
Journal of Information Hiding and Multimedia Signal Processing c©2017 ISSN 2073-4212

Ubiquitous International Volume 8, Number 4, July 2017

A Parse Tree-Based NoSQL Injection Attacks
Detection Mechanism

Hong Ma, Tsu-Yang Wu∗, Min Chen, Rong-Hua Yang, and Jeng-Shyang Pan

Fujian Provincial Key Laboratory of Big Data Mining and Applications
National Demonstration Center for Experimental Electronic Information and

Electrical Technology Education
College of Information Science and Engineering

Fujian University of Technology
No3 Xueyuan Road, University Town, Fuzhou 350118, China

wutsuyang@gmail.com; chenmin@fjut.edu.cn; 287456@qq.com; jengshyangpan@fjut.edu.cn
∗Corresponding author’s email: wutsuyang@gmail.com

Received June, 2017; revised June, 2017

Abstract. Nowadays, many IT giants such as Facebook, Google, and Amazon adopt
non-relational database (NoSQL, Not only SQL) technologies to manage their systems.
Although these kind of database technologies have made outstanding contributions to the
development of the IT industry, it also exposed some security risks such as SQL injection
attacks. Up to now, there are many solutions to counter SQL injection attacks in SQL
databases. However, there exist few approaches to counter injection attacks in NoSQL
databases. So, how to design an effective NoSQL injection attacks detecting mechanism
becomes a subject worthy of in-depth study. In this paper, we based on semantic structure
analysis of execution statements to propose a detection approach using parse tree. Based
on this approach, we focus on MongoDB to propose a dynamic NoSQL injection attacks
detection mechanism in the web environment called DND. It does not require access to
or modifying source codes, rewriting source codes with extra libraries, or complex assisted
devices. Finally, the experimental results are shown that DND has high accuracy rates,
low false positive rates, and low response time.
Keywords: Nosql injection attacks, Parse tree, Detection, Web environment, MongoDB

1. Introduction. In the past twenty years, traditional relational databases (SQL) such
as MySQL, Oracle, DB2, and SQL server have provided better services to IT companies.
With fast growing of the mobile Internet traffic, SQL databases are not the best choices
for IT companies [1, 2]. Thus, NoSQL databases such as MongoDB, Redis, and Cassandra
with a low cost and scalability quickly becomes a new issue in IT industries [3, 4]. Many IT
giants such as Facebook, Google, and Amazon adopt NoSQL technologies to manage their
database systems. Although these kind of database technologies have made outstanding
contributions to the development of the IT industries, it also exposed some security risks.

SQL injection attack was first introduced by Rain Forest Puppy [5] in 1998 and becomes
one of the security threats in backend applications [6, 7, 8, 9]. It allows attacker can
launch SQL injection attack to execute a lot of malicious operations on the database such
as bypassing authentication, access privacy information, changing, deleting, and adding
new data. Although the maturity of the security framework and the gradual increase of
security awareness such that the occurring of SQL injection attacks has been decreasing
recently, it is still the most common attack method. As we all know, SQL injection

916

NoSQL Injection Attacks Detection Mechanism 917

attacks detection techniques had been developed completely. There are several methods
such as static analysis [10, 11, 12], dynamic analysis [13], static and dynamic analysis
[14, 15], machine learning [16, 17, 18], taint tracking [19, 20, 21, 22], and parse tree based
[23, 24, 25].

Now, NoSQL databases suffered from same risks in SQL databases. One possible
way is to modify the SQL injection attacks detection methods and then deploys them
to NoSQL databases. However, to deploy SQL injection attacks detection methods to
NoSQL databases is unrealistic for example NoSQL databases do not support SQL lan-
guage. It removes SQL injection attacks in NoSQL databases naturally. Meanwhile,
NoSQL databases are very flexible. For example, MongoDB uses MONGO Shell to exe-
cute add, delete, modifying, and find operations and supports JavaScript. For different
programming languages, NoSQL databases provide different interfaces. It shows the dif-
ference between SQL and NoSQL databases.

