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Abstract. In this paper, instead of solving the Lagrange equations directly, we introduce
a new unconstrained problem by applying operator splitting and penalty techniques to
take replace of the original minimizing issue. We have proved Split Bregman method is
efficient to restore the degraded images.
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1. Introduction. In recent years, image restoration technology research and applica-
tion mainly concentrated in areas, such as space exploration, astronomical observation,
material research, remote sensing, military science, biological sciences, medical imaging,
traffic monitoring, criminal investigation fields. In the image acquisition, transmission
and storage in the process, due to various factors, such as the effect of atmospheric tur-
bulence, camera equipment of optical system in the diffraction, nonlinear characteristics
of the sensor, the aberrations of the optical system, imaging devices and objects between
the relative motion, will inevitably cause image degraded. Therefore, image restoration is
necessary to suppress noise and improve image quality. The process of image restoration
is that, an observed image u0 is divided into an original image u and an additive noise n ,

u0 = Au+ n, (1)

where A is a bounded linear operator, n is the white Gaussian noise. For degraded image
u0 , any small perturbation may result in the solution A−1u0 to be far away from the
original image u, many different approaches have been proposed for image denoising.
Among these methods, the total variation(TV) model is distinguished for excellent edge
preserving ability[1, 2], it became one of the most widely used regularizers in image
restoration. The energy functional[3] is of the following form:

E(u) =

∫
Ω

|∇u|dxdy +
λ

2

∫
Ω

(u− u0)2dxdy. (2)
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Where u represents the pixel value of the image, and it meets the following noise con-
straints:

1

|Ω|

∫
Ω

(u− u0)2dxdy = σ2, (3)

the original image will be contaminated by poor white noise. The pixel value of the
corresponding pixels of the original image is adopted by the Lagrange multiplier method,
the Euler-Lagrange equation of (2) is that

−∇ ·
(
∇u
|∇u|

)
+ λ(u− u0) = 0. (4)

Where ∇ is the gradient operator. λ is the regularization parameter which balances
the regularization term and the data fidelity term. In order to solve the neighborhood
information of the image in the flat area, L2 model introduced by Tikhonov and Arsenin,
is given by

E(u) =

∫
Ω

|∇u|2dxdy +
λ

2

∫
Ω

(u− u0)2dxdy. (5)

The corresponding Euler-Lagrange equation is

∆u+ λ(u− u0) = 0. (6)

From the above discussion, we can see that the L1 norm variation model can effective
preserve the edges and corners . However, it yields unwanted stair-casing [4,5]. While
the L2 norm variation model can be realized isotropic diffusion in the flat region, the
image edge preserving ability is very poor. The most ideal method is that, it not only
can protect the edge information, but also can make the flat area is well spread. Thus
this paper will combine two above models organically, the proposed hybrid model is as
follows:

E(u) = g

∫
Ω

|∇u|dxdy +
1− g

2

∫
Ω

|∇u|2dxdy +
λ

2

∫
Ω

(u− u0)2dxdy. (7)

Where g(x,y) is a stopping function chosen as

g(x, y) =


0 if |∇Gσ ∗ u0| ≤ β1,

1− 1
1+10∗|∇Gσ∗u0(x,y)|2 if β1 ≤ |∇Gσ ∗ u0| ≤ β2,

1 if |∇Gσ ∗ u0| ≥ β2.

where λ ≥ 0 is the coefficient of the fidelity term, Gσ is the Gaussian kernel and σ is the
standard deviation. Firstly, when g = 1, this pixel is located in a very prominent edge
section, then the edge need to recover. At this time, the proposed hybrid model becomes
the L1 norm variation model, which is able to achieve well for preserving edges. Secondly,
when g = 0, this pixel is located in the flat area of the image, at this time, the proposed
hybrid model becomes L2 norm variation model, which can eliminate the staircase effect.
It can be seen that the parameter g is able to control the diffusion coefficient. From the
above analysis, by adding the parameter g , the proposed hybrid model[6,7] can adaptively
choice the L1 norm variation model or L2 norm variation model according to the location
of the pixels point. the proposed hybrid model performs very well for removing noise
while preserving edges.

The rest of the paper is organized as follows. In section 2, we describe the necessary
definitions and preliminaries about the proposed model. In Section 3, we give a brief
review of some related iterative algorithms. In section 4, we apply two algorithms to
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compute the hybrid model. In section 5, numerical experiments with two algorithms are
presented. Finally, a brief summary is given in section 6.

