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Abstract. We study the online linear optimization problem, in which a player has to
make repeated online decisions with linear loss functions and hopes to achieve a small
regret. We consider a natural restriction of this problem in which the loss functions have
a small deviation, measured by the sum of the distances between every two consecutive
loss functions. At the same time, we also consider a natural generalization, in which the
regret is measured against a dynamic offline algorithm which can play different strategies
in different rounds, but under the constraint that their deviation is small. We show that
in this new setting, an online algorithm modified from the gradient descent algorithm can
still achieve a small regret, which can be characterized in terms of the deviation of loss
functions and the deviation of the offline algorithm. For the closely related prediction
with expert advice problem, we show that an online algorithm modified from the Hedge
algorithm can also achieve a small regret in this new setting.
Keywords: Online algorithm, Regret; Deviation; Dynamic offline algorithm

1. Introduction. Online learning is an important area in machine leaning, in which an
online algorithm is requested to make one of several possible decisions in each round,
suffers a corresponding loss, and wishes that the total cumulative loss will be close to
that of the best fixed decision in hindsight. Online Learning has been attracted many
attention since the wide application in many areas including Wireless Sensor Networks

A preliminary version of this paper appeared in Proceedings of the 3rd International Conference on
Robot, Vision and Signal Processing (RVSP), pages 191–194, 2015.
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[23, 5], Internet advertising [22, 20], video streaming [19, 14], geographical load balancing
of internet-scale systems [17, 24], electrical vehicle charging [9, 15].

In this paper, we study an elementary but important problem in online learning, called
the Online Linear Optimization (OLO) problem. In the OLO problem, a player has
to make decisions iteratively for a number of rounds in the following way. In round t,
the player has to choose a strategy xt from some convex feasible set X, and after that
the player receives a linear loss function f t and suffers the corresponding loss f t(xt).
The player would like to have an online algorithm which can minimize its total loss. A
standard way of evaluating an online algorithm is to measure its regret, which is the
difference between the total loss it suffers and that of the best offline algorithm. The
offline algorithm is usually considered to be static, which must play a fixed strategy for
all rounds, but with the benefit of hindsight. It is known that when playing for T rounds,
a regret of O(

√
T ) can be achieved using the gradient descent (GD) algorithm [25]. A

related problem is the prediction with expert advice problem, in which the player in each
round can see advices of N experts, and then he has to choose one of K actions to play,
possibly in a probabilistic way. This can be seen as a special case of the OLO problem,
with the feasible set being the set of probability distributions over the N experts, and a
regret against the best offline algorithm, which must follow the advices of a fixed experts,
of O(

√
T lnN) can be achieved using the Hedge algorithm [18, 6]. More information can

be found in [3].
The regrets achieved for these two problems are in fact optimal since matching lower

bounds are also known (see e.g., [3, 1]). Such lower bounds were shown in the most
general setting in which the loss functions could be arbitrary and possibly chosen in an
adversarial way. However, the environments around us may not always be adversarial,
and the loss functions may have some patterns which can be exploited for a smaller
regret. One interesting work in this direction is to consider the case in which the loss
functions have a small `qp-deviation, defined as

∑T
t=2 ‖f t−1− f t‖qp where ‖ · ‖p denotes the

`p-norm [4]. Deviation can be used to model a dynamic environment that usually evolves
gradually, including examples such as weather conditions and stock markets. Chiang et
al. [4] showed that a regret of O(

√
D2) can be achieved for the OLO problem under the

constraint that the `22-deviation of the loss functions is at most D2, and for the prediction
with expert advice problem, a regret of of O(

√
D∞ logN) can be achieved, when the

`2∞-deviation is at most D∞.
In addition to restricting the problem to the choice of the loss functions, there have

been works in the other direction which relax the problem by measuring the regret against
more powerful offline algorithms. For the OLO problem, Zinkevich [25] considered the
case in which the offline algorithm can be dynamic and play different strategies in different
rounds, but under the constraint that the `12-deviation of these strategies is bounded by

some parameter S2. For this, he showed that a regret of O(
√
T (1 + S2)) can be achieved.

