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Abstract. Size-invariant visual cryptography (VC) for grayscale image has lower com-
putational load during encoding, and lower memory and bandwidth requirements during
storage and transmission. However, its visual quality is lower than the size-expanded
VC, and sometimes unacceptable, especially for grayscale secret images. In order to im-
prove the visual quality, we propose a local blackness preserving (LBP) VC algorithm.
A block-based VC is designed with a mechanism to recover the local ratio between the
black pixels and white pixels that is destroyed by the raw VC encoder. Comparison with
recently proposed size-invariant VC algorithms confirms the effectiveness of the proposed
method.
Keywords: Visual cryptography; Grayscale image; Image Quality; Preserving local
blackness; Size-invariant.

1. Introduction. Traditional visual cryptography (VC) algorithms are designed for bi-
nary secret images, such as binary text images or binary logo images [1]. But a grayscale
image usually contains more information content than a binary image, hence the use
of grayscale image as secret image in visual cryptography offers more visual details to
the receiver [2]. In addition, these grayscale images can also be used as cover images in
extended VC[3]. So in general, there are two typical scenarios involving grayscale images:

• Use the grayscale image as a secret image[2, 4, 5]. In this case, the generated shares
are meaningless. Such a scenario is useful when the content of the secret needs to be
described by an image rather than by a simple binary text/image. This application
scenario is the focus of this work.
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• Use the grayscale images as cover images in extended VC [3, 6, 7, 8]. In this case,
the secret image is binary. Such a scenario is useful when the user is more concerned
about camouflage, i.e., generating the VC shares so as not to arouse suspicion from
the attacker. Furthermore these meaningful shares can also provide extra information
to ease the management of these shares.

There is also a third scenario, where both the secret image and the cover images are
grayscale images. But such a requirement imposes too much constrains on the design
of the VC system. Currently, there is no existing algorithm that can provide acceptable
visual quality.

The benefit of using grayscale secret image over binary image is that the grayscale
contains more details than binary image. To make these details visible to the targeted
receiver, the VC algorithm must be able to preserve the local brightness of the grayscale
image. Since most VC algorithms are designed for binary image and a grayscale image
can be represented by a halftone image, so a relevant research problem is: how to preserve
the local brightness of the grayscale image when encoding its halftone counterpart.

In this paper, we propose to use block-based encoding and local blackness preserving
algorithm to enhance the perceptual quality of the reconstructed secret image. The pro-
posed algorithm is shown to provide higher tone similarity and higher structure similarity
between the grayscale image and the reconstructed halftone image, when compared with
typical VC for grayscale images.

This paper is organized as follows. In section 2, we review briefly the classical size-
expanded VC, in order to introduce symbols and to lay the foundation for block based
encoding. Then we present the proposed algorithm in section 3. In section 4, we discuss
the experimental results and comparisons with a typical size-invariant VC algorithms for
grayscale images. Finally, we conclude the paper in section 5.

2. Review and Preliminaries. In this section, we review briefly the size-expanded
VC and multiple-pixel block encoding for size-invariant VC. The purpose is to introduce
symbols and to lay the foundation for introducing the proposed algorithm.

We use the symbol ‘1’ to represent a black pixel printed on the transparencies, and use
the symbol ’0’ to represent a transparent (or white) pixel printed on the transparencies.
So the set of colors on the shares and the stacked images is Z2 , {0, 1}. Next we define
the stacking operation. Let x,y ∈ Z1×m

2 , then the stacking operation between the two
vectors are defined as element-wise stacking of the corresponding components from x
and y: x � y , (x1 � y1, · · · , xm � ym). The symbol � here represents the logical ‘OR’
operation between two boolean quantities. This stacking operation can be extended to
more than two vectors. The number of black pixels is an important feature of an image
block, so we use the following operation to extract this feature: B : Z1×m

2 → Zm, which is
defined as

B (x) =
m∑
i=1

xi.

where Zm , {0, 1, · · · ,m− 1}.

