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Abstract. An improved greedy algorithm was proposed in order to improve the re-
construction performance of the Generalized Orthogonal Matching Pursuit (GOMP) for
sparse signals. In each iteration, the GOMP algorithm identifies multiple columns from
the sensing matrix, in accordance with their matching degree with the residual . The
indices of the columns are added to an estimated support set to reconstruct a sparse
signal through solving a least-squares problem. The numbers of selected indices within
each iteration are a fixed constant in the GOMP; however, the fixed constant is not suit
to all iterations. Incorrect indices are selected when the fixed constant is larger than the
number of the correct indices. Those selected incorrect indices thus reduce the reconstruct
speed and accuracy, particularly when the fixed constant is much larger than the num-
ber of the correct indices. In order to mitigate weakness found within the GOMP, the
proposed method firstly perform the primary election to the candidates with a specially
chosen threshold. If the number of the candidates through the primary election is more
than S, the proposed method will select S candidates from the candidate pool through the
primary election and add their indices to the estimated support set. If the number of the
candidates through the primary election is less than S, the proposed method will directly
add the indices of all the candidates through the primary election to the estimated sup-
port set. The proposed method reduces the probability of selecting incorrect indices. The
simulation results demonstrated the proposed algorithm has a better recovery performance
than the original algorithm both in the probability of exact reconstruction and the time
of, particularly in large signal problems.
Keywords: Generalized Orthogonal Matching Pursuit; candidate; primary election;
new improve method; threshold.

1. Introduction. The compressive sensing (CS)[1] theory has gained interests due to
its ability to recover signals at a sampling frequency far lower than the Nyquist sampling
rate. Different from the traditional Nyquist sampling theory, the CS includes three compo-
nents: sparse representation, non-related linear measurement, and signal reconstruction.
The reconstruction algorithm aims to recover the signals accurately from the measure-
ments, thus being one of the most important components of the CS, as it determines the
feasibility.

There has been many reconstruction algorithms proposed in order to reconstruct the
sparse original sparse signal from the measurements reliably and accurately. The exist-
ing reconstruction algorithms can be divided into two major types : l1-minimization and
greedy pursuit algorithms. Common l1-minimization approaches include basis pursuit
(BP)[2], Gradient projection for sparse reconstruction (GPSR)[3], iterative thresholding
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(IT)[4], and other algorithms. These algorithms demonstrate good performance within
solving a convex minimization problem. These convex relaxation algorithms require min-
imal measurements, but they are more computationally complex.

An alternative approach is the greedy search approach, designed to further reduce the
computational complexity of l1-minimization approaches. The greedy algorithms iden-
tify the support of sparse vector in an iterative fashion, generating a series of locally
optimal updates and construct an approximate signal based on the set of the chosen sup-
ports. Greedy algorithms have received an increase in attention due to their excellent
performance and low cost in recovering sparse signals. The orthogonal matching pursuit
algorithm (OMP) [5], which builds on the matching pursuit algorithm (MP)[6], is a well-
known greedy algorithm with many applications. In OMP, the index of the column that
is best correlated with the residual is chosen as a new element of the support within the
iteration. The strategy of the OMP is to select one index for each iteration, which slows
down the speed and hinders the reliability of the algorithm. In order to mitigate these
OMP weaknessesvarious approaches have been proposed.

The regularized orthogonal matching pursuit algorithm (ROMP)[7] was developed to
regularize the selected indices of the measurement matrix in order to improve the speed of
OMP. The stagewise orthogonal matching pursuit (StOMP)[8] selects multiple indices in
each iteration via a presupposed threshold. The subspace pursuit (SP)[9] and compressive
sampling matching pursuit (CoSaMP)[10] proposed and boasts similar improvements.
Both of these algorithms were proposed with the idea of backtracking; the differences
bring that SP selects K indices for each iteration, while CoSaMP selects 2K.

The generalized orthogonal matching pursuit (GOMP), which selects S(S ≤ K) indices
in each iteration, was proposed by Wang[11][12]. Compared to OMP, which selects only
one index in each iteration, GOMP simply selects fixed multiple indices in each iteration
to improve the empirical performance of the OMP as well as theoretical performance.
The generalized OMP (GOMP) has received increasing attention in recent years with
several papers being published on the analysis of the theoretical performance of GOMP
[11-15]. However, GOMP has its weakness. It selects indices according a fixed number
in each iteration, thus it may select many incorrect indices to the estimate support set.
These incorrect indices reduce the recovery performance of algorithm. To mitigate these
weaknesses, we propose a new method to modify GOMP by filtrating the candidates
through a specially chosen threshold before they are selected. The simulation results
suggest that the proposed algorithm has a better recovery performance than the original
algorithm both in the probability of exact reconstruction and the time of reconstruction.

