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Abstract. Image segmentation has always been a fundamental problem in image anal-
ysis and understanding due to the intensity inhomogeneity. In order to address this
issues, a novel region-based approach which combines the local Gaussian distribution
fitting (LGDF) with local robust statistics is presented. In the proposed model, we in-
tegrate the local robust statistics information with the LGDF energy term which makes
use of the inter-quartile range, mean absolute deviation and intensity median in local
region. Moreover, the penalty energy term is incorporated into the energy function to
avoid the re-initialization. Finally, minimization of this energy function with a level
set regularization term. Experiments on images of various modalities demonstrated the
superior performance of the proposed method when compared with other state-of-the-art
approaches.
Keywords: Image segmentation, Intensity inhomogeneity, Local Gaussian distribution
fitting, Local robust statistics

1. Introduction. Image segmentation has always been a crucial step in image under-
standing and computer vision. In recent years, scholars have provided a large body of
image segmentation algorithms, one of the most attractive methods is active contour
model (ACM) [1] which has been widely applied. The essential idea of ACM is to obtain
the target boundaries according to an energy-minimizing method. Existing active contour
models can be generally categorized into two major groups: edge-based models [2-6] and
region-based models [7-11].

Edge-based models often utilize an edge indicator to stop the curve from the target
boundaries. They have been successfully used to extract contour of a large gradient, but
it is sensitive to discontinuous boundaries and noise. Region-based models usually use a
certain region descriptor to find a partition on the image field. Therefore, they show better
performance on images with weak boundaries. The Chan-Vese (C-V) model, presented
by Chan and Vese [12], is one of the most common region-based models. Nevertheless,
this method cannot segment the images with intensity inhomogeneity because it supposes
that the grayscale of image are statistically homogeneous.

Recently, local intensity information is applied to handle intensity inhomogeneity. For
example, Li et al. [13-14] presented a method driven by region scalable fitting energy
which is known as the local binary fitting (LBF) model. This model introduced the
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intensity information of local region based variational level set approach. Thus, it can
segment the images with intensity non-uniformity. However, when the initial contour is
set inappropriately, it is easy to fall into local minimum. In [15], Zhang et al. presented
another local active contour model with local Gaussian distribution fitting (LGDF) energy.
This approach used the Gaussian distribution with spatially varying mean and variance to
describe the image model. Thereby it can distinguish regions with similar intensity means
but different variances. In [16], Li et al. think that only utilizing intensity information
may have effects on convergence rate, thus they presented a novel region-based model
with local statistics information, named NRBLSI model. So the method can be used for
accurate segmentation of medical images in the presence of severe intensity inhomogeneity.
However, all of them are sensitive to initialization of the contour to some extent.

In this study, we propose a novel LGDF model with local robust statistics information.
As is pointed out in [17], the popular characteristic of the local robust statistics is that
they are not sensitive to image noise and they can compute efficiently. By integrating the
local robust statistics information, the new LGDF model can make use of the inter-quartile
range, mean absolute deviation and intensity median in local region. Some experiments
have been conducted on images of various modalities to demonstrate the superiority of
our model when compared with the LBF, NRBLSI and LGDF model.

The rest of this paper is organized as follows. In Section 2, we briefly review some
related works. Section 3 focuses on our method. In Section 4, the proposed model is
validated by experiments on several synthetic and real images. Finally, we summarize our
work in the last Section.

2. Background.

2.1. C-V model. Let I : Ω → R be an original image and C be a closed curve. Chan
and Vese [12] presented a common region-based method based on Mumford-Shah model
[18], the energy functional is presented as follows:

ECV (C, c1, c2) = λ1

∫
inside(C)

|I(x)− c1|2dx+ λ2

∫
outside(C)

|I(x)− c2|2dx+ ν|C| (1)

where λ1, λ2, ν are positive constants, c1 and c2 denote the grey value inside and outside
the contour C. The first and second are the data term that drive curve to approach the
boundaries of object, |C| is the length term. Because the grayscale of image are statisti-
cally homogeneous, C-V model cannot segment the images with intensity inhomogeneity.