2.1. Size-expanded VC. Since our local blackness preserving VC uses the basis matrix
from the size-expanded VC, so we review briefly the size-expanded VC as introduced by
Naor and Shamir[1].

In a typical (k, n)-threshold VC algorithm, the secret is shared among n parties (which
are usually called participants) with the requirement that only more than k shares can
reveal the secret and less than k shares can’t leak any information of the secret image.
The construction of (k, n)-threshold VC algorithms usually utilizes the basis matrices.
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Let B0,B1 ∈ Zn×m
2 be two basis matrices and s ∈ Z2 is a secret pixel to be shared. In

the encryption side, according to the secret pixel s, the basis matrix Bs is chosen. After
random permutation of the columns of Bs, each row is distributed to one participant.
Two conditions on the basis matrices must be satisfied: contrast condition and security
condition. The contrast condition requires that the stacking of more than k rows of B1

must provide more black pixels than that of B0. The security condition requires that the
r < k rows taken from B0 and B1 are indistinguishable. So that from only r < k shares,
one can’t figure out whether the secret pixel is 1 or 0.

2.2. Review of Size-Invariant VC. Using the size-expanded VC, each secret pixel is
represented by m pixels on each share. When m > 1, this leads to pixel expansion. Pixel
expansion may increase the processing time in encoding. In addition, it also increases the
transmission bandwidth and the storage space.

To solve this problem, different size-invariant VC algorithms were proposed in the past
decades. The typical algorithms include Ito’s size-invariant VC[9], Yang’s probabilistic
approach[10], and the random grid based approaches[11, 12, 13]. However, the prob-
abilistic nature of these algorithms only guarantees that globally the contrast between
the black pixels and the white pixels are preserved. But locally, this contrast may be de-
stroyed, leading to worse perceptual quality than the size-expanded VC. This degradation
in perceptual quality is especially prominent for grayscale and halftone image.

To improve the visual quality for size-invariant VC, one must be able to preserve the
local contrast. So block (or multiple pixel) based approach should be employed [5, 14, 15,
16].

Hou et. al. extended the basic Ito algorithm [5]. Instead of encoding each white/black
pixel independently, r successive white/black pixels are taken from the image and encoded.
This can ensure that for each r white/black pixels, the local contrast is guarantee. But
these r white/black pixels may not be adjacent to each other.

In [14], image blocks are classified according to the number of black pixels in them.
Then a counter is assigned to each type of block. For example, for the type-b block
having b black pixels, use this counter to ensure that the matrix B1 is used exactly b
times to encode this type of block. Here the contrast is guaranteed for each type of block,
but not locally in a small region.

Chen et. al. use the average gray level of an image block to select the corresponding
block on the stacked image: an image block with darker average gray value is mapped to a
block on the stacked image with more black pixels [15]. However, each block is processed
independently so that the loss of contrast in one block cannot be compensated by other
blocks.

To remedy the existing problems outlined above, we propose to use local blackness
preserving VC, where the loss of contrast in one block can be compensated by other
adjacent blocks.

3. Local Blackness Preserving (LBP) VC. In this section, we describe the LBP
algorithm. For a grayscale input secret image, the processing steps are illustrated in
Fig.1. Here we consider the (2, 2)-threshold VC and the algorithm can be extended to the
general (n, n)-threshold.

The secret image g[n] is indexed by n , [nr, nc], where nr is the row index and nc is
the column index when the image is treated as a matrix.

3.1. Equalization to limited range. As the first step, the grayscale image is equalized
to the range of [0, 2b − 1], where b is the number of bits used to represent each pixel.
For example, b = 8 or b = 16 are quite commonly used in digital image processing.



Local Blackness Preserving Visual Cryptography for Grayscale Secret Images 373

Equalize to Digital
Halftoning

Blackness
Preserving

VC0，

max
B 

  

Grayscale
secret image

Share 1

Share 2
[ ]g n

[ ]f n [ ]H n
1
[ ]S n

2
[ ]S n

Figure 1. The overall block diagram of the proposed system.