In other aspect, these NoSQL databases adopt different query statements so that the
traditional SQL injection attacks have no effect on them. It means that NoSQL databases
are secure against SQL injection attacks? The answer is No [26]. Like most new tech-
nologies just emerging, NoSQL database is missing some security mechanisms such as
encryption, authentication, and role management[27]. As a result, NoSQL databases are
also suffered from DOS or DDOS attacks, injection attacks, and so on. Therefore, it is
necessary to design NoSQL injection attacks detection method.

In this paper, we design an effective injection attack detecting mechanism for non-
relational (NoSQL) database. In our design, based on semantic structure analysis of
execution statements we propose a detection approach using parse tree. While receiving
an HTTP request from user, a parse tree is generated according to the user’s request.
Meanwhile, the old record of parse tree for the request is retrieved and used to compare
with the generated parse tree. If the two trees are equal, it means that no NoSQL injec-
tion attacks involved in this request. Based on this approach, we focus on MongoDB, a
popular non-relational database, to propose a dynamic NoSQL injection attacks detection
mechanism called DND in the web environment. It does not require access to or modify-
ing source codes, rewriting source codes with extra libraries, or complex assisted devices.
Finally, the experimental results show that DND has high accuracy rates, low false pos-
itive rates, and low response time. It is sufficiently to demonstrate that our detection
mechanism DND is efficient to counter NoSQL injection attacks for the web environment
on MongoDB.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce
the security problems in NoSQL database. A concrete NoSQL injection attacks detection
mechanism named DND proposed in Section 3. In Section 4, we present the experimental
results and conclusions are drawn in Section 5.

2. Security problems in NoSQL database. MongoDB and Redis are two famous
and widely used NoSQL databases (http://db-engines.com/en/ranking). However, both
of them have several security problems for example data files are not encrypted and
also do not provide automatic encryption mechanism for data files. In order to reduce
this risk, application must encrypt the data file before putting into the database. In
addition, defense mechanisms are required at the operating system level such as file access
permissions and file system encryption to prevent an unauthorized login.

Potential injection attacks also threaten the security of NoSQL databases. Redis and
MongoDB are suffered from the risks for authentication mechanism is incomplete, lack of
encryption mechanisms, and injection attacks. Here, we demonstrate an injection attack
of MongoDB in Figure 1. The first statement (rows 1-3) can cause an input attack through

918 H. Ma, T.Y. Wu, M. Chen, R.H. Yang, and J.S. Pan

the translation of MongoDB to ”$gt” character. The second and third statements can
be inserted into the database by string concatenation. The fourth statement”$where” is
a JavaScript function which is used to traverse each record in a set called myCollection.
This statement cannot modify the database directly because the $where only performs
read functionality. However, if an application uses this query and does not filter user’s
input, it will lead injection attacks.

Figure 1. An injection attack example of MongoDB

3. Our Proposed NOSQL Injection Attacks Detection Mechanism.

3.1. NoSQL injection attack scenario. Here, we illustrate a scenario depicted in Fig-
ure 2 to explain a procedure of NoSQL injection attack on MongoDB. Firstly, an attacker
inputs an illegal URL and sends it to web server via browser. Upon receiving the request,
the web server may mistake this URL is legal. Then, the web server sends this illegal URL
to PHP client and the PHP client parses this URL to some code including malicious in-
jection code. Finally, the PHP client sends it to MongDB and then MongDB executes the
code. It will lead to return some information as the attacker wants or to break MongDB.