2.2. LBF model. In order to overcome the problem of intensity inhomogeneity, Li et
al. [13-14] introduced a variational level set approach driven by region scalable fitting
energy. The method is based on the following model:

ELBF (C, f1, f2) = λ1

∫
Ω

∫
inside(C)

Kσ(x− y)|I(y)− f1(x)|2dydx

+ λ2

∫
Ω

∫
outside(C)

Kσ(x− y)|I(y)− f2(x)|2dydx
(2)

where Kσ is a truncated Gaussian kernel where K(x − y) = 0 for |x − y| ≥ r. f1 and
f2 are two smooth functions in a Gaussian window, respectively. Thus, LBF model has
the capability of handling intensity inhomogeneity. However, if the initial contour is set
inappropriately, it is easy to fall into local minimum.
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2.3. LGDF model. In [15], Zhang et al. presented a statistical and variational level set
method. By using maximum a posteriori probability and Bayes’ rule, the LGDF energy
can be described as follows:

ELGDF =

∫
Ω

(
2∑
i=1

λi

∫
Ωi

−ω(x− y) log pi,x(I(y))dy

)
dx (3)

where λi are the positive constant and the pi,x(I(y)) is the probability density in region
Ωx

⋂
Ωi, which is defined as:

pi,x(I(y)) =
1√

2πσi(x)
exp

(
−(µi(x)− I(y))2

2σ2
i (x)

)
, i = 1, 2 (4)

where µi(x) is the local intensity in the partition, σi(x) is the standard deviations. As-
suming that the mean and variance of the local Gaussian distribution are spatially varying
parameters, thereby it can distinguish regions with similar intensity means but different
variances. However, the LGDF model still has the shortcoming that the convergence rate
of the curve is slow.

3. The Proposed Scheme.

3.1. Local robust statistics. As is mentioned in literature [19], the robust statistical
method has been widely used in every field and it maybe has good robustness for noise and
intensity inhomogeneity. The algorithm process is described as follows. First, we select a
pixel x and its neighborhood in original image I. Second, in the selected neighborhood of
x, their intensity values of the pixels are expressed in an increasing number x1, x2, ..., xn.
Subsequently, the inter-quartile range IQR(x), mean absolute deviation MAD(x) and
intensity median MED(x) can be described as follows:

MED(x) =

{
x(n+1)/2, if n is odd number
1
2
[xn/2 + x(n+1)/2], if n is even number

(5)

IQR(x) = Q3(x)−Q1(x) (6)

MAD(x) =
Σn
i=1|xi − x̄|

n
(7)

Look at Eq. (6), x1, x2, ..., xn are fell into four equal partitions, Q1(x) and Q3(x) are
the first and third quartiles. x̄ in Eq. (7) denotes the mean of x1, x2, ..., xn. IQR(x)
and MAD(x) are used to sharpen target boundaries, while MED(x) performs well on
reducing image noise. Hence, the new image can be rewritten:

Inew(x) = MED(x) + τ1IQR(x) + τ2MAD(x) (8)

where τ1 and τ2 are information fusion coefficients. In general, the values of τ1 and τ2

range from 0 to 1.

3.2. Level set formulation. As is mentioned above, the energy ELGDF presented in
Eq. (3) is unable to fully use image information. Consequently, the LGDF model has
a slow convergence rate and it is sensitive to strong noise. In order to address these
problems, we propose a novel LGDF model with local robust statistics information.
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In this paper, the grey value of original image I is replaced by the new input image
Inew(x). Hence, the new energy functional is expressed as follow:

ELGDF
new =

∫
Ω

(
2∑
i=1

λi

∫
Ωi

−ω(x− y) log pi,x(MED(y) + τ1IQR(y) + τ2MAD(y))dy

)
dx

(9)

where λ1 and λ2 are positive constants.
Using the Heaviside function H(φ) , the energy in Eq. (9) can be written as the

following level set formulation:

ELGDF
new =

∫
Ω

(
2∑
i=1

λi

∫
Ω

−ω(x− y) log pi,x(MED(y) + τ1IQR(y) + τ2MAD(y))Mi(φ(y))dy

)
dx

(10)

where M1(φ) = H(φ) and M2(φ) = 1−H(φ).
To derive an accurate and smooth contour, we need to add a length term L(φ) and a

regularization term P (φ).