Equalization may improve the visual quality but equalizing to a smaller range may seems
counterintuitive. This is done in view of the contrast loss during the VC encoding process.
As shown in [1], for a (n, n)-threshold VC, the maximum relative contrast on the stacked
image is α < 1

2n−1 . So if n = 2, the range of the reconstructed secret image is [0, 2b− 1].
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Figure 2. Illustrate the loss of contrast from VC. (a) Equalized Lena
image, (b) filtered stacking result, (c) the histogram of (a), and (d) the
histogram of (b).

The loss of contrast from VC is illustrated in Fig.2. In order to illustrate the shrinkage
of histogram due to VC, first we equalized the secret image Lena to the range [0, 255]. The
equalized image is shown in Fig.2(a) and the corresponding histogram is shown in Fig.2(c).
We then perform VC on the equalized image and stack the two shares. The VC algorithm
used here is the basic Naor VC algorithm with pixel expansion 4 [1]. A Gaussian filter with
variance 4 is then used to smooth the stacking result and the histogram is calculated from
this smoothed image. The smoothed stacking result and the corresponding histogram
are shown in Fig.2(b) and Fig.2(d) respectively. Comparing Fig.2(c) and Fig.2(d), it is
apparent that the global contrast is reduced after VC encoding and decoding/stacking.
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The change of vertical scale from Fig.2(c) to Fig.2(d) is due to pixel expansion, i.e., the
number of pixels on the stacked image is 4 times of that of the original image. The
theoretical result from Naor and the observation from Fig. 2 validate our equalization
to limited range operation. Furthermore, this loss of contrast also suggests that when
evaluating the quality of the stacking result for size-invariant VC, we should use the
stacking result from size-expanded VC as a reference image.

3.2. Halftoning via error diffusion. In the second step, we transform the equalized
grayscale image f [n] into a halftone image H[n]. we use the well-known error diffusion
halftoning with a minor modification, due to its good tradeoff between quality and com-
putational complexity. The block diagram is shown in Fig. 3.
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Figure 3. The modified error diffusion based halftoning.

In error diffusion, the pixel intensity is quantized by a quantizer Q∆(·), where ∆ is the
quantization level. If b bits are used to represent each pixel, then ∆ = 2b−1. Considering
the convention of using H[n] = 1 to represent a black pixel in printed shares, so the

quantizer output Q∆

(
f̂ [n]

)
should be:

H[n] =

{
0, iff̂ [n] ≥ ∆;

1, iff̂ [n] < ∆.

Then the quantization error can be calculated as e[n] = f̂ [n] − (1−H [n]) × 2b. To
compensate for this error, the current pixel is modified by:

f̂ [n] = f [n] +
∑

m∈N (n)

h [m] e [m] ,

where N (n) is the neighbors of the current pixel n and h [m] is the coefficient of the
diffusion filter. Different diffusion method uses different neighborhood. In this paper, we
use the simple Floyd-Steinberg diffusion, where the neighborhood is:

N (n) = {(nr − 1, nc − 1), (nr − 1, nc), (nr − 1, nc + 1), (nr, nc − 1)} .

The corresponding diffusion filter coefficients are:

(h(nr − 1, nc − 1), h(nr − 1, nc), h(nr − 1, nc + 1), h(nr, nc − 1)) =

(
1

16
,

5

16
,

3

16
,

7

16

)
.

After the halftoning process, we get a binary image H [n] ∈ ZM×N
2 , whose local av-

erage brightness/blackness is equal to that of the corresponding grayscale pixel. But
unfortunately, when generating the shares, this local blackness is destroyed by ordinary
size-invariant VC encoder. In the next step, we design a VC algorithm which can preserve
this local blackness.
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3.3. VC encryption and local blackness preservation. If we use Ĥ [n] to denote the
recovered secret image by stacking the two share images S1 [n] and S2 [n], then we would

like that in a small region of Ĥ [n], the ratio between black pixels and white pixels is the
same as that of in the same region of H [n]. To attain this goal, we take a small block
of size K ×K in H [n], say A, and encode it into shares. But after stacking the shares,

the corresponding block Â may have different blackness due to the loss of contrast in VC.
Here we introduce a blackness compensation approach. If B(Â)−B(A) = c, where c > 0,
then we borrow c black pixels from the neighboring blocks.

