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ABSTRACT. We consider deep learning (DL) for event classification using electroen-
cephalogram (EEG) measurements of brain activities. We proposed HDNN or hierar-
chical deep neural network, and CNN4AEEG, a new convolution neural network (CNN).
Both DL models are designed to improve the representation of spatial and local temporal
correlations inherent in FEG data. These models were tested for image target prediction
in a time-locked rapid serial visual presentation (RSVP) experiment. The performances
were compared with the state-of-the-art RSVP classification algorithms including HDCA
and XDAWN and with other popular machine learning algorithms. The results show
that global spatial local temporal CNN (CNN4EEG) achieved a 13% improvement over
the best competing non-DL algorithm and a 9% improvement over canonical CNN for
image processing, and a 6% over deep neural network (DNN). Our results suggest that
the unique design of temporal and spatial filters in CNN4EEG can improve the represen-
tation of EEG data, hence the prediction performance.

Keywords: EEG; Rapid serial visual presentation; Deep learning; Hierarchical deep
neural network ; Convolution neural network; CNN4EEG
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1. Introduction. EEG measurement of electrical activity of brain has found a wide range
of applications in diagnosis of neurological diseases, cognitive science, and brain computer
interaction[l, 2]. An important problem concerning these applications is event prediction
based on EEG data. Past research has identified a host of event-related potentials (ERPs)
such as P300 and N1 that are indicative of different basic sensory, cognitive, and motor
events. However, as demonstrated in [3], the ERPs can change in both magnitude and
timing with subjects and experiments, making cross-subject prediction based on ERPs
less reliable. Additionally, significant improvement in spatial and temporal resolution of
EEG has tempted us to predict much more complex cognitive events that can produce
a variety of EEG patterns highly convoluted in space, time, and frequency. Accurate
prediction of these events cannot be accomplished by using these basic ERPs and this has
led to widespread adoptions of state-of-the-art machine learning algorithms. However, as
in most machine learning applications, to achieve best prediction performance requires
extraction of carefully engineered features in time, frequency, or transferred independent
component, whose construction often relies on highly specific domain expertise. Yet,
it becomes less clear how to improve beyond using expert-engineered features and in
cases when expert prior knowledge is limited, finding discriminant features can be quite
problematic.

To address these issues, we investigate deep learning (DL) solutions in this paper. Deep
learning is a class of machine learning algorithms that possess a multi-layered architecture.
DL draws significant attention in recent year because of its record-beating performance in
image recognition, speech recognition, and many other applications|4, 5]. The key to DLs
success is its ability to automatically discover discriminant feature representations directly
from raw data that are essential for accurate prediction. The reason it adapted to EEG is
EEG contained both temporal and spatial information; while CNN has the capability of
capture spatial correlation such as image processing [6] and temporal correlation such as
speech recognition [7]. Therefore, we proposed to use CNN to capture both spatial and
temporal correlation in EEG signals. A few existing work also demonstrated the power
of DL, especially convolution neural network (CNN), in EEG classification. In [8], a
CNN is applied for predicting epileptic seizure based on intracranial EEG recording. The
architecture includes 3 convolution layers, 2 max-pooling layers and 1 fully-connected
layer. In this CNN, temporal filters were applied separately on data from individual
channels to capture temporal EEG correlations in the convolution layer and the fully
connected layer is included to capture the spatial correlation between channels. However,
using different temporal filters on different channels could distort spatial correlations,
making extraction of correct spatial correlation in the fully connected layer difficult. A
similar architecture was also developed in [9]. Another CNN proposed in [10, 11] applies
EEG spatial filters such as XDAWN [10, 12] to each of the time samples across all the
EEG channels in its convolution layer. The problem with this CNN is that it does not
capture local temporal correlations in EEG. The third type of CNN for EEG classification
is described in [13, 14]. The CNN model is built for a single channel recording and the
inputs to CNN are time-frequency spectrum power values of the channel. Accordingly, a
time-frequency convolution filter was applied in the convolution layer.The problem with
this CNN is that it completely ignores the spatial correlation.