2. Compressive Sensing. The CS reconstructs the signal x(x ∈ RN) from compressed
measurements y = Φx ∈ RM even when the system representation is underdetermined
(M < N). As a basic premise, compressive sensing requires that the signal x is a K-sparse
signal. This means that if the signal is used as a dimensional vector x(x ∈ RN), there
should be at most K no-zero elements in x. However, in practical applications, signals
may not be sparse. When the target signal is not sparse, it has to be transformed into a
sparse signal based on a set of sparse basis Ψ = {φ1, φ2, φ3......φN}. In this case, can be
defined as

x =
∑N

i=1
αiφi = Ψα (1)

where ‖α‖0 = K. ‖.‖0 denotes the number of nonzero elements in a vector. Thus, the
signal x is equivalently represented by K-sparse vector α under linear transformation Ψ
in some domains.
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Compressive sensing is regarded as a technique that automatically selects relevant infor-
mation from signals by a measurement. In the theory, x is translated into a M -dimensional
measurements y via a matrix multiplication with Φ. We describe it as

y = Φx (2)

where Φ is defined as the measurement matrix with dimensions M × N . Combining (1)
with (2), we can obtain

y = Φx = ΦΨα = ACSα (3)

where ACS = ΦΨ ∈ RM×N . Thus the problem to reconstruct x is transformed into
recovering α from y measurements. As long as α is obtained, we can use (1) to obtain
the original signal x. If Φ were a nonsingular square matrix, with M = N , we could
easily recover x from y. Unfortunately, in most compressive sensing scenarios M << N .
In above case, Eq(3) can be classified as an underdetermined system. The problem to
reconstruct x from y is NP-hard. We can not to obtain an accurate reconstruction of x
by solving the inverse transform of Φ. One way to solving this intractable computation
can be described as an l-minimization problem:

α̂ = min ||α||1 s.t. y = ACSα. (4)

An appropriate condition for exact recovery is that the matrix ACS satisfies the condition
of restricted isometry property (RIP) condition [1].

Definition 2.1. Definition 1

A sensing Matrix ACS is said to satisfy the RIP condition with the smallest number of
the K-restricted isometry constant δK(δK ∈ (0, 1)) such that:

(1− δK) ‖α‖2 ≤ ‖ACSα‖ ≤ (1 + δK) ‖α‖2 (5)

holds for any K-sparse vector α ∈ RN×1 with ‖α‖0 ≤ K.

3. GOMP Algorithm. As a modification OMP algorithm, GOMP has similar principle
with OMP. Both of them can be described as four steps: Identification, Augmentation,
Estimation, and Residual update. The difference between of two algorithms lies in the
identification step. In the identification step, OMP chooses a column of Φ that is maxi-
mally correlated with the residual in each iteration, where Φ ∈ RM×N is the measurement.
In the step, GOMP choose S(S ≥ 1) columns of Φ the largest correlated with the residual
in each iteration. In the augmentation step, both the algorithms add the indices of that
column to a list. In the estimation step, they use the indices in the list to obtain the
estimation signal of x by solving the least square. Within the residual update step, they
deduct the estimation signal of x this iteration from measurements, which generates a
new residual used for the next iteration.

In the kth iteration, GOMP initially computes the correlation between the columns
of the sensing matrix Φ and the residual vector rk−1 by Φ′rk−1, where rk−1 denote the
residual vector in kth iteration and Φ′ is a transpose matrix of Φ. Then indices of the
columns corresponding to S maximal correlation are chosen as the new elements of the
estimated support set Λk in each iteration, where Λk is the estimated support set in kth
iteration. Then x̂k is obtained using the least square method (LS), where x̂k is the new
approximation of x in kth iteration. The residual rk ∈ RM is revised by subtracting
ΦΛk x̂Λk from y:

rk = y − ΦΛk x̂Λk

where y = Φx. These operations are repeated until either the iteration number reaches
the maximum kmax = min(K,M/S) where K is the sparsity of x, or the l2-norm of the
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residual falls below a threshold ε(
∥∥rk∥∥