In the proposed LBP VC algorithm, the halftone image is processed block by block
in a raster scanning order, from the top left to the bottom right. The current block is
encrypted using a size expanded VC according to its blackness.

We use the set F = {β1, · · · , βP} to denote the set of gray levels that can be reproduced
in the stacking result. Here βi is the number of black pixels, or blackness, in a K × K
block. For example, for a (2, 2)-threshold scheme with m = 4 and basis matrices

B0 =

[
1 1 0 0
1 1 0 0

]
, B1 =

[
1 1 0 0
0 0 1 1

]
, (1)

the set F = {β1, β2, β3} = {2, 3, 4}. Then, a new set of basis matrices can be designed
in order to reproduce the set of colors in F . These new basis matrices are based on the
original basis matrices B0,B1. For example, for the basis matrices example in Eq.1, we
can obtain

M1 =

[
1 1 0 0
1 1 0 0

]
, M2 =

[
1 1 0 0
1 0 1 0

]
, M3 =

[
1 1 0 0
0 0 1 1

]
. (2)

To get a type βi block on Ĥ [n], we use the basis matrix Mi. The columns of Mi are
randomly permuted and then the rows are distributed to shares, just like in the basic
Naor scheme.

Unfortunately, the blackness of the block taken from H [n] may take values outside of F .
For example, for m = 4, the set of possible blackness on H[n] is H = {0, 1, 2, 3, 4} = Z5.
So from H to F , there should be a non-invertible mapping (many-to-one).

The key problem here is: how to design the mapping from H to F to minimize the
possible loss of contrast? In [15], a histogram width/depth equalization is utilized, while
in [4], the skewness of the histogram is explored to design this type of mapping. But
these methods are global ones, where the local contrast is not preserved. Here we use a
different approach. First, we use the histogram equalization to limited range to increase
the possibility that the type of blocks are in F . Then, each block type in H is mapping
to its closest one in F . For the example above, block types are mapped as follows:
0, 1, 2→ 2, 3→ 3, and 4→ 4. This ’lossy’ mapping may cause the type 0,1,2 in H to be
indistinguishable on the stacked image, leading to loss of local contrast. Fortunately, this
loss of local contrast can be remedied by the following blackness compensation procedure.

3.4. Blackness compensation. After encrypting the current block, the blocks on the
share images are concurrently superimposed to find out the stacked block on the recon-
structed image Ĥ[n]. Then the black pixels in the neighbors are adjusted to preserve
the local blackness that is changed by the VC process. An example is shown in Fig.4
to illustrate this basic idea. The current block has blackness 1. But after VC encoding
and stacking, the blackness of the stacking result is 2. If we leave the neighbors un-
changed, then the local blackness on the stacked image will be higher than that of the
original halftone image. To preserve the local blackness, one black pixel is borrowed from
one of the neighboring blocks. In this paper, we consider neighborhood system that is
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similar to those in the error diffusion. The difference is that here each neighbor is a
K × K block, while in error diffusion, each neighbor is a pixel. After flipping a black
pixel in a neighboring block, we make the total number of black pixels unchanged in this
small neighborhood. In general, we may need to flip more than one black pixels in this
neighborhood, depending on the difference B(Â)− B(A).

VC
encryption

and Stacking

Take the current block

Replace back

Flip a black pixel in a neighboring block
(Borrow a black pixel from neighbors)

1

2

3

Figure 4. Illustration of the basic idea of local blackness preservation.