In Figure 2, we illustrate an example of data stream depicted in Figure 3. Let
Q1: detected login.php?username=Carl&password=123456

be an legal request. The data transmission of web environment is described as follows.
The Q1 can be transformed to query statement

db->logins->find(array(”username”=>$
POST[”username”],”password”=>$ POST [”password”])); by PHP. This query state-
ment in MongDB can be translated by

db.logins.find({username:’Carl’,password:’123456’}).
Let

NoSQL Injection Attacks Detection Mechanism 919

Figure 2. A scenario of NoSQL injection attack on MongoDB

Q2: detected login.php?username[$ne]=1&password[$ne]=1
be a malicious request. The Q2 can be transformed to query statement

array(”username”=>array(”$ne”=> 1),”password”=>array(”$ne”=> 1)).
by PHP. This query statement in MongDB can be translated by

db.logins.find(username:$ne:1,password:$ne:1).
Since $ne presents unequal in MongDB, this query statement means that to query all

user names not equal to 1 and passwords not equal to 1. It is easy to see that any attacker
can adopt the malicious request Q2 to pass the authentication in login phase and then
accesses users’ information in MongDB.

Figure 3. An example of data stream in Figure 2

3.2. DND mechanism. In our dynamic NOSQL injection attacks detection (DND)
mechanism, there are eight models: Server, Modeler, Parameters Separator, Compara-
tor, Log, MongoDB, Online judge, and Repository depicted in Figure 4.

1. Server: To parse Http request and obtaining parameters. Then, to splice MongoDB
Shell execution statement and obtaining an execution statement called q1. Finally,
Server sends q1 to Online judge. An example of q1 is shown by

http://localhost/login/login 1.php?username=CarlSun&password=
123456;return%20true;}//

920 H. Ma, T.Y. Wu, M. Chen, R.H. Yang, and J.S. Pan

2. Parameters Separator: To separate the parameters of user’s input in q1 and
obtaining a query statement q2 depicted in Figure 5. Finally, Parameters Separator
sends q2 to Modeler.

3. Modeler: To parse q1 into a parse tree T1 and to parse q2 into a parse tree T2,
respectively. Then, Modeler sends T1 and T2 to Comparator. The two parse trees
T1 and T2 are shown in Figure 6 and Figure 7.

4. Comparator: To compare the structures of T1 and T2. If they are equal, then q1
is a legal statement. Comparator sends it to MongoDB to execute. Otherwise, q1 is
viewed as an attack statement. Comparator sends this attack message to Log and
q1 to Repository.

5. Log: To record operations of the system, the results of Comparator, success or
failures of NoSQL injection attacks detection, system running time, the time of
NoSQL injection attacks occurred, and running of database.

6. Online Judge: To provide a quick judgement according to previous judged attack
request in Repository. It can be denied access to the database directly if it is judged
as an attack request. If it can’t judge, to execute parameters separating, modeling,
comparison, and a series of operations.

7. Repository: When a query statement is judged as an attack statement by Com-
parator, it is stored as text in Repository.

Figure 4. Flowchart of DND

In DND, Parameter Separator, Modeler, Comparator, and Log formed an intermediate
layer. Each request from the backend application to the database is needed to pass
through this layer. Our DND can protect database against NoSQL injection attacks.
The detection process of DND is divided into three subprocess, which are parameters
separating, modeling, and comparing. Server first sends query statement q1 to Parameter
Separator and Modeler. Then, Parameter Separator executes parameters separating for
q1 and the resulted query statement is defined as q2. Parameter Separator sends q2 to

NoSQL Injection Attacks Detection Mechanism 921

Figure 5. Parameters separating of q1

Figure 6. Parse tree T1

Figure 7. Parse tree T2

Modeler. According to q1 and q2, Modeler generates parse trees T1 and T2 and sends them
to Comparator. Finally, Comparator compares the structures of T1 and T2. If the two
trees are the same, q1 is a legal statement. Otherwise, q1 is judged as NoSQL injection
attack.

922 H. Ma, T.Y. Wu, M. Chen, R.H. Yang, and J.S. Pan

3.3. Algorithm design. In our DND, each MongoDB Shell statement can be parsed
into a parse tree which is divided into internal nodes and leaf nodes. All internal nodes
formed the structure of MongoDB Shell parse tree. When user inputs a dynamically
generated MongoDB Shell statement, it will be judged as a NoSQL injection attack once
the structure of parse tree is changed.