For the prediction with expert advice problem, Herbster and Warmuth [12] considered
the case in which the offline algorithm can switch the experts he follows for at most S1

times, and they showed that a regret of O(
√
T (lnN + S1 ln(NT ))) can be achieved. In

fact, one can generalize such an offline algorithm in the direction of [25] by allowing it to
play different distributions in different rounds, but again under some deviation constraint.
Note that an offline algorithm of [12] immediately gives such an offline algorithm which
plays distributions with a small `qp-deviation, say with p = q = 1. The other direction,
however, does not hold in general, which means that our constraint is weaker and allows
a broader class of offline algorithms.
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Table 1. Bounds on the regret against dynamic offline algorithms.

OLO Prediction

T O
(√

T (1 + S2)
)

O
(√

T (lnN + S1 ln(NT ))
)

D O(
√
D2(1 + S2)) O(

√
D∞(lnN + S1 ln(NT )))

Contributions. In this paper, we would like to put both directions in the same framework,
and consider the restriction on the loss functions and the relaxation on offline algorithms
at the same time. For the OLO problem, we show that if the `22-deviation of loss functions
is at most D2 and the `12-deviation of the offline algorithm is at most S2, the algorithm in

[4] for the OLO problem can achieve a regret of O(
√
D2(1 + S2)), which is optimal as a

matching lower bound can be shown. Since D2 ≤ O(T ), we immediately recover the result
of [25]. The algorithm in [4] for the OLO problem is modified from the greedy projection
version of the gradient descend algorithm [25], which is optimal in terms of T with a
known matching lower bound. One may wonder if the lazy projection version of GD [25],
which is another optimal algorithm in terms of T , can also achieve the same regret. Note
that in order to compare against dynamic offline algorithms, our algorithm must be able
to move fast enough from one strategy to any other. We show that the lazy projection
version of GD does not work, as it can get trapped in a region for a long time, and in fact it
can suffer a regret as high as Ω(T ) even when D2 = 4 and S2 = 2. On the other hand, the
greedy projection version of GD does have the nice property we want. Moreover, for the
prediction with expert advice problem, we show that under some constraint of the advices
of the experts, if the `2∞-deviation of loss functions is at most D∞ and the `11-deviation of

the offline algorithm is at most S1, then a regret of O(
√
D∞(lnN + S1 ln(NT ))) can be

achieved, which also has a close lower bound. Note that since D∞ ≤ O(T ), we recover the
result of Herbster and Warmuth [12]. Our algorithm is modified from that in [4] for the
prediction with expert advice problem, which is optimal since a matching lower bound
is shown. The only difference is that to compare against dynamic offline algorithms, we
borrow an idea from [12] and keep the probability of each action above some threshold so
that moving to other distributions can be made fast enough.
Related Work. Online learning problems have fruitful results and variations. One ap-
proach is to consider the problems under some constraint of loss functions [10, 4, 21]. For
the OLO problem, Hazan and Kale [10] considered the case in which the loss functions

have a small variation, defined as V =
∑T

t=1 ‖f t − µ‖22, where µ =
∑T

t=1 f
t/T is the aver-

age of the loss functions. For this, they showed that a regret of O(
√
V ) can be achieved,

and they also have an analogous result for the prediction with expert advice problem.
Rakhlin and Sridharan [21] considered a more general measure for the loss functions, de-

fined as
∑T

t=1 ‖f t−1 −Mt‖2p, where {Mt}Tt=1 is a predictable sequence in the sense that
the player can compute Mt at the beginning of round t. They showed that for the OLO
problem under this constraint on loss functions with p = 2, tighter regret bounds in terms
of
∑T

t=1 ‖f t−1 −Mt‖2p can be achieved. For the prediction with expert advice problem,
they also have similar results with p =∞.

The other approach is to study the problems by comparing against different types
of offline algorithms, including the dynamic offline algorithm [25], the sleeping experts
[7, 2], the shifting experts [12], and the branching experts [8]. Independent of our work,
Jadbabaie et al. [13] also considered the same problem under some constraint of loss
functions as well as comparing against dynamic offline algorithms, while provided slightly
different algorithms.
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2. Preliminary. For a positive integer N , let [N ] denote the set {1, 2, · · · , N}. For a
vector x ∈ RN and an index i ∈ [N ], let xi denote the i’th component of x. For x, y ∈ RN ,

we use 〈x, y〉 to denote their inner product, and let RE (x‖y) =
∑N

i=1 xi ln
xi
yi

. For x ∈ RN ,

let ‖x‖p denote the `p-norm of x. A key definition is the following.