2. Preliminaries. In this section, we give some definitions,propositions and prove theo-
rem.

Definition 1. Let Ω ⊆ RN be a bounded open domain, u ∈ L1
loc(Ω) ,then the total

variational of u is defined by∫
Ω

|Du|dxdy = sup

{∫
Ω

udivωdxdy : ω = (ω1, ω2) ∈ C∞0 (Ω), |ω| ≤ 1

}
.

Proposition 1.(Lower semicontinuous). Suppose that {ui}∞i=1 and u∗ ∈ L1(Ω) is such
that ui → u∗ in L1(Ω) , then

∫
Ω
|∇u∗| ≤ lim inf

∫
Ω
|∇ui|. Where BV (Ω) is a Banach

space[8].
Proposition 2. Let u∗ ∈ L2(Ω) ∩ BV (Ω), then there exists a minimizing sequence
{ui}∞i=1 ⊂ BV (Ω) such that lim

i→∞
|ui − u∗| = 0 and lim

i→∞

∫
Ω
|∇ui| =

∫
Ω
|∇u| . we can prove

the existence and uniqueness of the optimization problem (7) solution.

Theorem 2.1. The problem (7) has a unique solution in L2(Ω) ∩BV (Ω).

Proof. Let {ui}∞i=1 is a minimizing sequence. By the Kondrachov compactness theorem,
the sequence {ui}∞i=1 is precompact in L2(Ω) ∩ BV (Ω). Namely, there exists a function
u∗ satisfying ui → u∗ a.e. Since the function is convex and coercive in L2(Ω) ∩ BV (Ω) ,
the lower semicontinuity property is satisfied, then we have

lim
i→∞

inf ||ui||BV ≥ ||u∗||BV , ||ui||L2(Ω) ≥ ||u∗||L2(Ω),

and

inf

{
g

∫
Ω

|∇u|dxdy +
1− g

2

∫
Ω

|∇u|2dxdy +
λ

2

∫
Ω

(u− u0)2dxdy

}

≥ lim
i→∞

inf

{
g

∫
Ω

|∇ui|dxdy +
1− g

2

∫
Ω

|∇ui|2dxdy +
λ

2

∫
Ω

(ui − u0)2dxdy

}

≥
{
g

∫
Ω

|∇u∗|dxdy +
1− g

2

∫
Ω

|∇u∗|2dxdy +
λ

2

∫
Ω

(u∗ − u0)2dxdy

}
.

Which concludes that u∗ is minimum point of (7). Next, we give the proof of the unique-
ness. Let u∗ and v∗ are two minimum point of (7). following from the convexity, we easily
obtain that ∇u∗ = ∇v∗, which means that u∗ = v∗ + c, Additionally, considering that
F (u) = 1−g

2
||∇u||2 + λ

2
||u− u0||22 is strictly convex, we conclude thatAu∗ = Av∗, therefore

Ac = 0. Note that A is linear and the functional (7) is coercive in L2(Ω) ∩ BV (Ω), , we
deduce that c = 0 and u∗ = v∗ .

3. Bregman-Related Algorithms. Recently, split Bregman iteration has attracted ex-
tensive attention in the field of signal recovery. This method is valid for norm minimization
problems. The essential idea is to convert a constrained optimization problem into an un-
constrained one. In this section, We will introduce the calculation methods in great detail
to solve this kind of problem.
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3.1. Bregman iteration. As we have mentioned above, Bregman iteration was originally
introduced and studied in image processing by Osher et al. in [9], their core idea is to
transform a constrained optimization problem into a series of unconstrained problems.
Then through the Bregman distance to perform variable separation iteration quickly.
Two convex energy functions are E(u) andH(u), the minimization problem is

min
u
J(u) +H(u). (8)

The Bregman iteration was originated from the concept of distance [10]

EP
J (u, uk) = J(u)− J(uk)− (P, u− uk). (9)

Then the Bregman iteration for (8) is

uk+1 = min
u
EP
J (u, uk) +H(u), (10)

uk+1 = min
u
J(u)− J(uk)− (P, u− uk) +H(u). (11)

In order that(11) is well defined for k + 1, we have:

P k+1 = P k −∇H(uk+1). (12)

When H(u) = λ
2
||Au− f + pk||22 and A is linear, the Bregman iteration of (11) and (12)

is equivalent to the following simplified version [11]:

uk+1 = min
u
J(u) +

λ

2
||Au− f + pk||22, (13)

P k+1 = P k + Auk+1 − f. (14)

3.2. Split Bregman iteration. We consider the general L1 norm problem, assume that
J(u) = |d| and d = τ(u). Then (8) become to the following form:

min
u,d
||d||1 +H(u), (15)

such that d = Φ(u).
Here, assume that H(u) and|τ(u)| are convex function, and τ(u) is differentiable. In

order to solve this problem [12,13], we transform it into an unconstrained problem:

min
u,d
||d||1 +H(u) +

µ

2
||d− τ(u)||22. (16)