Firstly, we propose an algorithm called Extract Structure Algorithm (ESA) to demon-
strate that how to construct an parse tree based on JavaScript statement and parsing it
with query statement. Parse tree is a data structure to display the structure of a string.
Parsing strings requires to use the relative syntax rules to partition strings. By parsing
two strings and comparing the structures of the strings, the two query statements can be
judged to be identical in structure.

Our ESA is described as follows. We let the query statement of the assignment symbol
”=” in first layer be the first layer of parse tree. Then, splitting the left and right sides
and the user’s input ”$ GET[’ID’]” is placed on the right side of the assignment symbol
”=”. A simple parse tree is generated shown in Figure 8. The key point is to classify
characters. Firstly, the assignment statement is formed to be a character set at the first
level. Then, the JavaScript identifier is formed to be a character set at the second level.
Finally, value is formed to be a character set at the third level.

If attacker inputs ”12;return true;//” in $q.=”if(this.id==id)return true;”, then injec-
tion attack $q statement can be constructed to a parse tree T3, where operators ”=”, ”;”,
”//” are first divided and then the JavaScript’s keyword ”var”, ”return”, ”if” are second
divided. The parse tree T3 is depicted in Figure 9.

Figure 8. A simple parse tree

Then, we propose another algorithm called verification model algorithm (VMA) which
is used to compare two parse trees’ structures. Here, we parse JavaScript statement
$q as $q=”var id=”.$ GET[’id’].”;”; and $q.=”if(this.id==id)return true;”. If id=12, it
formed a parse tree T4 shown in Figure 10. It is easy to see that T3 and T4 have different
structures. We can compare the two structures to judge a query statement whether is a
NoSQL injection statement.

Finally, we adopt Trie tree algorithm to present data structure in Online judge. For
example, the following attack statements can be transformed to Trie tree shown in Figure
11.

NoSQL Injection Attacks Detection Mechanism 923

Figure 9. Parse tree T3

Figure 10. Parse tree T4

4. Experimental Results. In this section, we demonstrate several experimental results
of our DND in terms of accuracy, false positive, and efficiency.

4.1. Environment and test set. Our experimential environment shown in Figure 12
is based on two same PCs (PCA and PCB) with processor Intel(R)Core(TM)I5-2400CPU
@3.10GHz, 8GB memory, 1T Hard disk, and the operating system is Windows 7. Mean-
while, we deploy Nginx as web server, MongoDB, and DND in PCB. Note that DND is
deployed on web server and the framework is depicted in Figure 13.

Since NoSQL injection attacks are novel attack approaches in NoSQL database, there
are no open test sets for testing. In order to test the effectivity of our DND, we first design
four types of web applications summarized in Table 1. Then, we generate five thousand
attack samples as test set which is randomly generated by existed NoSQL injection attack
statements. Our test set has covered all types of NoSQL injection attacks and open source
in Github (https://github.com/youngyangyang04/NoSQLInjectionAttackDemo/tree
/master/attackSet).

4.2. Results. In Table 2, we demonstrate the detecting accuracy rate of DND. It is
easy to see that our DND has very high detecting accuracy rate in four different web
applications. In Table 3, we show the false positive rate of DND. Obviously, our DND

924 H. Ma, T.Y. Wu, M. Chen, R.H. Yang, and J.S. Pan

Figure 11. An example of Trie tree

has a very low false positive rate. Finally, we demonstrate the performance comparisons
of running four applications with DND in Figure 14. Note that each black rectangle
presents the average runtime of single query statement without NDN and each white
rectangle presents the average runtime of single query statement with NDN. It is easy to
see that our DND has better performance and can be used to prevent NoSQL injection
attacks.