Definition 2.1. For a sequence of vectors x1, . . . , xT ∈ RN , we define their `qp-deviation

by
∑T−1

t=1 ‖xt − xt+1‖qp.

For a set X ⊆ RN , we say that x ∈ X is a projection of y ∈ RN to X, denoted as
x = ΠX(y), if x is the element in X which minimizes ‖x−y‖2. We will need the following
fact.

Fact 1. [25] Let X ⊆ Rn be a convex set, π ∈ X, y ∈ Rn, and x = ΠX(y). Then
〈y − x, x− π〉 ≥ 0.

We study the online linear optimization problem, in which an online algorithm A must
play in T rounds in the following way. In each round t ∈ [T ], A must play a strategy
xt ∈ X, for some convex feasible set X ⊆ RN . After that, A receives a loss vector
f t ∈ RN , and suffers a loss of 〈f t, xt〉. The goal of A is to minimize its total loss,

which is
∑T

t=1〈f t, xt〉. A standard way for evaluating an online algorithm is to measure
its regret, which is the difference between the total loss it suffers and that of the best
offline algorithm, or equivalently the largest difference between the total loss of the online
algorithm and that of an offline algorithm. The offline algorithm is usually considered
to be static, which must play a fixed strategy π ∈ X for all T rounds, but with the
benefit of being allowed to choose the strategy after seeing all the loss vectors. Following
[25], we consider a generalization of the problem, with the offline algorithm being allowed
to be dynamic, which can play a different strategy πt in a different round t, but we
require that these strategies have their `12-deviation bounded by some parameter S2. On
the other hand, we also consider a constraint on loss vectors, which requires their `22-
deviation to be bounded by some parameter D2. We define the (D2, S2)-regret of an online

algorithm as the largest value of
∑T

t=1〈f t, xt〉−
∑T

t=1〈f t, πt〉, over all such loss vectors and
dynamic strategies. For simplicity of presentation, we will assume throughout the paper
that the feasible set X is the unit ball centered at 0, i.e., X =

{
x ∈ RN : ‖x‖2 ≤ 1

}
,

and furthermore, each loss vector has ‖f t‖2 ≤ 1; the extension to the general case is
straightforward.

We also study the prediction with expert advice problem, in which an online algorithm
must choose one of K actions to play in each round, possibly in a probabilistic way.
Moreover, in each round t, before the algorithm makes the choice, it can obtain the advices
from N experts. Formally, the advice of expert j ∈ [N ] at time t ∈ [T ] is a probability
distribution ξtj ∈ [0, 1]K , where the i’th component ξtj(i) is the recommended probability of
choosing action i ∈ [K]. The goal of the online algorithm is to combine the advices it gets
and compare to the offline algorithm which can also receive the advices of experts. More
precisely, in each round t ∈ [T ], an online algorithm A selects a probability distribution xt

overN experts, and then chooses an action according to a probability distribution pt where
the i’th component pti =

∑
j∈[N ] x

t
j ·ξtj(i). Meanwhile, in each round t, the offline algorithm

selects a distribution πt over N experts, and then chooses action i with probability qti =∑
j∈[N ] π

t
j · ξtj(i). For this problem, we will consider a different constraint that the loss

vectors f 1, · · · , fT ∈ RN have their `2∞-deviation bounded by some parameter D∞ and
the dynamic strategies of the offline algorithm π1, · · · , πT have their `11-deviation bounded

by some parameter S1. In addition, we assume that
∑T−1

t=1 maxj∈[N ] ‖ξtj − ξt+1
j ‖21 ≤ V1.

Similarly, we call the largest regret
∑

t∈[T ] (〈f t, pt〉 − 〈f t, qt〉) , over all such loss vectors
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and dynamic strategies, the (D∞, S1, V1)-regret of the online algorithm. Note that for
a static offline algorithm, it suffices to consider it playing actions recommended by a
fixed expert, but for a dynamic offline algorithm with an `11-deviation bound, playing
distributions makes a difference. For simplicity, we will assume that each loss vector
f t ∈ [−1, 1]K .