2
≤ ε ). To make the process clear, we describe the

GOMP algorithm in Table according to[11][12]
It can be seen that that the GOMP only differs within the identification step of OMP,

however the promotion to OMP within computational efficiency and recovery performance
is great. This is due to the selection of multiple indices in GOMP, where multiple correct
indices are added to the list and the algorithm is finished with much less iteration. We set
the critical sparsity and the running time as two major evaluation criterions. The critical
sparsity of a algorithm is the maximal sparsity level of the test sparse signals at which the
perfect recovery is ensured. When exceed the point , the recovery rate of the algorithms
drops below 100%. The simulation results reveal that the critical sparsity of the GOMP
algorithm is larger than that of the ROMP, OMP, StOMP, and SP algorithms. Moreover,
the running time of GOMP is less compare to above algorithms. Although GOMP is an
outstanding algorithm, it has shortcomings. We will introduce the proposed method in
next section.

We briefly summarize notations used in the table I. x̂ is the final approximation of x.
ΦΛ ∈ RM×|Λ| is a submatrix of Φ that contains columns indexed by Λ. For example, if
Φ = {φ1, φ2, φ3, φ4} , and Λ= {1, 4}, then ΦΛ= {φ1, φ4} . Φ′is a transpose matrix of Φ. If
Φ is a full column rank, then Φ† = (Φ′Φ)−1Φ′ is the pseudoinverse of Φ. x̂Λ ∈ R|Λ| is the
estimated vector of x, which elements based upon the indices of Λ. At the kth iteration,
we use Λk, x̂k and rk denote the estimated support, the estimated sparse signal, and the
residual vector, respectively.

Table 1. Gomp Algorithm

Input: measurements y ∈ RM ,
sensing Φ ∈ RM×N ,
sparsity K,
number of indices of columns for each selection S(S ≤ K).

Initialize: iteration count k = 0,
residual vector r0 = y,
estimated support set Λ0 = ∅.

While ||rk|| > ε and k < min{K,M/S} do
k = k + 1.
(Identification) Select S largest entries (in magnitude) from Φ′rk−1. Then

record the {ϕ(i)}i=1,2,3......S corresponding to the entries.
(Augmentation) Λk = Λk−1 ∪ {ϕ(1), ϕ(2)......ϕ(S)}.
(Estimation of xΛk) x̂Λk=Φ†

Λky.
(Residual Update) rk = y − ΦΛk x̂Λk .

End
Output The estimated signal x̂k = x̂Λk , satisfying x̂{1,...,n}−Λk = 0 .

4. Proposed Algorithm. For the greedy algorithms, it is important to generate an
estimate of the correct support set. We assume the correct support set is T . Let
Ω= {1, 2,..., n} be the column indices of matrix Φ , then T = {i|i ∈ Ω, xi 6= 0} de-
note the support of vector x . Λk is the estimate of T in kth iteration. The goal is to
obtain

Λk = arg min
T:|T|=K

‖x̂Λk − x̂T‖2
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where x̂Λ ∈ R|Λ| is the estimated vector of x which elements based upon the indices of Λ
and |Λ| is the cardinality of Λ.

GOMP selects multiple indices for each iteration, with the expectation that multiple
correct indices are added to Λk in order to finish the reconstruction with a smaller number
of iterations.

The idea of GOMP is imperfect. We suppose there are I correct indices should be
selected in the kth iteration. According to strategy of GOMP, S indices would be chosen
and added to Λk. Then (S − I) incorrect indices are added to Λk. Those incorrect
indices of Λk, once be selected, will remain in the list throughout the remainder of the
reconstruction process. Those incorrect indices will reduce the computational efficiency
and recovery performance. This is aggravated when the GOMP selects a S much larger
than I, and the weakness of the GOMP becomes more apparent.

In order to mitigate the algorithmic weakness of GOMP, we propose a modifications
of GOMP with the thresholding scheme initially proposed in StOMP[8] and describe the
proposed method in Table II. StOMP regards the noiseless underdetermined problems as a
noisy well-determined problem. In each iteration, StOMP regards the correct indices and
incorrect indices as true signal and “noise”. StOMP then sets an appropriate threshold
to identify the true signal from the mixture. We describe the process in the kth iteration
as

uk = Φ′rk−1,

Jk = {j : |uk(j)| > tkσk}.
where σk is a formal noise level and tk is a threshold parameter. The formal noise level

σk = ‖rk‖2

/√
M , and typically the threshold parameter take values in the range 2 ≤

tk ≤ 3. The thresholds are specifically chosen based on the assumption of Gaussianity.
Gaussianity assumes if Φ ∈ RM×N is a matrix from Uniform Spherical ensemble (USE),
the element in uk has approximately a Gaussian distribution with mean 0. When M and
N are both large, this situation will be more accurate, meaning that the method will be
more effective on large-scale signal situation.