5. Conclusions. In this paper, we have proposed a dynamic NoSQL injection attacks
detection mechanism called DND in the web environment. It does not require access
to or modifying source codes, rewriting source codes with extra libraries, or complex
assisted devices. According to the experiments, DND has high accuracy rates, low false
positive rates, and low response time. It is sufficiently to demonstrate that our detection
mechanism DND is efficient to counter NoSQL injection attacks for the web environment
on MongoDB.

NoSQL Injection Attacks Detection Mechanism 925

Figure 12. Experimental environment

Figure 13. The framework of DND deployed on web server

Our DND is only focused on MongoDB. There are several non relational databases such
as Redis and Cassandra have been used by companies and enterprises. These databases
also exist the risk of injection attacks. Currently, due to NoSQL injection attacks are
novel attack approaches, the number of attack methods are very less. However, more and
more attack approaches will be found in the future.

Acknowledgment. The authors would thank anonymous referees for a valuable com-
ments and suggestions. This work is supported by the Science and Technology Project of
Fuzhou under Grant No.2017-G-7.

REFERENCES

[1] R. Cattell, Scalable sql and nosql data stores, Acm Sigmod Record, vol. 39, no. 4, pp. 12–27, 2011.
[2] E. Sahafizadeh and M. A. Nematbakhsh, A survey on security issues in big data and nosql, Advances

in Computer Science: an International Journal, vol. 4, no. 4, pp. 68–72, 2015.
[3] M. Stonebraker, Sql databases v. nosql databases, Communications of the ACM, vol. 53, no. 4,

pp. 10–11, 2010.
[4] A. K. Zaki, Nosql databases: new millennium database for big data, big users, cloud computing and

its security challenges, International Journal of Research in Engineering and Technology (IJRET),
vol. 3, no. 15, pp. 403–409, 2014.

[5] R. F. Puppy, Nt web technology vulnerabilities, Phrack Magazine, vol. 8, no. 54, 1998.

926 H. Ma, T.Y. Wu, M. Chen, R.H. Yang, and J.S. Pan

Table 1. Our designed web applications

Applications Language Functionality Attacked results

Information-get PHP Returning the
Returning all
information of

specified information
specific collection in
database

Information-march PHP Matching information
Matching
information

for specific information for any input
Injecting dirty data
into the

MongoDB-register JavaScript User registration
collection of database
and using
it to perform illegal
operations

MongoDB-admin JavaScript User login
User login is
performed
without password

Table 2. Detecting accuracy rate of DND

Applications Number of attack statements Faults Accuracy (%)

Information-get 2000 0 100%
Information-march 1000 0 100%
MongoDB-register 1000 0 100%
MongoDB-admin 1000 0 100%

Table 3. False positive rate of DND

Applications Number of attack statements False positive False rate (%)

Information-get 2000 0 0
Information-march 1000 0 0
MongoDB-register 1000 0 0
MongoDB-admin 1000 0 0

[6] S. Roy, A. K. Singh, and A. S. Sairam, Detecting and defeating sql injection attacks, International
Journal of Information and Electronics Engineering, vol. 1, no. 1, p. 38, 2011.

[7] D. Henderson, M. Lapke, and C. Garcia, Sql injection: A demonstration and implications for ac-
counting students, AIS Educator Journal, vol. 11, no. 1, pp. 1–8, 2016.

[8] E. Pearson and C. L. Bethel, A design review: Concepts for mitigating sql injection attacks, in
Digital Forensic and Security (ISDFS), 2016 4th International Symposium on, pp. 169–169, IEEE,
2016.

[9] L. Liu, J. Xu, H. Yang, C. Guo, J. Kang, S. Xu, B. Zhang, and G. Si, An effective penetration test
approach based on feature matrix for exposing sql injection vulnerability, in Computer Software and
Applications Conference (COMPSAC), 2016 IEEE 40th Annual, vol. 1, pp. 123–132, IEEE, 2016.

[10] C. Gould, Z. Su, and P. Devanbu, Jdbc checker: A static analysis tool for sql/jdbc applications,
in Proceedings of the 26th International Conference on Software Engineering, pp. 697–698, IEEE
Computer Society, 2004.