In Algorithm 1, we list the pseudo-code of basic VC encryption for one block when given
a basis matrix B. A bit flipping algorithm is used to ’borrow’ bits from the neighboring
blocks. This bit flipping algorithm is shown in Algorithm 2. Using these algorithms as
building blocks, the blackness compensation algorithms is built, and pseudo-code is listed
in Algorithm 3.

Algorithm 1 (S1,S2)← VcEnc(B): VC encoding using the basis matrix B.

Input:
Basis matrix B ∈ Zn×m

2 , n = 2
Output:

Share blocks: S1,S2 ∈ ZK×K
2 ,m = K2

1: B̂ =

[
b̂1

b̂2

]
← Randomly permutate the columns of B

2: for i← 1 to K do
3: for j ← 1 to K do
4: S1(i, j)← b̂1(i+ (j − 1)K);

5: S2(i, j)← b̂2(i+ (j − 1)K);
6: end for
7: end for

3.5. Security analysis. The security of our approach is guaranteed by the security of
the basic size-expanded VC. If the security condition of the basic matrices are guaranteed,
i.e., the r < k rows taken from B0 and B1 are indistinguishable, then from any r share
blocks one cannot infer the secret image block. So our algorithm is secure.
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Algorithm 2
{

Âi

}4

i=1
← FlipOneBit {Ai}4

i=1: Flip one pixel/bit in one of the blocks

from {Ai}4
i=1 which has the highest blackness.

Input:
A set of input blocks: {Ai}4

i=1, with Ai ∈ ZK×K
2

Output:

A set of output blocks:
{

Âi

}4

i=1
1: k ← arg maxi∈{1,2,3,4} B (Ai)
2: if k 6= 0 then
3: Âk ← Flip one black pixel in Ak.
4: Âi ← Ai,∀i 6= k.
5: else
6: Âi ← Ai,∀i.
7: end if

Algorithm 3 LBPVC: Local Blackness Preserving VC Encoding
Input:

Grayscale secret image g [n] ∈ ZM×N
256 .

Size of the block: K (Assume K = 2 here)
Output:

Share images: S1 [n] ∈ ZM×N
2 , S2 [n] ∈ ZM×N

2 ;
1: f [n]← Equalize g [n] to the range [0, 127].
2: H [n]← Halftone f [n] by error diffusion.
3: for i← 1 to bM

K
c do

4: for j ← 1 to bN
K
c do

5: Hij ← The (i, j)-th block in H [n].
6: if B (Hij) = 4 then
7: (S1

ij,S
2
ij)← VcEnc(M3) {The matrix Mi is defined in Eq.(2).}

8: else if B (Hij) = 3 then
9: (S1

ij,S
2
ij)← VcEnc(M2)

10: else if B (Hij) = 2 then
11: (S1

ij,S
2
ij)← VcEnc(M1)

12: else if B (Hij) = 1 then
13: (S1

ij,S
2
ij)← VcEnc(M1)

14: Nij , {(i, j + 1), (i+ 1, j − 1), (i+ 1, j), (i+ 1, j + 1)}.
15: {Hk` : (k, `) ∈ Nij} ← FlipOneBit ({Hk` : (k, `) ∈ Nij})
16: else if B (Hij) = 0 then
17: (S1

ij,S
2
ij)← VcEnc(M1)

18: Nij , {(i, j + 1), (i+ 1, j − 1), (i+ 1, j), (i+ 1, j + 1)}.
19: {Hk` : (k, `) ∈ Nij} ← FlipOneBit ({Hk` : (k, `) ∈ Nij})
20: {Hk` : (k, `) ∈ Nij} ← FlipOneBit ({Hk` : (k, `) ∈ Nij})
21: end if
22: Insert the share blocks S1

ij,S
2
ij into the (i, j)-th block in S1 [n] and S2 [n] respec-

tively.
23: end for
24: end for
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4. Experiments. In this section, we present the experimental result on a set of testing
images.
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Figure 5. Three types of images used in the experiments. (a) Lena im-
age with centered histogram, (b) Man image with left-skewed histogram,
(c) Airplane image with right-skewed histogram, (d) histogram of (a), (e)
histogram of (b), and (f) histogram of (c).