In the kth iteration, the proposed method firstly computes the correlation between the
columns of the sensing matrix Φ and the residual vector rk−1,

uk = Φ′rk−1.

Then to yield a set Jk with a hard thresholding

Jk = {j : |uk(j)| > tkσk}.

If |Jk| ≥ S, the proposed method yield the set Uk = {|uk(i)| i ∈ {1, 2...N}} and Vk =
{|uk(i)| , i ∈ Jk}. It is obvious that Vk is a subset of Uk. Then the proposed method select
S largest elements of Vk and find their indices in Uk. The indices are added to the set Qk.
We merge the newly selected Qk with the previous support estimate, thereby updating
the estimate support set:

Λk = Λk−1 ∪Qk.

If |Jk| < S, we choose Jk as the subset of newly selected, thereby updating the estimate:

Λk = Λk−1 ∪ Jk

Further then to obtain new approximation of , using the least square method (LS):

x̂Λk=Φ†
Λky
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where Φ† = (Φ′Φ)−1Φ′ is the pseudoinverse of Φ and Φ′ is a transpose matrix of Φ. Finally,
the residual rk is revised by subtracting ΦΛk x̂Λk from y:

rk = y − ΦΛk x̂Λk

Generally speaking, the proposed method adds a threshold as supplementary conditions
in the identification step. When the that the GOMP selected is oversize in some iterations,
the proposed method obtains a more reliable estimate set by filtrating the candidates to
replace the estimate set yields by the identification strategy of the GOMP. Once the
incorrect indices are selected into the estimate support set, they will not be removed
in subsequence step. These incorrect indices will reduce both accuracy and speed of
algorithm. The proposed method can effectively avoid incorrect indices are added to the
estimate support set, thus improving the reconstruction performance of the GOMP.

Table 2. Improved Method of GOMP

Input: measurements y ∈ RM ,
sensing Φ ∈ RM×N ,
sparsity K,
number of indices of columns for each selection S(S ≤ K).

Initialize: iteration count k = 0,
residual vector r0 = y,
estimated support set Λ0 = ∅.
newly subset Jk=∅, Qk = ∅.

For k = 1 : K
1. calculate uk = Φ′rk−1

2. yield a newly set Jk = {j : |uk(j)| > tkσk}.(Identification)
3. If |Jk| ≥ S, yield the Uk = {|uk(i)| i ∈ {1, 2...N}} and the set
Vk = {|uk(i)| , i ∈ Jk}. Select S largest elements of Vk and find
their indices in Uk. Add these indices to a set Qk, Λk = Λk−1 ∪Qk;
If |Jk| < S, Λk = Λk−1 ∪ Jk .(Identification and Augmentation)

4. x̂Λk=Φ†
Λky.(Estimation of xΛk)

5. rk = y − ΦΛk x̂Λk .(Residual Update)

6. If ||rk|| <ε, quit the iteration.
End
Output The estimated signal x̂k = x̂Λk , satisfying x̂{1,...,n}−Λk = 0 .

Annotation: The formal noise level σk = ‖rk‖2

/√
M , where the threshold typically

has values in the range 2 ≤ tk ≤ 3.

5. Simulation and discussion. The following will demonstrate the reconstruction per-
formance of the proposed algorithm with sparse signals. In each trial, we generated a
K-sparse vector x ∈ RN whose support is chosen at random. Additionally, we con-
structed a sensing matrix Φ ∈ RM×N with entries drawn independently from a Gaussian
distribution N(0, 1/M), with tk = 2.5 empirically chosen. In order to compare the re-
construction performance with the signal with different scales, our trials adapt two types
of x and Φ(M = 128, N = 256 and M = 128, N = 512). We used MATLAB 7.0 with
a quad-core 64-bit processor in a Window 7 environment, with each algorithm repeating
400 times and the probability of the exact reconstructions and the average running time
in each K was recorded.
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In our simulation, we set the critical sparsity and the running as two major criterions.
The critical sparsity of a algorithm is the maximal sparsity level of the test sparse signals
at which the perfect recovery is ensured. When exceed the point, the recovery rate of
the algorithms drops below 100%. Clearly, higher critical sparsity and less running time
imply better empirical reconstruction performance.