In this paper, we propose two new DL architectures, namely, hierarchical deep neural
network (HDNN), and CNN4EEG to improve the DL representation of spatial and local
temporal correlations in EEG data. We tested the performance of these new DL algo-
rithms for target image detection in a rapid serial visual presentation (RSVP) experiment.
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F1GURE 1. Architecture of DNN and HDNN. The blue squares in A are
fully connected modules and gray ovals are hidden units. The cDNN and
pDNN modules of HDNN in B use the same architecture as shown inside
the blue dotted box in A. In HDNN, we separated each 1s epoch into mul-
tiple sub-epochs and push them into each individual DNN modules with
multiple fully connected layers. Then the output of each DNN modules
were concatenated as the input to a new DNN (pDNN) module and the
label layer was on top of the pDNN module.

The results show that CNN4EEG achieved a performance improvement of 13 percentage
points over the best shallow classifier we tested, 9 percentage points over canonical CNN
for image processing, and 6 percentage points over DNN.

2. The RSVP experiment and data preprocessing.

2.1. The Cognitive Technology Threat Warning System. In this study, we con-
sidered an RSVP experiment called the Cognitive Technology Threat Warning System
(CT2WS) [15]. In CT2WS, all stimuli were short grayscale video clips, with targets in-
cluding moving people or vehicles, and non-targets including plants or buildings. Subjects
were required to find target images and press the button once they saw a target. Stimuli
were presented at 2 Hz (one stimulus every 500 ms) and brain signals were recorded with
64-channel Biosemi EEG systems at a sampling rate of 512 Hz. There were 15 subjects
and each performed a 15-min session. The voluntary, fully informed consent of the sub-
jects was obtained as required by federal and Army regulations [16, 17].The investigator
has adhered to Army policies for the protection of human subjects [17]. The goal is to
predict if the subject sees a target clip using EEG recordings.

2.2. Data Preprocessing and Prediction Objective. The raw EEG samples were
first bandpass filtered with a bandwidth of 0.1-55 Hz. The lower cutoff frequency at
0.1Hz aims to reduce the distortion to data in low frequencies (10Hz) [18] and that at 55
Hz aims to remove the electrical artifacts. Down-sampling was performed to reduce the
sampling rate to 128 Hz, which is the maximum down-sampled frequency that does not
produce aliasing at the high-passed frequency. According to the procedure described in [3],
1-sec EEG epochs after each target/non-target onset were extracted for all subjects to be
used for training and prediction. However, 80% of epochs are non-target. To remove the
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FiGURE 2. CNN4EEG architecture. There are two convolution layers and
blue boxes are convolution operations, where the texts inside represent [ker-
nel shape]/ MP width * Feature Map Size. "FM” denotes feature map

potential bias in the trained classifier towards predicting non-target events, we balanced
the target and non-target epochs by randomly sampling equal numbers of target and non-
target. In all, about 10,400 epochs ( 700 epochs per subject) were obtained. Each epoch is
of dimension (64*128) and was normalized by subtracting the mean of the corresponding
channel and then dividing by the standard deviation.

3. The proposed deep learning models.

3.1. Introduction to Deep Neural Network. We first discuss the DNN architecture
and its basic modules for this classification. These modules will be the basic building
blocks of the proposed new architectures. An overview of DNN modules is shown in Fig.
1-A. The input to DNN is a vectorized EEG epoch (1*(64*128) ) in this case) and the
classification (target or non-target) is produced in the output layer, where the SoftMax
function is used. Multiple hidden layers are included in- between the input and the output
layer. Each hidden layer includes a fully connected (FC) architecture linking input and
output hidden units. The Rectified Linear Unit (ReLU) [19] activation function is added
in each hidden layer because the ReLu function learns much faster and does not have
neuron saturation like the sigmoid function. Dropout modules [20] are also included
either on top of the input layer (Dropout=0) or below the last hidden layer (Dropout=1)
as a sparse constrain to prevent over-fitting [21]. Notice that DNN does not intentionally
seek to represent spatial and temporal correlations in EEG. Therefore, it would take
larger training samples and longer training iterations to learn the underlying spatial and
temporal information.