The performance of the algorithm is characterized by its perceptual quality. This
perceptual quality between the grayscale image and the reconstructed halftone image is
measured by PSNR (Peak Signal to Noise Ratio) and MSSIM (Mean Structural Similarity
Measure). The PSNR measures the tone similarity. Before calculating PSNR, the halftone
image is smoothed using a Gaussian filter with variance 4. This Gaussian filtering is
used to simulate the low-pass characteristic of human visual system (HVS). The MSSIM
measures the local structural similarity between two images [17]. So they reflect different
aspects of the quality of the reconstructed secret image.

Since the PSNR measures tone similarity, so the images involved in calculating PSNR
must have the same dynamic range. If the two images have quite different dynamic range,
then a large PSNR value may result even though the two images are structurally quite
similar. Considering the loss of contrast due to VC encoding, as discussed in section 3.1,
we use the stacking result from size-expanded VC as the reference image. The smoothed
stacking result from Naro’s size-expanded VC is downsampled by a factor of 2 before
calculating the PSNR value.

To demonstrate the quality improvement, we compare our algorithm with recent result
reported in [4]. This reference algorithm provided state of art performance and was shown
to outperform Ito’s size invariant VC [9] and Chen’s algorithm [15]. Three types of testing
images with different histograms are used in the experiments, as shown in Fig. 5. The
Lena image has a symmetric and centered histogram. The histogram of the Man image
is skewed to the left and the histogram of the Airplane image is skewed to the right.

The stacking results are compared in Fig. 6. Better tone approximation can be observed
from the LBP method, for example, the mirror frame in Lena image, and the dark areas in



Local Blackness Preserving Visual Cryptography for Grayscale Secret Images 379

the Airplane image. The result from Lee’s method exhibits saturation in dark region. In
addition, more details are visible from the Man’s image when using LBP. The numerical
results for PSNR and MSSIM are shown in Table 1. LBP can provide consistently better
performance than Lee’s method. Obviously, these improvements are results of preserving
the local blackness.

(a)

(b)

Figure 6. Comparison of visual quality. (a) Result from Lee [4], (b) result
from our LBP method. Please zoom in to see the details.

Table 1. Performance Metric

Image Metric Lee 2014 [4] LBP

Lena PSNR(dB) 18.77 20.65
MSSIM 0.6377 0.6960

Man PSNR(dB) 12.29 18.47
MSSIM 0.5252 0.6283

Airplane PSNR(dB) 13.17 13.78
MSSIM 0.5490 0.5511

4.1. Batch Test Result. To evaluate the performance of the LBP algorithm on a larger
database, we choose the popular 24 images from the Kodak database. The size of the
images are 768 × 512 and 512 × 768, as shown in Fig. 7. Each of the test images is
converted from RGB to gray level. Then the VC algorithms are applied on this gray level
image. The average PSNR and average MSSIM is measured for Lee’s algorithm and our
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LBP algorithm. The results are reported in Table 2. A sample reconstructed images are
shown in Fig. 8. The missing numbers on Fig. 8(a) are visible in Fig. 8(b).

Figure 7. The set of images from the Kodak database used in the batch
test. The indices of the images are from 1 to 24, from left to right and from
top to bottom.

Table 2. Performance Metric on Kodak Images

Algorithm Avg. PSNR Avg. MSSIM
Lee [4] 11.0306 0.5455
LBP 16.5695 0.6881

5. Conclusions. In this paper, we identified the existing problem in size-invariant VC
and proposed a local contrast preserving VC algorithm. It is confirmed by experiments
that using the proposed LBP method, more details of the images can be recovered on the
stacking results. Both the PSNR and MSSIM metrics show improved performance when
compared with Lee’s recently proposed size-invariant VC. This algorithm can be easily
extended to any (n, n)-threshold VC scheme.
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