
Journal of Information Hiding and Multimedia Signal Processing c©2018 ISSN 2073-4212

Ubiquitous International Volume 9, Number 1, January 2018

Edge Classification Based Initialization Technique for
Image Vector Quantizer Design

Xiao-Dan Jiang

College of Electrical and Information Engineering
Quzhou University

Quzhou, 324000, P. R.China
16282409@qq.com

Zhe-Ming Lu*

School of Aeronautics and Astronautics
Zhejiang University

Hangzhou, 310027, P. R.China
*Corresponding author: zheminglu@zju.edu.cn

Received February 2017;Revised October 2017

Abstract. Codebook design is one of key techniques in Vector Quantization (VQ). The
K-means algorithm is the most widely used algorithm to design a VQ codebook. However,
both convergence speed and performance of the generated codebook depend on the initial
codebook. Thus, many algorithms have been presented to obtain a good initial codebook,
including the well known splitting, pruning, pairwise nearest neighbor design, random
initialization and maximum distance initialization. However, all these algorithms do not
make full use of the features of the training vectors to obtain a better initial codebook
and some of them need high extra overhead. This paper provides a very simple technique
to obtain a better initial codebook by classifying training vectors according to their edge
orientations dependent on eight edge templates proposed by us, and thus we can obtain
eight subsets. Then we randomly select codewords from each subset with the number of
codewords being proportional to the number of training vectors in the subset. Experimen-
tal results show that, compared with the conventional and modified K-means algorithms
based on random selection initialization, our initialization technique converges to a better
locally optimal codebook with a faster convergence speed.
Keywords: Vector quantization, Image compression, Codebook design, K-means algo-
rithm, Initial codebook generation.

1. Introduction. Vector quantization (VQ) [1] is one of widely used techniques for mul-
timedia compression [2] and clustering analysis [3]. A K -Level n-dimensional vector
quantiser Q can be defined as a mapping from the n-dimensional Euclidean space Rn

into a finite set C, that is, Q : Rn → C = {y1,y2, ...,yK}, where the set C is called the
codebook, K is the codebook size, and y i = (yi1, yi2, . . . , yin)T, 1 ≤ i ≤ K, are called the
codewords. Based on this quantizer, any n-dimensional input vector v = (v1, v2, ..., vn)T

can be quantized into a codeword in C, that is,Q(v) ∈ {y1,y2, ...,yK} . The quantiza-
tion should be based on a suitable distance measure or distortion metric. That is to say,
among all codewords in C, the quantization result Q(v) of v should be the codeword yj

with the smallest distortion to v. The most commonly used distortion measure is the
squared error, assume that Q is designed from the training set X = {x1,x2, . . . ,xM},
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where xi = (xi1, xi2, . . . , xin)T, 1 ≤ i ≤M , then we can quantify the performance of Q by
the following average distortion

D = E[d(., Q(.)] =
1

M

M∑
i=1

‖xi −Q(xi)‖2 (1)

VQ is one of popular image compression techniques because of its simpler decoding
structure and it can achieve high compression ratio while maintaining acceptable image
quality. Obviously, the compression performance is determined by the quality of the
predesigned codebook. Thus an optimal codebook is required to be generated from a
training set in advance. The task of optimal vector quantizer design is to find the codebook
that minimizes the average distortion over all possible codebooks. In general, an optimal
vector quantizer should satisfy two conditions: (1) the nearest neighbor condition, i.e.,
each training vector should be assigned to the codeword that is closest to it; (2) the best
codebook condition, i.e., each codeword must be the centroid of the training vectors that
are assigned to it. The above two optimality conditions form an scheme named K-means
algorithm for the design of a locally optimal codebook with iterative codebook updating.
It is also called the generalized Lloyd algorithm (GLA) or the Linde-Buzo-Gray (LBG)
algorithm [4].