There are two convolution layers and blue boxes are convolution operations, where the

texts inside represent [kernel shape|]/ MP width * Feature Map Size. FM denotes feature
map.

3.2. The proposed hierarchical DNN (HDNN). HDNN is designed to capture the
local temporal correlations in EEG data and is inspired by HDCA[22], a popular algorithm
for RSVP target detection. For HDNN input, the raw EEG data is first divided along
time into non-overlapping 64 x W sub-epochs, where is the length of the sub-epoch.These
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sub-epochs are fed into independent child-DNNs (¢cDNN). Each ¢cDNN is a DNN without
the output layer. The output hidden units of all cDNNs are then concatenated and fed
into a fully-connected, regular DNN called parent-DNN (pDNN). Fig. 1-B shows the
proposed HDNN architecture. Compared with DNN, HDNN uses ¢cDNNs to learn local
temporal EEG features. Although these cDNNs can have their unique weights to be able
to learn unique and shared temporal patterns in EEG sub-epochs, we request cDNNs to
have shared weights because the training samples are limited in this case. The weight
sharing acts as a regularization strategy to emphasize similar local features across different
sub-epochs. In addition, it also reduces size of the model and subsequently increases the
speed of training.

3.3. The proposed convolution neural network for EEG (CNN4EEG). with
M = C x T , where both C (channel size) and T (time samples) are 64 in this case.
Also, let WE! represent the ¢ and t* weight of the p'* feature map for hidden layer k
and ¢ feature map for hidden layer k-1, where c=1,,c’,t=1,,t’ with ¢’ x t' as the kernel
sizeandp=1,, P, q=1,, Q, where P, Q are feature map (FM) sizes as hyper-parameters
to be learned. Then, the p'* FM at the output of the convolutional layer is:

Q
convolution (v)?, = ReLU (Z WE s v, + bp> (1)
qg=1

where v is input element corresponding to the EEG measurement from channel c at
time t, ReLU represents the rectified linear function f (z) = max (0, ). Asterisk sign is
convolution operation as WA v, = X¢__ %Y WZhv,. ., , and b, is the bias param-
eter for p'* feature map. We can see from (1) that the kernel filters for all channels at
time t form a spatial filter. After the convolutional layer, an MLP is added to combine
all FMs for prediction of target/nontarget events. The number of FMs and the number
of hidden units are CNN hyper-parameters to be tuned during training. is a convolution
neural network but designed specifically to capture spatial and local temporal correlations
using multiple filters or kernels. As regular CNN, CNN4EEG also contains a combination
of convolution layers and fully connected layers. Particularly, CNN4EEG has two con-
volution layers specifically designed to capture both spatial and temporal correlations in
EEG.
In the first convolution layer, a 64 x ConvlW kernel is applied to sub-epochs and par-
ticularly, the kernel slides from the start to the end of the epoch to generate a 1 x
(128 — ConvlW + 1) feature map (Fig. 2). Multiple kernels can be applied and each
generate a different feature map. The feature map size ( FMS) is a model parameter to
be determined. After the first convolution layer, a Max-Pooling (MP) layer with width
(MP1W) is applied to the feature maps. MP passes the maximal marginalized informa-
tion to the next layer; it not only decreases the dimension of a feature map but also
factors out the nuisance variations over time. After MP, the second convolution layer is
constructed to extract deeper and more abstract temporal patterns. This layer applies
1-D kernels each with width Conv2W to the outputs of MP. Another MP layer (with a
MP width MP2W) is then followed. For both convolution layers, we always use a filter-
ing stride of 1 to achieve a maximum overlapping between consecutive embedding; this
enables CNN4EEG to capture detailed temporal dynamics in EEG. Note that additional
convolution layers with temporal filters can be added to extract more abstract correla-
tions. In current CNN4EEG, only two layers are used. On top of the convolution layers,
a fully connected DNN module is added. Fig. 2 illustrates the architecture of CNN4EEG.
Compared with the conventional CNN for image recognition such as ImageNet [23], the
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TABLE 1. Model parameters for DNN