[11] M. Bravenboer, E. Dolstra, and E. Visser, Preventing injection attacks with syntax embeddings,
in Proceedings of the 6th international conference on Generative programming and component engi-
neering, pp. 3–12, ACM, 2007.

NoSQL Injection Attacks Detection Mechanism 927

Figure 14. The efficiency comparisons

[12] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao, A static analysis framework for detecting
sql injection vulnerabilities, in Computer Software and Applications Conference, 2007. COMPSAC
2007. 31st Annual International, vol. 1, pp. 87–96, IEEE, 2007.

[13] Y. Kosuga, K. Kono, M. Hanaoka, M. Hishiyama, and Y. Takahama, Sania: Syntactic and semantic
analysis for automated testing against sql injection, in Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual, pp. 107–117, IEEE, 2007.

[14] W. G. Halfond and A. Orso, Amnesia: analysis and monitoring for neutralizing sql-injection attacks,
in Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering,
pp. 174–183, ACM, 2005.

[15] I. Lee, S. Jeong, S. Yeo, and J. Moon, A novel method for sql injection attack detection based on
removing sql query attribute values, Mathematical and Computer Modelling, vol. 55, no. 1, pp. 58–68,
2012.

[16] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, Web application security assessment by fault
injection and behavior monitoring, in Proceedings of the 12th international conference on World
Wide Web, pp. 148–159, ACM, 2003.

[17] F. Valeur, D. Mutz, and G. Vigna, A learning-based approach to the detection of sql attacks, in
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
pp. 123–140, Springer, 2005.

[18] R. Komiya, I. Paik, and M. Hisada, Classification of malicious web code by machine learning, in
Awareness Science and Technology (iCAST), 2011 3rd International Conference on, pp. 406–411,
IEEE, 2011.

[19] S. W. Boyd and A. D. Keromytis, Sqlrand: Preventing sql injection attacks, in International Con-
ference on Applied Cryptography and Network Security, pp. 292–302, Springer, 2004.

[20] W. Halfond, A. Orso, and P. Manolios, Wasp: Protecting web applications using positive tainting
and syntax-aware evaluation, IEEE Transactions on Software Engineering, vol. 34, no. 1, pp. 65–81,
2008.

[21] D. Mitropoulos and D. Spinellis, Sdriver: Location-specific signatures prevent sql injection attacks,
computers & security, vol. 28, no. 3, pp. 121–129, 2009.

[22] P. Bisht, P. Madhusudan, and V. Venkatakrishnan, Candid: Dynamic candidate evaluations for
automatic prevention of sql injection attacks, ACM Transactions on Information and System Security
(TISSEC), vol. 13, no. 2, p. 14, 2010.

928 H. Ma, T.Y. Wu, M. Chen, R.H. Yang, and J.S. Pan

[23] G. Buehrer, B. W. Weide, and P. A. Sivilotti, Using parse tree validation to prevent sql injection
attacks, in Proceedings of the 5th international workshop on Software engineering and middleware,
pp. 106–113, ACM, 2005.

[24] T.-Y. Wu, J.-S. Pan, C.-M. Chen, and C.-W. Lin, Towards sql injection attacks detection mechanism
using parse tree, in Genetic and Evolutionary Computing, pp. 371–380, Springer, 2015.

[25] T.-Y. Wu, C.-M. Chen, X. Sun, S. Liu, and J. C.-W. Lin, A countermeasure to sql injection attack
for cloud environment, Wireless Personal Communications, pp. Doi: 10.1007/s11277–016–3741–7.

[26] A. Ron, A. Shulman-Peleg, and E. Bronshtein, No sql, no injection? examining nosql security, arXiv
preprint arXiv:1506.04082, 2015.

[27] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and J. Abramov, Security issues in nosql databases,
in Trust, Security and Privacy in Computing and Communications (TrustCom), 2011 IEEE 10th
International Conference on, pp. 541–547, IEEE, 2011.