L(φ) =

∫
Ω

(|∇H(φ(x))|)dx (11)

P (φ) =

∫
Ω

1

2
(|∇φ(x)| − 1)2dx (12)

Therefore the entire energy functional is

FLGDF
new (φ, µ1, µ2, σ

2
1, σ

2
2) = ELGDF

new (φ, µ1, µ2, σ
2
1, σ

2
2) + µP (φ) + νL(φ) (13)

In our implementation, Heaviside function H is usually approximated by a smoothing
function Hε defined by

Hε(x) =
1

2
(1 +

2

π
arctan(

x

ε
)) (14)

The derivative of Hε is the following smoothing function:

δε(x) =
1

π

ε

ε2 + x2
(15)

Therefore, the energy functional FLGDF
new in Eq. (13) is approximated by:

FLGDF
new,ε (φ, µ1, µ2, σ

2
1, σ

2
2) = ELGDF

new,ε (φ, µ1, µ2, σ
2
1, σ

2
2) + µP (φ) + νLε(φ) (16)

3.3. Gradient descent flow. By minimization of the energy FLGDF
new,ε in (16), image

segmentation can be simultaneously achieved. For fixed µi and σi , we minimize the
function FLGDF

new,ε with respect to φ can be obtained by solving the following gradient flow
equation.

∂φ

∂t
= −δε(φ)(λ1e1 − λ2e2) + µ(∆φ− div(

∆φ

|∆φ|
)) + νδε(φ)div(

∆φ

|∆φ|
) (17)

where

e1(x) =

∫
Ω

ω(x− y)

[
log(
√

2πσ1(y)) +
(µ1(y)− Inew(x))2

2σ1(y)2

]
dy (18)

e2(x) =

∫
Ω

ω(x− y)

[
log(
√

2πσ2(y)) +
(µ2(y)− Inew(x))2

2σ2(y)2

]
dy (19)
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By calculus of variations, the parameters µi(x) and σ2
i (x) can be expressed as:

µi(x) =

∫
ω(x− y)Inew(y)Mi,ε(φ(y))dy∫

ω(x− y)Mi,ε(φ(y))dy
(20)

and

σ2
i (x) =

∫
ω(x− y)(µi(x)− Inew(y))2Mi,ε(φ(y))dy∫

ω(x− y)Mi,ε(φ(y))dy
(21)

4. Experimental Results. In this subsection, the LBF model [13-14], LGDF model
[15], NRBLSI model [16], and the method of this paper are applied on a variety of syn-
thetic images and medical images. All of the experimental results are obtained by the
computer with Pentium (R) Dual-Core 2.93 GHz CPU, 4 GB RAM and Windows 7 (64
bit) operating system. Unless otherwise stated, the following default setting of the pa-
rameter is used in the experiments: c0 = 2.0, scale parameter σ = 3.0, time step ∆t = 0.1,
µ = 1.0.

Figure 1. Comparison of different methods for synthetic images with dif-
ferent initial contours. The first row: results of LBF model. The second
row: results of NRBLSI model. The third row: results of LGDF model.
The last row: results of our method.

4.1. Segmentation of synthetic images. We firstly apply our method to segment
two synthetic images, which are displayed in Fig. 1 and Fig. 2. The two image sizes are
79×75 and 127×96 , respectively. These images are corrupted by intensity inhomogeneity
and strong noise in different levels. As shown in Fig. 1, the final segmentation results
obtained after the convergence of these algorithms are marked as blue contours. First
to fourth rows show the segmentation results by LBF, NRBLSI, LGDF and our method,
respectively. It can be seen from Fig. 1 that our method can achieve the desirable
results with different initial contours. The state of Fig. 2 is similar to Fig. 1. Both two
experiments demonstrate our method is very robust to the initial contours.

4.2. Segmentation of medical images. We also evaluate the performance of our
model on six medical images with obvious intensity inhomogeneity and high noise. Fig. 3
shows the segmentation results by LBF model (first row), NRBLSI model (second row),
LGDF model (third row) and the proposed model (last row). The parameters are set as
follows: λ1 = 1.0, λ2 = 1.03, ν = 0.001 × 2552, τ1 = τ2 = 0.1 in our model. If λ1 < λ2
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Figure 2. Comparison of different methods for T-shaped Images with dif-
ferent initial contours. The first row: results of LBF model. The second
row: results of NRBLSI model. The third row: results of LGDF model.
The last row: results of our method.

, the contour tends to deflate, otherwise tends to inflate. It is obvious that LBF and
NRBLSI which only use the local intensity means fail to segment some medical images
with intensity inhomogeneity and weak boundaries. Taking more statistical characteristics
into account, LGDF model yields similar visual quality as our model in some images.