DNN Parameters Search Space
NHL 1,2,...,6
HUS 100, 200, 400, ..., 3200
Dropout 0,1

TABLE 2. Model parameters for HDNN

HDNN Parameters Search Space
NHL for cDNN & pDNN 1,2,3,4
HUS for ¢cDNN & pDNN | 100, 200, 400, 800

Dropout for pDNN 0,1

Sub-epoch Size 2.4,8

main differences in CNN4EEG are the specific designs of the filters in each layers. In
CNN, each convolution layer implements a bank of 2-D square FIR filters to extract local
features at different scales in images [8]. However, although an EEG epoch is arranged as
a 2-D matrix, it cannot be treated directly as an image because the arrangement of chan-
nels (rows) in EEG data epochs does not reflect the spatial relationship of the channels.
Therefore, the square kernels cannot correctly capture the spatial correlations in EEG.

4. Results.

4.1. Construction of training data and process of training. We partitioned the
epochs into the validation, training, and testing set for hyper-parameter training with
validation dataset and performance evaluation for testing dataset. We selected one in-
dividual subject (subject 1) as our validation set for model selection. Model selection is
an important step of deep learning training; it determines the model hyper parameters
including the number of hidden layers (NHL), the hidden unit size ( HUS), position of
dropout modules, max-pooling width, and number of feature maps (NFM). Since these
deep learning models have a large number of model combinations, the model parame-
ters need to be trained carefully and efficiently to be able to achieve good performance
[24]. Specific model parameters to be trained and the search space for DNN, HDNN, and
CNN4EEG are detailed in Table I-II1. The search space was defined to balance the trade-
off between a deeper architecture and limited training samples. All models were trained
using stochastic gradient descent (SGD) on a mini-batch size of 32 epochs with an expo-
nential decay for the learning rate and momentum. The strategy of early stopping [25]
was applied to determine the training iterations, where the maximum training iteration
was set to be 10,000. The initial learning rate was 0.01 with a decay rate about 1.01,
the momentum was 0.9, and weight decay was 0.0005. Here, we applied random search
26] to find the best model combination, where we tested 32 randomly picked models and
the best model was selected as the one that produced the largest Area Under the Curve
(AUC) on the validation dataset.

For the remaining 14 subjects, a leave-one-subject-out cross-validation (CV) was per-
formed on the best model to test the cross-subject prediction performance. In each round
of CV, samples from 13 subjects were used for training, while those from the other subject
were for testing. On average, there were 9000 training samples and 700 testing samples
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TABLE 3. Model parameters for CNN4EEG

Learning Parameters | HDNN Parameter Clﬂoice
ConvlW & Conv2W 1,2,4,...,16
NFM 10, 20, 30, ..., 60
MPIW & MP2W 2,4
NHL for DNN 1,2,3,4
HUS for DNN 100, 200, 400, 800
Dropout for DNN 0,1

TABLE 4. Training iteration (TI) for 4 DL models

DL Model | CNN | DNN | HDNN | CNN4EEG
TI 1,500 | 1,500 | 2,000 7,000

in each CV round. For comparison, we also implemented four popular shallow learning
classifiers: SVM, LDA, Bagging tree and multilayer perception (MLP) on both raw EEG
data and data from feature extraction. 20 features proposed in [27] for EEG classifica-
tion were extracted for each channel, spanning 5 principle frequency bands (delta, theta,
alpha, beta and gamma bands) [28] and they include four types: dominant frequency,
average power of dominant peak, center of gravity frequency and frequency variability.
Therefore, for each epoch, the feature selected EEG data (FS-EEG) has a dimension

of 64 x 20. Finally, we also tested the state-of-the-art methods for RSVP classification
including HDCA and XDAWN.