It is known that GLA can only converge to a locally optimal codebook, and both the
convergence speed and the quality of the generated codebook depend on the initial code-
book. Thus, many researchers [5] have been focusing their attention on enhancing the
performance of GLA so as to improve either the quality or the speed of VQ. To improve
the quality of VQ, most scholars have tried to use population-based meta-heuristics to
find a better solution for the codebook generation problem [6, 7, 8] than standard GLA
and its variants. However, the cost of population-based meta-heuristics is too high to
solve the codebook generation problem online. As the image size and the demand for
online processing keep increasing, the speed has become a critical issue in codebook gen-
eration. To improve the speed of VQ, many researchers have paid particular attention to
the problem of speeding up the codebook generation. These approaches can be divided
into three categories. The first is to use more efficient codebook structures to reduce
the time required to assign training vectors to codewords such as tree-structured vector
quantization (TSVQ) [9]. The second is to reduce the number of comparisons required
to assign training vectors to codewords to which they belong [10, 11]. The third is to use
a new codeword updating step other than the conventional centroid-based updating step
[12, 13].

Since both the convergence speed and the performance of the converged codebook de-
pend on the initial codebook, this paper aims to generate a better initial codebook. A
good initial codebook generation method can be combined with any above-mentioned
technique to further improve the performance of VQ. In the past, many algorithms have
been proposed to obtain a good initial codebook, including the well known splitting, prun-
ing, pairwise nearest neighbor design (PNN), random initialization and the maximum
distance initialization [14]. However, all these initialization techniques do not consider
the features of each training vector. Therefore, in this paper, we propose a simple and
efficient initialization technique for the K-means algorithm by classifying the input vec-
tors into eight subsets with a simple edge classifier and then proportionally and randomly
selecting several initial codewords from each subset to obtain the initial codebook. Exper-
imental results demonstrate that, compared with the conventional and modified K-means
algorithms with random selection initialization, our initialization technique converges to
a better locally optimal codebook with a fast convergence speed.
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The rest of this paper is organized as follows. In Section 2, we briefly introduce conven-
tional and modified K-means algorithms. Section 3 states the proposed scheme in detail.
The simulation results and analysis are given in Section 4. Finally, we conclude the whole
paper in Section 5.

2. Conventional and Modified K-Means Algorithms. Assume the training set X is
composed of M n-dimensional vectors, i.e., X = {x 1,x 2, . . . ,xM}, then the conventional
K-means algorithm [4] for the design of a codebook C = {y1,y2, ...,yK} of size K is as
follows.

Step 1. Initialization: Iteration number m = 0; codebook at iteration m, C(m) =

{y (m)
1 ,y

(m)
2 , . . . ,y

(m)
K }; convergence threshold e.

Step 2. Partitioning: Find the nearest-neighbor partition V
(m)
j = {x i ∈ X : Q(m)(xi) =

y
(m)
j }, j = 1, 2, . . . , K. Here, Q(m) denotes the vector quantizer defined as: Q(m)(v) =

y
(m)
j if d(v ,y

(m)
j ) ≤ d(v ,y

(m)
l ), l = 1, 2, . . . , K.

Step 3. Codebook Updating: Update codewords C(m) = {y (m)
j , j = 1, 2, . . . , K} to

C(m+1) = {y (m+1)
j , j = 1, 2, . . . , K} as

y
(m+1)
j =

1

|V (m)
j |

∑
v∈V (m)

j

v (2)

that is, y
(m+1)
j is the centroid of the partition V

(m)
j , where |V (m)

j | stands for the operation

to get the number of elements in V
(m)
j .

Step 4. Termination Check: Stop if |dm+1 − dm|/dm+1 ≤ e, where dm+1 is the average
distortion after m + 1 iterations defined as

dm+1 =
1

M

M∑
i=1

‖xi −Q(m+1)(xi)‖2 (3)

Otherwise, replace m by m + 1 and go to Step 2.
The modified K-means algorithm proposed by Lee et al. [12] is almost the same as

the conventional K-means algorithm except for a modification at the codebook updating

step. They update the current codeword y
(m)
j at iteration m to the new codeword y

(m+1)
j

at iteration m + 1 as

y
(m+1)
j = y

(m)
j + s× ((

1

|V (m)
j |

∑
v∈V (m)

j

v)− y
(m)
j ) (4)

where s is a scale factor. Based on the squared-error distance measure, Lee et al. [12]
have shown experimentally that the modified K-means algorithm converges slower in
comparison to the conventional K-means algorithm when s < 1. When 1 < s < 2, it
converges faster and results in better performance. When s > 2, the algorithm either
does not converge, or converges very slowly with poor performance. When s = 1, the
modified K-means algorithm is just the same as the conventional K-means algorithm. The
best results are found when the scale factor is set to a fixed value of s = 1.8.