Then the problem (16) can be solved with the simplified two-phase iterative algorithm,
we get

(uk+1, dk+1) = min
u,d
||d||1 +H(u) +

µ

2
||d− τ(u)− bk||22, (17)

bk+1 = bk +
(
τ(uk+1)− dk+1

)
. (18)

(17) and (18) are the two iteration formula of the split Bregman iteration [14,15,16]. In
order to compute (17), we must minimize the subproblems of u and d as follows:

(uk+1, dk+1) = min
u,d
||d||1 +H(u) +

µ

2
||d− τ(u)− bk||22, (19)

dk+1 = min
u,d
||d||1 +

µ

2
||dk − τ(uk+1)− bk||22. (20)

We compute d by using soft shrinkage operators :

uk+1
j = shrink

(
τ(u)j + bkj ,

1

µ

)
, (21)
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where shrink(x, y) = x
|x| ∗max(|x| − y, 0).

This algorithm is extremely fast and simple, it is widely uded in image processing and
the convergence analysis were given in Refs.

4. Computational method.

4.1. Algorithm 1: the variational method. Numerically, we use the following mini-
mization problem to approximate (7):

min
u
g

∫
Ω

|∇u|dxdy +
1− g

2

∫
Ω

|∇u|2dxdy +
λ

2

∫
Ω

(u− u0)2dxdy. (22)

Next, we will derive the Euler-Lagrange equation of energy (22), for any real number ε
and ν functions ,

dE(u+ εν)

dε
=

d

dε

∫
Ω

g|∇udxdy + ε∇ν|dxdy +
1− g

2
|∇u+ ε∇ν|2dxdy

+
λ

2
|u+ εν − u0|2dxdy

when ε = 0, we will obtain

dE(u+ εν)

dε
|ε=0 =

∫
Ω

g

|∇u|
∇ν · ∇u+ (1− g)∇u · ∇ν + λ(u− u0)dxdy = 0. (23)

In conclusion, we get the Euler-Lagrange equation as follows:{
−∇ ·

(
g
|∇u|∇u

)
−∇ · ((1− g) · ∇u) + λ(u− u0) = 0,

∂u
∂n
|∂Ω = 0.

(24)

4.2. Algorithm 2: Split Bregman method. In this section, we apply the Split-
Bregman method to solve the proposed model (7). By introducing several auxiliary vari-
ables d = (dx, dy) , make the following substitutions for model (22): dx = ∇xu, dy = ∇yu
. This yields a constrained optimization problem:

min
u

{
λ

2
||u− u0||22 +

1− g
2
||∇u||22 + g||(dx, dy)||1

}
, (25)

s.t. dx = ∇xu, dy = ∇yu.
Using 2-norm to enforce the above constraints, it becomes:

min
u,dx,dy

λ

2
||u− u0||22 +

1− g
2
||∇u||22 + g||(dx, dy)||1

+
σ

2
||dx −∇xu||22 +

σ

2
||dy −∇yu||22. (26)

Applying the Split-Bregman iteration to solve the constraints problem, we can get the
following iterative scheme (27) and (28):

(uk+1, dk+1
x , dk+1

y ) = arg min
u,dx,dy

λ

2
||u− u0||22 +

1− g
2
||∇u||22 + g||(dx, dy)||1

+
σ

2
||dx −∇xu||22 +

σ

2
||dy −∇yu||22, (27)

bk+1
x = bkx + (∇xu

k+1 − dk+1
x ), bk+1

y = bky + (∇yu
k+1 − dk+1

y ). (28)
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where the parameters σ > 0 , k is the iteration times. The formula (27) can be solved
effectively by minimizing with respect to u and (dx, dy). Hence we need to solve the
following two minimization subproblems:

uk+1 = arg min
u

λ

2
||u− u0||22 +

1− g
2
||∇u||22 +

σ

2
||dx −∇xu− bkx||22

+
σ

2
||dy −∇yu− bky||22, (29)

(dk+1
x , dk+1

y ) = arg min
dx,dy

g||(dx, dy)||1 +
σ

2
||dx −∇xu− bkx||22 +

σ

2
||dy −∇yu− bky||22. (30)

1.Since the right side of (29) is differentiable, for solving the u-subproblem , we derive
the optimality condition

[λ− (1− g + σ)∆]u− λu0 − σ∇>x (dkx − bkx)− σ∇>y (dky − bky) = 0, (31)

where ∆ = −(∇>x∇x +∇>y∇y), ∇>x and∇>y are the adjoint matrix of ∇xand ∇y respec-
tively. For reducing the complexity of the algorithm, we apply the fast Fourier transform
(FFT) [17, 18] to solve the u-subproblem

uk+1 = F−1

[
F
(
λu0I + σ∇>x (dkx − bkx) + σ∇>y (dky − bky)