4.2. Cross-subject Classification performance of DL models. We first examined
the performance of four DL models: DNN, CNN, HDNN, and CNN4EEG. The training
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F1GURE 5. Cross-subject prediction AUCs of all 14 tested DL and non-DL algorithms

iterations (TIs) for different DL models are shown in Table IV. Fig. 3 shows the learn-
ing curves for AUC performance vs. the training iterations for the DL models. First of
all, there was a significant differences in TIs across these 4 models (pj7e-8, Friedmans
test,). Even though CNN4EEG takes the longest training iteration to reach convergence,
its computation time is on par with CNN. When comparing the performance, we ob-
served that the best model is CNN4AEEG (AUC = 0.895 + 0.032) , followed by HDNN
(AUC = 0.8464+0.034)], DNN (AUC = 0.838 £0.041)] and CNN (AUC = 0.808 +0.039)].
CNN4EEG achieves 9% improvement over CNN (pj8e-7, t-test,) and 6% of improvement
over DNN (pjde-4, t-test,). Comparing between HDNN and DNN, we observed slightly
improvement of 1% (p=0.204, Wilcoxon sign rank test) but we noted that compared with
DNN the training speed of HDNN increased by 10x and its memory decreased by 10x.
The fact that CNN has the worst performance underscores the difficulty of square filters
to capture correct spatial correlation. Taken together, these results clearly show that the
EEG-specific temporal filters in CNN4EEG and HDNN can improve the representation of

EEG data, thus leading to better performances. The use of multiple kernels in CNN4EEG
entails additional performance improvement.
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4.3. One vs. two convolution layers in CNN4EEG. We next examined if the deeper
temporal features captured by the second convolution layer in CNN4EEG can add dis-
criminant values. To this end, we compared the AUCs of having two vs. one convolution
layer. Fig 4 shows the learning curves over the entire 10,000 T1I, where the two-layer stops
at 7, 000 iterations and the one-layer at 5,000 iterations (given by early stopping). The
AUC performance of one layer is 0.8770.035 and therefore the second layer adds about
2% improvement (pj3e-4, Wilcoxon sign rank test). We also noted that having two layers
produced a more stable learning curve, hence less over-fitting. Overall, this result sup-
ports the use of additional layers and we also believe more layers could be beneficial if
there were more training samples.

4.4. Overall classification performance. Performances of DL algorithms were next
compared with other non-DL algorithms and the results are shown in Fig. 5. There is
a significant performance difference between DL and non-DL algorithms (pjle-26, Fried-
mans test) and overall, DL algorithms outperform the shallow learning algorithms. Par-
ticularly, CNN4EEG (AUC=0.8950.032) improved over Bagging Tree (AUC=0.7610.051),
the best shallow learning algorithm by 13% (pi8e-9, t-test). We also performed shallow
learning in MLP, LDA and the best performance is achieved by XDAWN in the group
of shallow learning algorithms. This might because XDAWN is speicially designed for
processing P300 features in EEG signal, which is also a key feature in RSVP experiments;
while other shallow learning alogrithms are generic and might not be suitable for EEG
data structure.

5. Conclusion and future work. We presented in this paper HDNN and CNN4EEG,
two new DL models for EEG based event classification. They are designed to improve
the representation of spatial and local temporal correlations in EEG. The test results on
cross-subject target image detection using CT2WS RSVP data demonstrated their better
performance over DNN and CNN and a significant improvement by CNN4EEG over other
shallow learning algorithms and the state-of-the-art algorithms for RSVP classification.
Since the architecture of CNN4EEG is applicable for general EEG classification, additional
effort in the future to investigate its performance for different BCI tasks is desirable.
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