Although the use of a scaled-update as in Eq. (4) can accelerate the convergence, the
use of a fixed scaling for the entire range of iterations results in the use of step sizes larger
than the corresponding centroid-update at iterations closer to convergence and causes
undesirably high perturbations of the codewords which are otherwise converging to some
optimal configuration. This in turn has the effect of increasing the number of iterations
required to converge as well as perturbing the codebook convergence to a poorer local
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optimum. Thus, Paliwal and Ramasubramanian [13] proposed the use of a variable scale
factor s in the codeword update which varies as a function of the iteration m and is
inversely proportional to m as follows:

s = 1.0 +
x

x + m
(5)

where x > 0. In this equation, s = 2 when m = 0, and s = 1 when m = ∞. thus, it
satisfies the aforementioned conditions. To see the effect of variable x used in the scale
factor equation, Paliwal and Ramasubramanian have studied the algorithm with various
values of x. According to their results, they finally adopt x = 9.

3. The Proposed Scheme. Vector quantization (VQ) allows the modeling of proba-
bility density functions by the distribution of prototype vectors. It works by dividing a
large set of vectors into groups having approximately the same number of points closest
to them. Each group is represented by its centroid point. The density matching prop-
erty of vector quantization is powerful, especially for identifying the density of large and
high-dimensioned data. The feature distribution of the training set is very important for
initial codebook generation. Edge detection is a fundamental tool in image processing,
machine vision and computer vision, particularly in the areas of feature detection and
feature extraction. Our algorithm therefore considers classifying the training vectors into
eight classes according to their edge orientations. The basic idea is to build a histogram
with the directions of the gradients of the edges. It is possible to detect edges in an
image but here we are interested in the detection of the angles. Assume the training set is
X = {x 1,x 2, . . . ,xM}, the proposed scheme is illustrated in Fig.1. The detailed scheme
can be expressed as follows:

Step 1: First, each training vector x i(i = 1, 2, ...,M) is input into the edge classifier,
and an index ti ∈ {1, 2, ..., 8} is output to denote which class the training vector belongs
to.

Step 2: Then, we collect all the training vectors belonging to the same class to generate
a subset, and thus we have 8 subsets Pj of sizes sj(j = 1, 2, . . . , 8) respectively, where
s1 + s2 + . . . + s8 = M .

Step 3: Afterwards, we initialize Ksj/M initial codewords from each subset Pj based
on random selection, thus we can in total obtain K initial codewords.

Step 4: Finally, the modified K-means algorithm in [13] is performed to generate the
final codebook.

During the iteration steps, if an empty cell occurs, we just judge the classes that all
current codewords belong to and find the class with the least number of codewords, and
randomly select a training vector from this class as a new centroid.

Now, we describe how to classify the training vectors based on our edge classifier.
Inspired by the Structured Local Binary Kirsch Pattern (SLBKP) in [14] that adopts
eight 3 × 3 Kirsch templates to denote eight edge directions, we propose following eight
4× 4 templates for edge classification as shown in Fig.2.

Assume the input image X is segmented into non-overlapping 4 × 4 blocks, the edge
classification can be described as follows: First, we perform eight 4 × 4 edge orientation
templates on each 4× 4 block x(p, q), 0 ≤ p < 4, 0 ≤ q < 4, obtaining an edge orientation
vector v = (v1, v2, . . . , v8) with its components vi(1 ≤ i ≤ 8) being calculated as follows:

vi = |
3∑

p=0

3∑
q=0

[x(p, q) · ei(p, q)]|1 ≤ i ≤ 8 (6)
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randomly select a training vector from this class as a new centroid. 

 
F  1. The block diagram of the proposed edge classified K-means algorithm. 
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Figure 1. The block diagram of the proposed edge classified K-means algorithm.

directions, we propose following eight 4×4 templates for edge classification: 
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For a 4×4 block x(p, q), 0 p<4, 0 q<4, an edge orientation vector v=(v , v , ..., 

Figure 2. Eight 4× 4 templates for edge classification.