3. Online Linear Optimization Problem. In this section, we consider the online
linear optimization problem. Assume that the loss vectors have their `22-deviation bounded
by some parameter D2, and consider an offline algorithm which plays dynamic strategies
π1, . . . , πT with the `12-deviation bounded by some parameter S2. Our algorithm, described
in Algorithm 1 below1, is modified from the Greedy Projection (GP) algorithm [25].
Our algorithm has the learning rate η as a parameter, which will be determined later to
minimize the regret; in fact, it can also be adjusted in the algorithm using the standard
doubling trick by keeping track of the deviation accumulated so far.

Algorithm 1 Modified-GP

1: In round t = 1, let y1 = x1 = ŷ1 = x̂1 = 0 and play x̂1.
2: In round t ≥ 2,
2a: let yt = xt−1 − ηf t−1, let xt = ΠX(yt) be the projection of yt to X,
2b: let ŷt = xt − ηf t−1, and play x̂t = ΠX(ŷt), which is the projection of ŷt to X,

Theorem 3.1. The (D2, S2)-regret of Modified-GP is at most O(
√
D2(1 + S2)).

2

Proof: The proof is very similar to that in [4]. For any t ≥ 2, let us write 〈f t, x̂t − πt〉
as

〈f t − f t−1, x̂t − xt+1〉+ 〈f t−1, x̂t − xt+1〉+ 〈f t, xt+1 − πt〉. (1)

The first term above is at most ‖f t − f t−1‖2‖x̂t − xt+1‖2 ≤ η‖f t − f t−1‖22. To bound the
second and third terms in (1), we will rely on the following lemma, which we will prove
in Subsections 3.1.

Lemma 3.1. Suppose ` ∈ RN , y ∈ RN satisfies the condition y = u − η`, v = ΠX(y),
and w ∈ X. Then

〈`, v − w〉 ≤ 1

2η

(
‖u− w‖22 − ‖v − w‖

2
2 − ‖u− v‖

2
2

)
.

From Lemma 3.1 and the definitions of x̂t and xt+1, 〈f t, x̂t − πt〉, for any t ≥ 2, is at
most

η
∥∥f t − f t−1∥∥2

2
+

1

2η

(∥∥xt − πt∥∥2
2
−
∥∥xt+1 − πt

∥∥2
2

)
.

1In fact, the Modified-GP algorithm can be obtained by applying the Meta algorithm in [4] with
Rt(x) = 1

2η‖x‖
2
2, for every t ∈ [T ].

2The regret achieved by our algorithm is optimal, since a matching lower bound can be shown as
follows. Let us see the T rounds as having s = bS2c + 1 segments, each (except perhaps the last)
consisting of about r = D2/(4s) rounds, together with some possibly remaining rounds which can be
ignored by giving them the all-zero loss vector. Then we see each segment as an independent online
linear optimization problem against a static offline algorithm, which is known (see e.g. [1]) to have a

regret lower bound of Ω(
√
r). Thus, the total regret is at least Ω(s

√
r) = Ω(

√
D2(1 + S2)).
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Note that
∑

t≥2 ‖f t − f t−1‖
2
2 ≤ D2, while by some rearranging (following that in [25]),∑

t≥2

(
‖xt − πt‖22 − ‖xt+1 − πt‖22

)
equals

∥∥x2∥∥2
2
−
∥∥xT+1

∥∥2
2

+ 2

(
−〈x2, π2〉+ 〈xT+1, πT 〉+

∑
t≥3

〈xt, πt−1 − πt〉

)
,

which in turn, using the fact that |〈a, b〉| ≤ O(1) for any a, b ∈ X, is at most O(1) +
2
∑

t≥3 ‖xt‖2‖πt−1 − πt‖2 ≤ O(1 + S2).

Finally, by choosing η =
√

(1 + S2)/D2, we conclude that the (D2, S2)-regret is at most

1 + ηD2 + 1
η
O(1 + S2) ≤ O

(√
D2(1 + S2)

)
.

