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Abstract. Signal estimation is the basic function, applications and services of Internet
of Things. Due to the problems of spike non-normal noise, multiple signal classifica-
tion (MSC) algorithm will lose the tenacity for the 3D-DOA(3D-direction of arrival)
estimation of multiple-sources and obtain inaccurate results. In this paper, therefore,
we propose a new 3D-DOA estimation algorithm for amorphic multiple-sources based on
nested array and FLOC-MSC method. This new scheme firstly quantifies to covariance
matrix to extend the array aperture and it generates new covariance matrix. In addition,
the new method utilizes row vector of covariance matrix to construct Toeplitz matrix and
it uses the joint diagonal structure of Toeplitz matrix to create cost function. After-
wards, array output matrix is extended from second geometric moment to lower order
moment. We can get spatial spectrum based on covariation matrix through analyzing
covariation matrix. Eventually, after gradient operation for spatial spectrum, we conduct
extremum searching through one-dimensional spectrum peak search and find DOA of each
source. Our algorithm is compared to covariance fitting optimization technique and the
fast approximated power iteration-total least square-estimation of signal parameters via
rotational invariance technique (FAPI-TLS-ESPRIT) algorithm using the TLS-ESPRIT
method and the subspace updating via FAPI-algorithm. At the end, experiments show
that this new algorithm can accurately estimate 3D-DOA of mutiple-sources under the
spike non-normal noise condition, especially at low signal-to-noise ratio (SNR) values
with impulse. The new method has high estimation precision and resolution with un-
known and underdetermined number of sources.
Keywords: Multiple signal classification, 3D-direction of arrival, Nested array, FLOC-
MSC method, Toeplitz matrix, Covariation matrix

1. Introduction. Currently, DOA estimation[1] is used widely in a variety of military
and national economy areas, such as radar[1], sonar[2], communication[3], seismic explo-
ration, radio astronomy, navigation, sound source tracking[4-5] etc. DOA of signal is one
of the important parameters in electronic reconnaissance, it is also an important evidence
for signal sorting, radiating source recognition and locating and tracking. People have
raised more interest in DOA estimation. However, there is no prior information of sig-
nal in DOA of electronic reconnaissance compared with that in radar signal. Traditional
direction-finding methods, such as maximum signal method, amplitude-comparing bear-
ing method, are simple, easy to implement, but with low accuracy and low resolution.
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Although the interferometer direction finding method is higher accuracy, there are many
radiation sources with highly distribution density, at the same time, multi-signal problem
seriously affects its performance in modern electronic countermeasure environment. To
solve these problems, Liu J[6] proposed a low-complexity adaptive two-dimensional (2-D)
frequency estimation algorithm to jointly track 2-D direction-of-arrival (DOA) of multiple
moving targets with a uniform rectangular array (URA). The LOAFRI subspace track-
ing algorithm was applied to estimate the signal subspace recursively, then an adaptive
eigenvector-based frequency estimation approach was used to resolve the 2-D DOA from
the estimated signal subspace. Zheng Z[7] presented a fast algorithm for the central DOA
tracking by using uniform linear arrays(ULA), which firstly updated the signal subspace
in real-time by adopting the orthonormal projection approximation subspace tracking
with deflation algorithm, and then a low-complexity DOA method was used to estimate
the central DOA of distributed sources. Liu S[8] showed a new DOA method based on
new array signal data model established by sequential sampling. After building a tracking
equation, particle filter was improved with Reversible Jump Markov Chain Monte Carlo,
and finally real time DOA and source number was estimated on time. Tao J[9] proposed
novel quaternion data projection method, which had high robustness to the undulate phe-
nomenon arisen from the initialization,and converged faster than the conventional data
projection method. However, they suffer from a heavy computational load despite their
accuracy. Some more accurate DOA algorithms have been proposed. Song D S etc[10] pre-
sented an improved likelihood function to improve the performance of traditional DOA
estimate real-time dynamic tracking and the modified likelihood function was derived
from multiple signal classification algorithm spectral function. Gao X[11] proposed a
sequential Bayesian tracking approach based on the Maximum a posteriori principle to si-
multaneously update the arrival angles and the source signals in the Kalman filter step by
converting the update process of the state vector into a joint optimization problem. The
methods have been exhibited as above, if the DOA algorithm tracks detailed trajectory,
it must own an identical angular distribution with a 2Dsearch.