5.1. Experiment 1. In the experiment, we provide recovery performance as a function
of the sparsity level K and set M = 128, N = 512. We compared our proposed method
(S = 3), GOMP (S = 3), and others prime greedy algorithms. In Figure 1, the simulation
results reveal that the critical sparsity of the proposed method and the GOMP algorithm
was larger than that of the ROMP, OMP, StOMP and SP algorithms, and the proposed
method almost had no difference within the GOMP. Fig. 2 provides the results in running
time for recovery algorithms. It is seen that the running time of our proposed method,
GOMP, StOMP, ROMP, SP, and OMP is more or less similar when K ≤ 35. When the
signal vector becomes less sparse (K > 35), the difference is gradually apparent. The
running time of the SP increases fastest in all algorithms. Then the running time of
the GOMP also has a faster increase. The propose method, OMP, StOMP, and ROMP
keep a steady tendency with similar running time. Observe carefully, the running time of
the proposed method is smaller than OMP and larger than ROMP and StOMP, slightly.
Overall, the proposed method perform is competitive both in critical sparsity and running
time.
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Figure 1. Reconstruction performance as a function of sparsity K.

5.2. Experiment 2. In this experiment, we compared our proposed method and the
GOMP. We set two signals with different sizes (N = 256, 512) and three different S(S =
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Figure 2. Running time as a function of sparsity K.

3, 10, 20). In order to compare two algorithms with different S, we set the mean of two
algorithms to be observed in the experiment. Fig.3 and Fig.4 provide results where
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Figure 3. Reconstruction performance of GOMP and the proposed
method(M=128,N=256)
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Figure 4. The average running time of GOMP and the proposed
method(M=128,N=256)

M = 128 and N = 256. From Fig.3 we can observe that with the smaller S, the critical
sparsity in GOMP is higher. However the proposed method with different S have nearly
analogous performance. The critical sparsity of the proposed methods are between GOMP
(S = 3) and GOMP (S = 10) and farther larger than GOMP (S = 20). The mean critical
sparsity of the proposed method is higher than GOMP. Fig.4 provides the results of the
running time. The results of two methods are more or less similar when K ≤ 45. When
K > 45 the running time of GOMP (S = 3) increases quickly, and the running time of
GOMP(S = 10) slows. The GOMP (S = 20) has similar performance to the proposed
method (S = 3). Among algorithms being tested, the running time of the proposed
methods (S = 10, 20 ) is the shortest. The mean running time of the proposed method is
also smaller than GOMP.

Fig.5 and Fig.6 provide results when M = 128 and N = 512. From Fig.5 we can
observe that both the proposed method and GOMP show the trend that the smaller S
, the higher critical sparsity. The GOMP (S = 3) and the proposed method (S = 3)
perform almost alike and have the largest critical sparsity among algorithms under test.
The proposed method (S = 20) has similar performance to the GOMP (S = 10), where
both exhibit better than the GOMP (S = 20) and slightly worse to the proposed method
(S = 10). The mean critical sparsity of the proposed method is also higher than GOMP.
From Fig.6 We can see that the main difference in running time is visible when K > 35.
In this case, the running time of GOMP(S = 3) increases fast and the GOMP( S = 20)
perform best in running time. But we note that when K = 35, the probability of exact
reconstruction only 10% while the probability of others over 90%. So, to discuss the
performance of GOMP (S = 20) when K > 35 is meaningless. With the exception of the
GOMP (S = 20), the proposed method (S = 3) has smallest running time among the
algorithms. The running time of the proposed method (S = 10, 20) slightly bigger than
GOMP (S = 10).The mean running time of the proposed method is also smaller than
GOMP.
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Figure 5. Reconstruction performance of GOMP and the proposed
method(M=128,N=512)
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Simulation results show that the proposed improved method performs well, and that
it outperforms the GOMP in terms of both critical sparsity and running time and the
proposed improved is more effective on large-scale signal situation.

6. Conclusion. In this paper, a novel method for sparse signal reconstruction is pro-
posed. The method adds a threshold as supplementary conditions in the identification
step. When the number of selected indices experiences an increase in iteration, our method
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obtains a more reliable estimate set by filtrating the candidates. The method can avoid
selecting incorrect indices into the estimated support set. Our proposed reconstruction
algorithm not only performs well with reconstructing the sparse signal (i.e., when K is
small), but also the less sparse signal (i.e., when K is large). The simulation results prove
that the proposed method had superior performance than that of GOMP both with regard
to critical sparsity and running time, particularly in large signal problems.
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