3.1. Proof of Lemma 3.1. Let us write ‖u− w‖22 = ‖(u− v) + (v − w)‖22 which in turn
equals

‖u− v‖22 + ‖v − w‖22 + 2〈u− v, v − w〉,
and since y = u− η`, the last term above is 2〈y + η`− v, v − w〉 = 2η〈`, v − w〉 + 2〈y −
v, v − w〉 ≥ 2η〈`, v − w〉, where the last inequality follows from Fact 1. By combining all
the bounds, we have the lemma.

3.2. Lazy Projection versus Greedy Projection. Consider the Lazy Projection
(LP) algorithm [25], which replaces the update in Step 2a of Algorithm 1 by yt = yt−1 −
ηf t−1 and then simply plays xt = ΠX(yt) in round t ≥ 2. One may wonder if we really
need to switch from LP to GP, since both of them are known to work well in the traditional
setting with regrets measured against static offline algorithms. Interestingly, we show that
their performances differ significantly when compared against dynamic offline algorithms,
as demonstrated by the following.

Lemma 3.2. Even for D2 = 4 and S2 = 2, the (D2, S2)-regret of LP is at least Ω(T ).

Proof: We show this for a more general case in which LP can start from any y1 not
necessarily 0. Let f be any unit vector passing through y1. Then we choose f t = −f for
1 ≤ t ≤ dT/2e, so that yt and xt move further away from 0 in the direction of y1. After
that, we choose f t = f for dT/2e+ 1 ≤ t ≤ T , so that yt and xt now move back towards
0 but never pass through 0. As a result, its accumulated loss is at least −dT/2e in the
first half and at least 0 in the second half. On the other hand, the offline algorithm can
play f for the first half and play −f for the second half to get a total loss of −T , which
implies a regret of at least Ω(T ). Since the constraints D2 = 4 and S2 = 2 are clearly
satisfied, we have the lemma.

In Figure 1, we plot the total loss of LP algorithm and that of the best offline algorithm
in the proof above with N = 2, y1 = f = [1, 0]T ∈ R2. Observe that the large regret
suffered in the second half is because the strategies get trapped in one side of X, and this
can in fact be avoided by GP or Modified-GP which always projects back to X at each
round.

4. Prediction with Expert Advice. In this section, we consider the prediction with
expert advice problem. We start with a special case of V1 = 0 and N = K, in which the
j’th expert always recommend to play action j for each j ∈ [N ], that is, for each t ∈ [T ],
ξtj(j) = 1 and ξtj(i) = 0 for any i 6= j. Then, we proceed to the model described in Section
2.
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Figure 1. The total loss of LP algorithm and the best offline algorithm

4.1. An Simple Start. In this subsection, we study the prediction with expert advice
problem in the case of V1 = 0 and N = K. Note that this can be seen as a special case
of the online linear optimization problem with the set of probability distributions over
N experts (or actions) as the feasible set X, and the expected regret of A against the
dynamic strategies is ∑

t∈[T ]

(
〈f t, pt〉 − 〈f t, qt〉

)
=
∑
t∈[T ]

〈f t, xt − πt〉.

Our algorithm, described in Algorithm 2 below, is modified from the well-known Hedge
[6] algorithm, with the following two modifications. First, in order to compare against
dynamic strategies, we borrow the idea from [12] and keep the measure of each action i
above some threshold, as is done for xti in Step 2b. Second, as in the algorithm in [4], we
use f t−1 to estimate f t at Step 2c and play the modified strategy x̂t in round t at Step
2d. Our algorithm has two parameters: η and β, and by choosing them properly, we can
achieve a small regret as shown in Theorem 4.1.

Algorithm 2 Modified-Hedge

1: In round t = 1, let x1 be the uniform distribution, with each x1i = 1/N , and
play x1.