)
F (λ− (1− g + σ)∆)

]
. (32)

2.The d-subproblem can be solved by shrinkage formulation [19], the closed-form solu-
tion is:

dk+1
x = max

(
sk − g

σ
, 0
)
· s

k
x

sk
, (33)

dk+1
y = max

(
sk − g

σ
, 0
)
·
sky
sk
. (34)

Where

skx = ∇xu
k+1 + bkx, sky = ∇yu

k+1 + bky, sk =
√

(skx)
2 + (sky)

2.

We summarize the algorithm as follows:

1.Initialization: setu0 = u0 ,and d0
x = d0

y = b0
x = b0

y = 0.
2.Fork = 0, 1, · · · , do.

• a: solve (32) to get uk+1 ,
• b: solve (33) and (34) to get dk+1

x and dk+1
y respectively,

• c: update bk+1
x and bk+1

y by (28).

End do still some stooping rule meet.

5. Numerical Experiments. In this section, several experiments are performed to
demonstrate the effectiveness of our proposed split Bregman iteration algorithm and the
adaptive hybrid variation model. All experiments are generated in MATLAB 7.8 environ-
ment on a desktop with Windows XP operating system; 2.0 GHz Intel core 2DUO CPU,
and 2GB memory. The performance of all algorithms is measured by the peak signal to
noise ratio (PSNR) and mean squared error MSE.

PSNR = 10 lg
255× 255

1
M×N

∑
i,j

(u′i,j − ui,j)2
,
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Table 1. Comparison of the recovered results

Figure Method Niter Time(s) PSNR MSE
Lena TV 165 61.949299 41.0489 5.0969
Lena SBI 180 3.925539 42.0802 4.0401

Table 2. Comparison of the recovered results

Figure Method Niter Time(s) PSNR MSE
Cameraman TV 174 60.630745 44.1710 3.4853
Cameraman SBI 186 3.196993 44.9083 2.0949

MSE =
1

M ×N
∑
i,j

(u′i,j − ui,j)2,

If there is a higher peak signal to noise ratio and a lower mean square error, the image
quality will be better. Moreover, the stopping criterion of all algorithms must satisfies
the following inequality:

||uk+1 − uk

||uk+1||
≤ 5× 10−4.

Three classical gray scale images are used for synthetic degradations in our experiments.
For this adaptive hybrid variation model, we still use the traditional fixed point iteration
method and split Bregman iteration method. We choose λ = 0.8 and g = 0.5 ,β1 = 50
,β2 = 150 in all experiments. The stopping condition of the iterations in all experiments
is ||uk+1 − uk||/||uk+1|| ≤ 5 × 10−4. The parameters in split Bregman iteration method
choose λ = 2e + 6 and g = 0.4, σ = 1e − 4. Table [1, 2, 3] list data to compare three
experiments based on image restoration. As we can seen from the data in table [1, 2, 3]
,split Bregman iteration algorithm not only reach stopping standards significantly higher
than TV, but also restoring time is significantly less than TV, which means that split
Bregman iteration algorithm has faster convergence speed. table [1, 2, 3] show that split
Bregman algorithm is better than the TV algorithm.

Figure 1. Recovered results. (a) degraded image, (b) TV , (c) Split-Bregman.
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Figure 2. Recovered results. (a) degraded image, (b) TV , (c) Split-Bregman.

Figure 3. Recovered results. (a) degraded image, (b) TV , (c) Split-Bregman.

Table 3. Comparison of the recovered results

Figure Method Niter Time(s) PSNR MSE
Boat TV 165 61.949299 41.0489 5.0969
Boat SBI 180 3.925539 42.0802 4.0401

6. Conclusions. In this paper, we propose an adaptive hybrid variation model and ap-
plied the split Bregman iteration algorithm to solve it. Several numerical experiments
show that split Bregman iteration algorithm has advantages over the TV algorithm mainly
in the following aspects: firstly, split Bregman algorithm decomposes the energy functional
into two subproblems of alternating iterations variables, which avoid to solve the solution
of complex curvature terms in the gradient descent equation; Secondly, split Bregman
iteration algorithm not only converges faster than TV, but also has higher computational
efficiency. Finally, the split Bregman iteration algorithm reduces the influence of the pun-
ishing parameter and the energy gradient to the convergence state in the image processing
by using fewer iteration times than the traditional algorithm. The proposed model and
algorithm can be extended to further application in image processing.
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