Sonia[12] etc. proposed new tracking method based on a simple covariance fitting opti-
mization technique exploiting the central and noncentral moments of the source angular
power densities to estimate the central DOA. The current estimates were treated as mea-
surements provided to the Kalman filter that model the dynamic property of directional
changes for the moving sources. What’s more, the covariance-fitting-based algorithm and
the Kalman filtering theory were combined to formulate an adaptive tracking algorithm.
And at the end of this paper, we conduct some experiments to compare our new method to
S-method[12]. In this paper, we present a new source 3D-DOA estimation method based
on rush non-normal noise covariant and 2-level nested array. Firstly, we make covariance
matrix vectorization as a new array receiving data and construct a new covariance matrix.
Then, we build up Toeplitz matrix for each row in the new covariance matrix and utilize
joint diagonal structure to generate cost function. Finally, we solve DOA of each source
through one-dimensional search. This new method is able to make high-precision DOA
estimation with unknown number of source, and effectively expands the array aperture,
saves the number of array elements. Because so far no papers present this method, so we
study this method with many experiments and finally it is proved to be efficiency.

This paper is organized as follows. In section2, we give some preliminaries. Section3 de-
tailed introduces the high-efficiency 3D-DOA estimation algorithm for amorphic multiple-
sources. We give the experiments and analysis in section4. There is a conclusion in
section5.

2. Preliminaries.
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2.1. Noise model. Rush non-normal background noise pulse can be described by SAS(Alpha
stable) distribution. It contains four parameters: feature parameter α, scale parameter
σ, skewed parameter β and location parameter µ. Where α denotes trailing degree of
distribution, the smaller α is, the heavier trailing is. σ represents dispersion degree of
distribution. It is equal to the variance of second-order moments. β = 0 is symmetric
degree of distribution relative to its distribution of center point. µ is the location, which
is equivalent to mean value of second-order moments. p is the order of matrix. a and b are
coefficient values. Autocorrelation matrix of array output cannot keep convergence under
spike pulse noise environment. Therefore, we define 5-order covariant based on fractional
lower order moments.

Gxx = Ex[xp−1]T =< x, x >p, 1 < p < α ≤ 2. (1)

If x is complex matrix, we define: x<p> = |x|p−1x∗. It is convergent with the following
properties:

• for independence variable < x1, x2 >p= 0.
• for aleatory variable < ax1 + bx2, x >p= a < x1, x >p +b < x2, x >p.
• for autonomous variable < x, ax1 + bx2 >p= ap−1 < x, x1 >p +bp−1 < x, x2 >p.

2.2. Signal model. There are far field, narrow band and stable source s[13]. M omni-
directional undifferentiated array elements are arranged into circular array with evenly
spaced. Radius is R. It is shown as figure1.

Figure 1. Circular array with evenly spaced

l0 is the distance between circular array center O and source. Pedal point of signal
source s′ on circle flat is s. Pitch angle of signal source is θ. α1 is horizontal angle of
source, which is inclined angle between O1 and O′s. αm is inclined angle between Om and
O′s. lm is the distance between array element m and s. For the m− th array element,

αm = α1 +
2π(m− 1)

M
,m = 1, 2, · · · ,M (2)

lm =
√
R2 + l20 − 2Rl0cosθcosαm (3)

Time lag of information source arriving at array element is ∇t = 2π(lm − l0)/(fλ). f
is source center angular frequency and λ is source wavelength. Phase difference can be
expressed by:

ωm =
2π(lm − l0)

λ
. (4)
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So we can define direction matrix composed of p information source:

AM×p =


e−

j2π
λ

(l11−l01) e−
j2π
λ

(l12−l02) → e−
j2π
λ

(l1p−l0p)

e−
j2π
λ

(l21−l01) e−
j2π
λ

(l22−l02) → e−
j2π
λ

(l2p−l0p)

↓ ↓ ↓
e−

j2π
λ

(lM1−l01) e−
j2π
λ

(lM2−l02) → e−
j2π
λ

(lMp−l0p)

 = [a(ω1), · · · , a(ωp)] (5)

2.3. Array model. 2-level nested array structure is as figure2. Number of array elements
is N . Array element number of first level is N1. The distance of array element is d1.
Array element number of second level is N2. The distance of array element is d2. And
d2 = (N1 + 1)d1. The array element location of first level is n1, d1(d1 = 0, 1, · · · , N1 − 1).
The array element location of second level is n2, d2 − d1(n2 = 1, · · · , N1).