2: In round t ≥ 2,

2a: let Z̄t =
∑

j x
t−1
j e−ηf

t−1
j , and for each i ∈ [N ], compute x̄ti = xt−1i e−ηf

t−1
i /Z̄t,

2b: for each i ∈ [N ], let xti = (1− β)x̄ti + β/N ,

2c: let Ẑt =
∑

j x
t
je
−ηf t−1

j , and for each i ∈ [N ], compute x̂ti = xtie
−ηf t−1

i /Ẑt,

2d: play x̂t.
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Theorem 4.1. Under the constraint that the loss vectors have their `2∞-deviation bounded
by D∞ and the dynamic strategies of the offline algorithm have their `11-deviation bounded

by S1. The regret of Modified-Hedge is at most O(
√
D∞(lnN + S1 ln(NT ))) 3.

Proof. We will basically follow the approach in the proof of Theorem 3.1, and we rely on
the following lemma, which we will prove in Subsection 4.2.

Lemma 4.1. Let f 0 be the all-0 function. Then, for any t ∈ [T ],

〈f t, x̂t − πt〉 ≤ η‖f t − f t−1‖2∞ +
1

η

(
RE
(
πt‖xt

)
− RE

(
πt‖xt+1

)
+ 2β

)
.

Note that
∑

t≥2 ‖f t − f t−1‖2∞ ≤ D∞, while after some rearranging,

T∑
t=1

(
RE
(
πt‖xt

)
− RE

(
πt‖xt+1

))
= −

∑
i∈[N ]

π1
i lnx1i +

∑
t≥2

∑
i∈[N ]

(
πt−1i − πti

)
lnxti +

∑
i∈[N ]

πTi lnxT+1
i .

The first term above equals lnN since x1i = 1/N for any i, and the third term is at most
zero since xT+1

i ≤ 1 for any i, while the second term is at most∑
t≥3

∑
i∈[N ]

∣∣πt−1i − πti
∣∣ ln(N/β) ≤ S1 ln(N/β)

according to Step 2b.
Finally, by combining all these bounds together, the regret is

T∑
t=1

〈f t, x̂t − πt〉 ≤ 2ηD∞ +
1

η

(
lnN + S1 ln

(
N

β

)
+ 2βT

)
,

and by choosing η =
√

(lnN + S1 ln(N/β))/D∞ with β = S1/T , we have the theorem.

4.2. Proof of Lemma 4.1. Note that the Modified-Hedge algorithm is very similar
to the algorithm in [4] for the prediction with expert advice problem except we need to
keep the measure of each action i above some threshold. In our analysis, we will rely on
the following lemma, which is implicitly proven in [4].

Lemma 4.2. For any t ∈ [T ],

〈f t, x̂t − πt〉 ≤ η‖f t − f t−1‖2∞ +
1

η

(
RE
(
πt‖xt

)
− RE

(
πt‖x̄t+1

))
.

By definition, RE (πt‖xt)− RE (πt‖x̄t+1) is equal to∑
i

πti ln
x̄t+1
i

xti
=
∑
i

πti ln
x̄t+1
i

xt+1
i

+
∑
i

πti ln
xt+1
i

xti
.

On the right hand side, the first term according to Step 2b is at most −
∑

i π
t
i ln(1−β) ≤

2β for β ∈ [0, 1/2], while the second term is RE (πt‖xt)−RE (πt‖xt+1). By combining all
the bounds together, we have the lemma.

3The regret achieved by our algorithm is close to optimal. Now let us divide the T rounds into s =
bS1/2c+1 segments each consisting of about r = D∞/(2s) rounds, together with some possibly remaining
rounds which can be ignored by giving them the all-zero loss vector. Then we apply a regret lower bound
of Ω(

√
r logN) for each segment, so the total regret is at least Ω(s

√
r logN) = Ω(

√
D∞(1 + S1) logN).
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4.3. A Generalized Case. In this subsection, we consider the prediction with expert
advice problem defined in Section 2. The key idea is to reduce this problem into the
special case mentioned in Section 4.1. Recall that in each round t ∈ [T ], a probability
distribution ξtj ∈ [0, 1]K is recommended by expert j ∈ [N ]. After receive the loss function

f t ∈ [−1, 1]K , we define a new function gt ∈ [−1, 1]N such that the j’th component
gtj = 〈f t, ξtj〉 is the expected loss of expert j in round t. Note that the expected loss of
the online algorithm A in round t is 〈f t, pt〉 = 〈gt, xt〉, while the expected loss of the
offline algorithm with a dynamic strategy πt ∈ [0, 1]N is 〈f t, qt〉 = 〈gt, πt〉, where for each
i ∈ [K], the i’th component of qt is qti =

∑
j∈[N ] π

t
j · ξtj(i). Therefore, we can view the

prediction with expert advice problem as the case in Section 4.1 with new loss functions
g1, · · · , gT . Our algorithm, described in Algorithm 3, can then achieve a small regret as
shown in Theorem 4.2.

