,− ≤ x ≤ βn,+ to the equation:∫ x

βn,−

√
(βn,+ − t)(t− βn,−)

2πβnt
dt =

1

2
(14)

With βn,± = (1±
√
βn)2. As discussed in the system model from Section II and the first

part of Section III, the original 3D CSI H ∈ RN×M×K is measured and the core tensor is
Y ∈ RN×T×K. Thus, the dimension of Y(n) is

Y(n) ∈


RN×TK, for n=1

RT×NK, for n=2

RK×NT, for n=3

(15)

The corresponding parameter βn is as follows:

βn =


N
TK
, for n=1

T
NK
, for n=2

K
NT
, for n=3

(16)

By using σ̃(Yn) instead of σ in (12):

τn = λn(βn)
√
nσ = λn(βn)

√
nσ̃(Yn) =

λn(βn)ynmed√
µn

(17)

Defining Ω(βn) = λn(βn)√
µn

, (17) can be expressed as:

τn = Ω(βn)ynmed (18)

According to optimal threshold coefficient for matrices [20], by making available a Matlab
script, the optimal threshold coefficient Ω(βn) for 3D tensor can be evaluated approxi-
mately as follows:

Ω(βn) ≈ 0.56β3
n − 0.95β2

n + 1.82βn + 1.43 (19)

The pseudo-code used for the proposed algorithm is presented below.

4. Proposed estimation algorithm. Our numerical simulations were conducted in
Matlab2010b on a work station with a 2.1GHz Intel Celeron CPU and 6 GB RAM.
We compare the performance of the proposed algorithm to the Joint-OMP algorithm
[13], Modified L1-minimization algorithm [14] and the Tucker-CS algorithm for multi-
user massive MIMO system with FDD mode.

Fig. 1 shows the normalized mean square error (NMSE) of four algorithms in differ-
ent SNRs and the parameters are set as [14], the number of BS antennas M = 160, the
number of user antennas N = 2, the number of users K = 40, and the number of training
pilot symbols T = 45. The proposed algorithm and Tucker-CS algorithm have higher
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Algorithm 1
Input:
Core tensor Y ∈ RN×T×K

Output:
Optimal threshold of singular values τn, n = 1, 2, 3
Start:
for n = 1 : 3, do:

Unfold core tensor Y to Y(n) in n-mode;
Compute ynmed according to (9);
Compute βn as (16);
Compute Ω(βn) as (19);
Compute τn as (18);

end for
End

Algorithm 2
Input:
(1) Tensor CSI H ∈ RN×M×K

(2) Training pilot X ∈ RM×T

(3) Sensing matrices Φ1 ∈ RN×N, Φ3 ∈ RK×K

Output:

Reconstruction of CSI H̃
Start:
(1) Compute core tensor Y according to (5);
(2) for n = 1 : 3, do:

Compute Zn as (7)-(8);
Compute the optimal threshold τn corresponding to Zn by Algorithm 1;

Compute the truncated MP pseudo-inverse matrix Y†(n) according to τn by (9)-(11);

end for

(3) Reconstruct H̃ according to (6);
End
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minimization and Tucker-CS for different SNRs
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Figure 2. NMSE of the proposed algorithm, Joint-OMP, Modified L1-
minimization and Tucker-CS with different number of training pilot symbols
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Figure 3. NMSE of the proposed algorithm, Joint-OMP, Modified L1-
minimization and Tucker-CS with different number of antennas at BS (M)

estimation precision than the other two algorithms. Additionally, the proposed algorithm
outperforms Tucker-CS because it considers channel noise and conducts a de-noising pro-
cess to reduce the influence of noise.

As shown in Fig. 2, we compared the NMSE of estimated CSI with the number
of training pilot symbols T with the parameter settings M = 100, N = 2, K = 40, and
transmit SNR=30dB. It is obviously the proposed algorithm outperforms other algorithms
and we found that the estimation accuracy of CSI increases as T increases.

In addition, we compared the NMSE of estimated CSI with the number of antennas
at the BS under the system as N = 2, K = 40, T = 45, and SNR=30dB. The proposed
algorithm achieved better performance than the other algorithms, as shown in Fig. 3.
However, we found that CSI estimation accuracy decreases as M increases. Because the
dimensions of the channel coefficient matrices grow larger as M increases, more measure-
ments are required. Which of the four algorithms is utilized, the estimation accuracy
decreases.

In Table I, we compare average computation time with different numbers of antennas
at BS. The multi-user massive MIMO system parameter settings are N = 2, K = 40, T =
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45, and SNR=30dB. The proposed algorithm exhibits similar computation time to Tucker-
CS, which is much shorter than the Modified L1-minimization algorithm but a little
longer than the Joint-OMP. In general, the proposed algorithm has lower computational
complexity by involving no iteration.

Table 1. Comparison of computation time (s)

Massive MIMO System M Methods Computation Time(s)

SNR=30dB
N = 2

K = 40
T = 45

50

Joint-OMP 0.05
Modified L1-minimization 257.66

Tucker-CS 0.36
Proposed algorithm 0.39

100

Joint-OMP 0.18
Modified L1-minimization 425.05

Tucker-CS 1.09
Proposed algorithm 1.13

150

Joint-OMP 0.23
Modified L1-minimization 762.38

Tucker-CS 1.66
Proposed algorithm 1.68

5. Conclusions. The proposed algorithm is a novel channel estimation algorithm for
multi-user massive MIMO systems with FDD mode. It extends optimal hard threshold
selection in SVD to a higher-order and uses truncated HOSVD in Tucker-CS to eliminate
noise. The proposed algorithm was applied and compared with current channel estimation
methods. Experimental results demonstrate that the proposed algorithm outperforms
other estimation methods for noisy channel in FDD multi-user massive MIMO systems.
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