Where ei(p, q) denotes the element at the position (p, q) of Ei. Thus, an input block x(p, q)
is classified into the j-th category if

j = arg max
1≤i≤8

vi (7)

Thus, we can classify each training vector into one of eight categories according to its
edge orientation.

4. Simulations. To demonstrate the performance of the proposed edge classified K-
means algorithm, we compared our scheme with the traditional K-means algorithm (KMeans),
the modified K-means algorithm with the fixed scale value s = 1.8 [6] (MKMeans F) and
the modified K-means algorithm with a variable scale value and x = 9 [7] (MKMeans V).
In our experiments, we used two 512×512 monochrome images with 256 gray levels, Lena
and Peppers. We segmented each image into 16384 blocks, and each block is of size 4× 4.
We tested the performance for different codebook sizes of 256, 512, and 1024. The quality
of the compressed images is evaluated by PSNR (Peak Signal to Noise Ratio). Let the
size of the original 256-grayscale image be 512× 512, xij be the original pixel value at the
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Table 1. Performance comparison with random selection initialization.
(CBsize: codebook Size; itr: number of iterations).

CBsize 256 512 1024
Performance PSNR(dB) itr PSNR(dB) itr PSNR(dB) itr

Lena

KMeans: Best 30.447 25 31.293 29 32.138 27
KMeans: Ave 30.379 36 31.237 38 32.083 34

MKMeans F: Best 30.495 22 31.453 23 32.439 20
MKMeans F: Ave 30.445 26 31.420 27 32.387 26
MKMeans V: Best 30.470 16 31.420 14 32.452 17
MKMeans V: Ave 30.436 23 31.393 24 32.383 22

Our: Best 30.501 18 31.463 20 32.441 15
Our: Ave 30.450 22 31.420 23 32.391 20

Peppers

KMeans: Best 29.863 32 30.591 24 31.368 19
KMeans: Ave 29.799 43 30.540 37 31.313 29

MKMeans F: Best 29.956 25 30.789 25 31.712 18
MKMeans F: Ave 29.917 37 30.714 33 31.625 24
MKMeans V: Best 29.912 20 30.758 19 31.732 16
MKMeans V: Ave 29.861 30 30.710 24 31.593 20

Our: Best 29.962 16 30.793 17 31.735 16
Our: Ave 29.921 27 30.718 23 31.630 19

Baboon

KMeans: Best 23.23 35 23.893 31 24.616 20
KMeans: Ave 23.21 44 23.874 39 24.589 26

MKMeans F: Best 23.267 30 23.954 26 24.764 19
MKMeans F: Ave 23.245 36 23.938 30 24.745 23
MKMeans V: Best 23.253 23 23.946 20 24.746 15
MKMeans V: Ave 23.231 29 23.927 25 24.723 18

Our: Best 23.255 23 23.965 20 24.763 14
Our: Ave 23.246 29 23.940 24 24.747 17

position (i, j) and x′ij be the decoded pixel value at the position (i, j), then PSNR can be
defined as follows:

PSNR = 10 log10

2552∑511
i=0

∑511
j=0(xij−x′

ij)
2

512×512

(8)

Because the random selection is adopted for each algorithm, the performance is averaged
over ten runs.

All the algorithms are terminated when the ratio of the mean squared error difference
between two iterations to the mean squared error of the current iteration is within 0.0001
or 0.01%. In Table 1, the PSNR values and the numbers of iterations for different images
with different codebook sizes are shown, where ”Best” and ”Ave” denote the best and the
average results over ten runs respectively. From Table 1, we can see that, if the random
selection technique is used, our scheme requires the least average number of iterations than
other algorithms and can also get better codebooks than other algorithms on average.

5. Conclusions. This paper presents an improved K-means algorithm for image vector
quantization. The main idea is to classify the training vectors into 8 categories based on
the edge orientation of each vector, and then randomly select initial codewords from each
category with the number of codewords proportional to the number of vectors in each
category. The experimental results based on three test images show that our algorithm
can converge to a better locally optimal codebook with a faster convergence speed. Future
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work will concentrate on how to select more other features and classify them to obtain
more representative features for color image retrieval.
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