Figure 2. 2-level nested array structure

Assuming there are K uncorrelated narrow-band far-field signals which are incident on
array a direction angle θk(k = 1, 2, · · · , K) respectively. Also it satisfies the requirement
θk ∈ (−90◦, 90◦), d1 ≤ λmin/2, λmin is the minimum signal wavelength. Hence steering
vector of k − th source is represented by :

a(θk) = [1, e−j2πd1/λsinθk , · · · , e−j2π(N1−1)d1/λsinθk , e−j2π(d2−d1)d1/λsinθk , · · · , e−j2π(N2d2−d1)d1/λsinθk ]T . (6)

Corresponding array flow is:

A = [a(θ1), a(θ2), · · · , a(θK)]. (7)

So we can get the array receiving data x(t) at t time:

x(t) =
K∑
k=1

a(θk)sk(t) + n(t) = As(t) + n(t). (8)

Where s(t) = [s1(t), s2(t), · · · , sK(t)] is K×1-dimensional vector. A is N×K-dimensional
matrix. n(t) is N × 1-dimensional white Gaussian noise.

3. High-efficiency 3D-DOA estimation algorithm for amorphic multiple-sources.

3.1. Array aperture extension. We get T (T = L×M) snapshot data from array model
constructed by (8). And it is divided into M sections. Data length of each section is L.
Assuming that each section of the source data satisfies smooth approximation conditions.
Namely,

E|sk(t)|2 = σ2
mk, t ∈ [(m− 1)L,mL− 1],m = 1, 2, · · · ,M (9)

Covariance matrix of m− th section data is:

Rm = E[x(t)xH(t)] = ADmA
H + σ2

nI, t ∈ [(m− 1)L,mL− 1] (10)
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Where Dm = diag(σ2
m1, σ

2
m2, · · · , σ2

mK) is signal covariance matrix of m − th section
data. σ2

mk(k = 1, 2, · · · , K) is signal power. σ2
n is white Gaussian noise power. We make

vectorization for Rm and stack all columns into one column, get N-dimensional vector ym:

ym = vec(Rm) = (A∗ ⊗ A)pm + σ2
nIm. (11)

Where pm = [σ2
m1, σ

2
m2, · · · , σ2

mK ]T , Im = [eT1 , e
T
2 , · · · , eTN ]T and eTn is that all elements are

zero vector except n − th element (its value is 1). ⊗ denotes Khatri-Rao product. In
fact, the function of A∗ ⊗ A is equivalent to A in formula(8), which can be regarded as
a new array manifold, it is recorded as A = A∗. A has 2N2(N1 + 1) − 1 non-redundant
rows. The reduplicative rows in A will result in non-uniqueness of some elements in ym.
Therefore, we select the new elements in ym corresponding to non-redundant rows in A.
We use these elements to construct a new vector y′m, which can be expressed by:

y′m = A
′
pm + σ2

nI
′
m. (12)

Where the new virtual array flow is A
′

= [a′(θ1), a
′(θ2), · · · , a′(θK)], virtual array is uni-

form linear array with 2N2(N1 + 1)− 1 1-array elements. Location of every array element
is nd1, n = −Ni, · · · , Ni(Ni = N2(N1 + 1)− 1). The corresponding new direction vector:

a′(θK) = [e−j2π(−Nid1)/λsinθk , · · · , 1, · · · , e−j2πNi/λsinθk ]T . (13)

So we can get new array receiving data:

Y = A
′
P + σ2

nE. (14)

Where Y = [y′1, y
′
2, · · · , y′M ] is 2Ni×M -dimensional array receiving matrix. P = [p1, p2, · · · , PM ]

is K ×M -dimensional signal matrix. E = [I ′1, I
′
2, · · · , I ′M ] is K ×M -dimensional noisy

matrix.