Algorithm 3 Modified-Hedge2

1: In round t = 1, let x1 ∈ [0, 1]N be the uniform distribution, with each x1j = 1/N ,

and play p1 ∈ [0, 1]K where p1i =
∑

j x
1
jξ

1
j (i).

2: In round t ≥ 2,

2a: let Z̄t =
∑

m x
t−1
m e−ηg

t−1
m , and for each j ∈ [N ], compute x̄tj = xt−1j e−ηg

t−1
j /Z̄t,

2b: for each j ∈ [N ], let xtj = (1− β)x̄tj + β/N ,

2c: let Ẑt =
∑

m x
t
me
−ηgt−1

m , and for each j ∈ [N ], compute x̂tj = xtje
−ηgt−1

j /Ẑt,
2d: let gtj = 〈f t, ξtj〉 for each j ∈ [N ].

2e: play pt ∈ [0, 1]K where pti =
∑

j x̂
t
jξ
t
j(i).

Theorem 4.2. The (D∞, S1, V1)-regret of Modified-Hedge2 is at most

O(
√

(D∞ + V1) (lnN + S1 ln(NT ))).

Proof. Note that the distributions {xt}Tt=1, {x̄t}
T
t=1 and {x̂t}Tt=1 are exactly obtained by

applying Modified-Hedge algorithm using the new loss functions {gt}. Therefore, by
Lemma 4.1, the expected regret of Modified-Hedge2 is

T∑
t=1

〈f t, pt − qt〉 =
T∑
t=1

〈gt, x̂t − πt〉

= η

(
1 +

∑
t≥2

‖gt − gt−1‖2∞

)
+

1

η

∑
t≥2

(
RE
(
πt‖xt

)
− RE

(
πt‖xt+1

)
+ 2β

)
.

The last term above is at most 1
η

(
lnN + S1 ln

(
N
β

)
+ 2βT

)
, as in the proof of Theorem

4.1.
It remains to bound

∑
t≥2 ‖gt − gt−1‖2∞. Observe that for each j ∈ [N ], the term∣∣gtj − gt−1j

∣∣ is ∣∣〈f t, ξtj〉 − 〈f t−1, ξt−1j 〉
∣∣ ≤ ∣∣〈f t − f t−1, ξtj〉∣∣+

∣∣〈f t−1, ξtj − ξt−1j 〉
∣∣

By the generalized Cauchy’s inequality, the first term
∣∣〈f t − f t−1, ξtj〉∣∣ is at most∥∥f t − f t−1∥∥∞ ∥∥ξtj∥∥1 =

∥∥f t − f t−1∥∥∞ ,
while the second term is∣∣〈f t−1, ξtj − ξt−1j 〉

∣∣ ≤ ∥∥f t−1∥∥∞ ∥∥ξtj − ξt−1j

∥∥
1
≤
∥∥ξtj − ξt−1j

∥∥
1
.
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Then according to the fact that for any a, b ∈ R, (a + b)2 ≤ 2a2 + 2b2, we obtain that∑
t≥2 ‖gt − gt−1‖2∞ ≤ 2 (D∞ + V1) .
Finally, by combining all these bounds together, the (D∞, S1, V1)-regret is at most

2η (D∞ + V1) +
1

η
(lnN + S1 ln(N/β) + 2βT ) ,

and by choosing η =
√

(lnN + S1 ln(N/β))/ (D∞ + V1) with β = S1/T , we have the
theorem.

Remark 4.1. As shown in the proof of Theorem 4.2, if we can bound the `2∞-deviation

of the loss functions {gt}Tt=1 by some parameter G∞, then we can achieve a regret of

O(
√
G∞(1 + S1) logN).
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