In order to test the performance of our model, the computational time and iterations
for segmentation are presented in Table 1. Owing to the application of local robust
statistics, the computational time and iteration number are reduced to a great extent.
Experiments have proved that our method has higher computing efficiency beside the
accurate segmentation.

Figure 3. Comparison of different methods for medical images. The first
row: results of LBF model. The second row: results of NRBLSI model.
The third row: results of LGDF model. The last row: results of our method.

4.3. Segmentation of noise images. In order to evaluate the sensitivity to noise, we
apply our method to the images corrupted by intensity inhomogeneity and noise simul-
taneously. In this experiment, the images with salt and pepper noise levels {0.01, 0.05,
0.1, 0.2, 0.3} is added into original image, as shown in the first row of Fig. 4 and Fig.
5. Second to fifth rows show the segmentation result by LBF model (first row), NRBLSI
model (second row), LGDF model (third row) and the proposed model (last row). We
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Table 1. Comparison with iterations and computational time (s) for the
images in Fig. 3 in the same order.

LBF model NRBLSI model LGDF model Our method

Image Iterations Time Iterations Time Iterations Time Iterations Time

1 500 5.85 500 5.71 300 5.74 230 4.34

2 500 13.51 500 12.89 300 7.19 150 3.61

3 500 9.47 500 9.03 220 4.30 120 3.80

4 500 10.67 500 11.39 80 2.40 60 1.87

5 320 3.84 340 4.56 380 8.18 180 4.03

6 500 11.65 200 4.06 260 4.71 180 3.43

Figure 4. Comparison results for T-shaped image polluted by various lev-
els of Salt and Pepper noise. The first row shows the images with noise
levels {0.01, 0.05, 0.1, 0.2, 0.3}, respectively. Second to fifth rows show the
segmentation result by LBF, NRBLSI, LGDF and the method.

observe form Fig. 4 and Fig. 5 that LBF and LGDF are sensitive to salt and pepper
noise, and thus they get undesirable results. The reason is that, compared with LBF and
LGDF, our method and NRBLSI model both contain the robust statistics information.
Among the robust statistics, the intensity median is used to reduce noise. Below the noise
level 0.2, NRBLSI has the capability of extracting the target polluted by salt and pepper
noise to some extent. Nevertheless, when the noise density reaches to 0.3, NRBLSI cannot
achieve the accuracy boundaries. By contrast, our model still can extract the boundary
of object correctly under the noise level 0.3. Therefore, the robustness of our method to
handle the images with salt and pepper noise is superior to the other three models.

In the next experiment, Fig. 6 and Fig. 7 show the comparison of results between our
method and the other three models on images polluted by Gaussian noise. The noise level
is {0.0005, 0.001, 0.002, 0.005}, respectively. We observe from Fig. 6 and Fig. 7 that all
of the above models can obtain the accuracy boundary when segmenting the image with
noise level 0.0005. However, when the noise level increases to 0.001, LBF and NRBLSI
cannot obtain the satisfactory results. The LGDF model successfully extracts the object
when images are corrupted by noise of lower strength, while our model still can detect
the accuracy object boundaries. These two experiments demonstrate that the proposed
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Figure 5. Comparison results for vessel image polluted by various levels
of Salt and Pepper noise. The first row shows the images with noise lev-
els {0.01, 0.05, 0.1, 0.2, 0.3}, respectively. Second to fifth rows show the
segmentation result by LBF, NRBLSI, LGDF and the method.

Figure 6. Comparison results for T-shaped image polluted by various lev-
els of Gaussian noise. The first row shows the images with noise levels
{0.0005, 0.001, 0.002, 0.005}, respectively. Second to fifth rows show the
segmentation result by LBF, NRBLSI, LGDF and the method.
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Figure 7. Comparison results for vessel image polluted by various lev-
els of Gaussian noise. The first row shows the images with noise levels
{0.0005, 0.001, 0.002, 0.005}, respectively. Second to fifth rows show the
segmentation result by LBF, NRBLSI, LGDF and the method.

model has a good robustness to Gaussian noise.

5. Conclusions.
In this paper, we propose a novel LGDF model with local robust statistics information.

In the proposed model, we efficiently utilize the advantages of local robust statistics of
image, which can contribute to decreasing the effects of noise and outliers, and reducing
the sensitivity to initial contour. As a result, our method has the capability of segmenting
images with intensity inhomogeneity and various type of noise. The experimental results
on synthetic and medical images show the superiority of our method over several state-
of-the-art active contour models.
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