3.2. 3D-DOA estimation algorithm for amorphic multiple-sources. By formula(14),
we can get new array receiving data to make DOA estimation under the unknown num-
ber of source condition. First, we should calculate new covariance matrix of new array
receiving data.

R = EY Y H . (15)

We carry out Toeplitz transformation for the n− th row of covariance matrix, and obtain
Toeplitz matrix:

Rn =


r(n, 0) r(n, 1) · · · r(n,Ni)
r(n,−1) r(n, 0) · · · r(n,Ni − 1)

...
...

...
r(n,−Ni) r(n,−Ni + 1) · · · r(n, 0)

 = ÃSnÃ
H + σ2

nĪNi+,n . (16)

Where Sn is pseudo signal covariance matrix. Ã = [ã(θ1), ã(θ2), · · · , ã(θK)], its cor-
responding orientation vector is ã′(θK) = [e−j2πd1/λsinθk , · · · , e−j2πNid1/λsinθk ]T . Rm has a
total of 2Ni + 1 rows. In that n− th row and −n− th row are the conjugate symmetric.
So we only need to make Toeplitz transformation from −Ni to 0.

Under the circular array model, p sources select N snapshots to constitute source matrix
Sp×N based on the classical MUSIC algorithm. Array additive noise matrix is eM×N . M
array elements output XM×N of N snapshots. Assuming signal phase difference of circle
array is 0. s and e are independent of each other. Therefore, matrix form of the array
output is x = As+ e. The array output autocorrelation matrix is Rxx = ExxH .
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Under the rush non-normal noise background, Rxx cannot be convergent. The perfor-
mance of classical MUSIC algorithm degrades seriously. However, covariation matrix Gxx

is convergence. Rxx can be replaced by Gxx. The array output covariance matrix is:

Gxx = (As+ e, As+ e)p = (As,As)p + (As, e)p + (e, As)p +Gee. (17)

According to the above formula, we can obtain:

Gxx = (As,As) +Gee. (18)

Then

Gxx =

p∑
i=1

(α(wi), As)p +Gee

=

p∑
i=1

α(wi), (si, As)p +Gee

=

p∑
i=1

α(wi)[(si, si)p

p∑
i=1

αp−1(wi)
T ] +Gee

= A(si, si)p[A
p−1]T +Gee

= AGssA
H +Gee

For the reason that, rank(Gxx) = M , rank(AGxxA
H) = rank(Gxx) = p, we execute

eigenvalue decomposition for Gxx. It is easy to differentiate p larger eigenvalues(named
signal eigenvalue) in Gxx and M − p smaller eigenvalues (called noise eigenvalue). So
characteristic matrix according to the column is divided into two matrices, that is: S =
[µ1, · · · , µp] and D = [µp+1, · · · , µM ].

Finally,

GxxD = AGxxA
HD +GeeD. (19)

GxxD = [S,D]
∑

[SH , DH ]TD = [S,D]
∑

[0, 1]T = GxxD. (20)

And DHAGxxA
HD = 0, AHD = 0, aH(w)D = 0, w = w1, · · · , wp. So the final spatial

spectrum estimation p(θi) is :

p(θi) = (Ni + 1−maxeig θiF
+D(θi)

p(w)aH(w)a(w)
)−1. (21)

Where D is noise characteristic matrix of array output fractional low-order covariance
matrix. maxeig· is the biggest characteristic value of matrix. F =

∑0
n=−Ni R

H
n Rn,

1
p(w)aH(w)a(w)

= [RH
−Ni ã(θi), · · · , RH

0 ã(θi).

4. Experiments and analysis. In this subsection, we present experiments to illustrate
the effectiveness of our proposed algorithm in different scenarios and compare it to the
method derived in [11].

Experiment 1.
Space spectrum is three-dimensional matrix. We make angle and distance estimation

for 3D-DOA estimation. The pitch angle, azimuth angle and distance of information
source is α1 = 20◦, β1 = 60◦, d1 = 30m; α2 = 40◦, β2 = 40◦, d2 = 80m; α3 = 60◦,
β3 = 10◦, d3 = 120m respectively. SNR(Signal to Noise Ratio) is 5dB. Background noise
has peak pulse characteristics. Angle and distance estimation are as figure3,4,5
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Figure 3. Pitch angle estimation

Figure 4. Azimuth estimation

Figure 5. Distance estimation

In order to analyze the estimation performance difference between our new method(called
N-FLOC-MSC) and the method in reference[11](named FAPI-TLS-ESPRIT) under dif-
ferent signal-to-noise ratios and the characteristic parameters, we take standard deviation
as the evaluation criterion. The standard deviation is smaller, the better estimation per-
formance is. When α = 1.2, p = 1.1, signal-to-noise ratio ranges from 0dB to 10dB.
Estimated performance curve is shown as figure 6. With the increase of signal-to-noise
ratio, the estimation results of both methods improves gradually. And the standard de-
viation of FAPI-TLS-ESPRIT is greater than N-FLOC-MSC when signal-to-noise ratio
is high. When p = 1.1, signal-to-noise ratio is 5dB, characteristic parameter ranges from
1.1 to 2. Estimated performance curve is shown as figure 7. The characteristic param-
eter is bigger, the weaker background noise impulse is. Second order matrix approaches
to convergence, and arrives to normal distribution, estimation performance of the two
algorithms is getting better.

Experiment 2.
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Figure 6. Estimation performance curve

Figure 7. Estimation performance curve

We choose root mean square error (RMSE) to describe the estimated performance of
algorithm, it is defined as:

RMSE = K−1
K∑
k=1

(J−1
J∑
j=1

(θ̂k − θk)2)0.5. (22)

Where J is experiment time. K is source number. θ̂k is the DOA estimation value of
k − th source. θk is the DOA true value of k − th source. Assuming array number N=5.
And it uses 2-level nested structure, N1 = 2, N2 = 3. The number of snapshots T = 8192.
The data is divided into 16 segments, M = 16, Length of each segment is L = 512. Four
sources arrive to the array with angle 15◦, 5◦, 30◦ and 45◦ respectively. SNR = 15dB.

When K = 4, we get the DOA estimation result as figure8 compared to[11]. Due to
the array aperture expansion through our algorithm, it increases the degree of freedom,
which can, therefore, make DOA estimation accurately when number of sources is greater
than the actual array number. The root mean square error(RMSE) with different signal-
to-noise ratios is as figure9.

In order to further verify high efficiency of our new algorithm, we select eight sources
with angle −55◦, −35◦, −20◦, −5◦, 5◦, 20◦, 30◦ and 45◦ respectively. When K=8, we
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Figure 8. K=4, DOA estimation value

Figure 9. RMSE with two algorithms when K=4

get the DOA estimation result as figure10 compared to[11]. The root mean square er-
ror(RMSE) with different signal-to-noise ratios is as figure11. In engineering applications,
the spectral peak coordinates of spatial spectrum need to be obtained directly, namely
3-D information. Spatial spectral peak is a bunch of larger values, if maximum value of
the spatial spectral is computed. After many operations, it will remain at the highest
peak. And no other spectral peaks will be obtained. In order to improve the computing
speed, we use our new 3D-DOA estimation algorithm to execute gradient calculation for
spatial spectral. The results are better than other methods.

5. Conclusions. In this paper, we develop a new method for tracking the DOA assum-
ing multiple incoherently distributed sources, which is based on 2-level nested array. Also
it makes eigenvalue decomposition for covariant matrix, and finds out the noise subspace.
Then it constructs spatial spectrum, and carries out gradient calculation for any dimen-
sion in spatial spectrum. Finally, we take extreme value in turn and get the 3D-DOA
estimation. Theoretical analysis and simulation experiments show that this method ex-
tends the array aperture, it can use less number of array elements at the same time to
estimate DOA of multiple source, and it has high estimation precision and resolution,
the signal-to-noise ratio requirement is not high also. In the future, we will study more
signal estimation methods for improving the practical value, although there are still more
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Figure 10. K=8, DOA estimation value

Figure 11. RMSE with two algorithms when K=8

challenges with information awareness and information interaction, large-scale network
applications and multimedia sensor networks areas.
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