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Abstract. Two improved endmember extraction algorithms are proposed based on end-
member independence and thinning technology. The improved algorithms introduced end-
member independence into traditional endmember extraction algorithms. One improved
algorithm combines simplex volume calculation criteria and endmember independence as
thinning criteria. The other improved algorithm uses high dimensional simplex volume
calculation criteria and endmember independence as thinning criteria. The two improved
algorithms are proposed to obtain more accurate endmembers. Compared with traditional
N-FINDR algorithm and endmember extraction algorithm based on simplex volume calcu-
lation criteria, the proposed algorithms can obtain endmembers with higher classification
accuracy and lower RMSE accuracy by the experiment results.
Keywords: Image Processing; Endmember independence; Endmember Independence;
Thinning Technology

1. Introduction. In recent years, the development of hyperspectral remote sensing tech-
nology to quantitative direction, the mixed pixels existing is an inevitable obstacle. The
mixed pixels greatly affect the accuracy of ground-object recognition for the hyperspec-
tral image analysis, as well as restrict the further development of hyperspectral remote
sensing. The endmember, i.e., pure pixel, contains the same type of target. The data
unmixing premise is endmember extraction. Currently, there are many representative
algorithms to extract endmember, including N-FINDR [1, 2], Simplex Growing Algo-
rithm [3](SGA), Convex Cone Analysis [4](CCA) and Iterative Error Analysis [5](IEA)
etc. Among them, the N-FINDR endmembers selection is better, but it lacks of criteria
to determine the number of initial endmembers and dimensionality reduction can cause
deviation. Currently, some improved algorithms based on N-FINDR have been proposed.
High-dimensional simplex volume formula is applied to endmember extraction. The for-
mula is not related to the data dimension, deviation of dimension reduction is avoided
in [6]. In [7], the candidate endmember set is obtained by using quantile of the chi-square
distribution. Compared with the N-FINDR, this method is faster. PPI and VCA are
used to extract the initial endmembers in [8], all pixels are selected with the same proba-
bility by the algorithm. In order to improve the search speed, the intelligent optimization
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algorithms are used to extract endmember in [9, 10]. Furthermore, some improved algo-
rithms have been proposed. In [11], the volume formula uncorrelated to the dimension is
introduced, thus, the complexity of the algorithm is reduced. The mean square error as
the objective function in [12] is used, crossover and mutation of the differential evolution
is proposed to extract endmember. The methods precision is higher, the convergence
and the global search ability is better. In [13], the pre-processing module of spatial and
spectral information combines with the existing algorithms. It ensures the accuracy and
reduces the amount of computation. Now, the nature of endmembers is not explored in
the improved N-FINDR. Since, among the extracted endmembers, there may be similar.
It is particularly important to conduct endmember thinning by the endmembers prop-
erties. In this paper, it is a research starting point. Firstly, based on simplex volume
calculation criterion and endmember independence, the endmember thinning criterion is
proposed. Secondly, based on high-dimensional simplex volume calculation criterion and
the endmember independence, the N-FINDR is improved. Compared with two original
algorithms, the proposed algorithms can obtain endmembers with higher classification
accuracy and lower RMSE accuracy.

2. N-FINDR algorithm. For N-FINDR algorithm, simplex volume composed by pure
pixels, i.e., endmembers, more than simplex volume composed by any other pixels in
spectral space. Thus, in N-FINDR, a set of random pixels is the initial solution, through
the replacement of the pixels and the endmembers, simplex volume will expand until no
seeking greater simplex volume. In [1], the implementation is as follows:

Step 1 Assuming that the number of endmembers is p, the original hyperspectral data
down to p-1 dimensions;

Step 2 After the image dimension reduction, randomly select p pixels as the initial
candidate endmembers and calculate the simplex volume V1. Simplex volume is calculated
as follows:

V (E) =
1

(p− 1)!
abs(|E|) (1)

E =

[
1 1 · · · 1
A1 A2 · · · Ap

]
(2)

Where Ai is the i–th endmember corresponding p-1 dimensional column vector;
Step 3 Select a pixel P1 from other pixels, recalculat simplex volume V2. If V2 > V1,

replace a candidate endmember as a new candidate endmember;
Step 4 Replace other candidate endmembers using pixel P , implement Step 3;
Step 5 Cyclically implement Step 3–4 for all other pixels, the largest simplex volume is

obtained, and its corresponding vertex are the required endmembers;

3. Endmember extraction algorithms of high-dimensional simplex criterion.
Since N-FINDR is limited by the data dimension, high-dimensional simplex volume cal-
culation criterion in [6] is proposed. p1, p2, · · · , pn pixels compose n-1 dimensional high
dimensional simplex, its volume:

Vn = V (pn − p1, pn − p2, · · · , pn − pn−1) =
1

(n− 1)!

√
|At

n−1An−1| (3)
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Where An−1 = (pn − p1, pn − p2, · · · , pn − pn−1). Since AT
i Ai is square, it is applied to

extract the initial endmembers, the original data dimension is not reduced. The specific
implementation of the algorithm refers to [6], the method is called TN algorithm.

4. Improved endmember extraction algorithms.

4.1. Endmember relevance. In order to further refine the endmembers, the endmem-
bers characteristics are analyzed. For a hyperspectral image (including multiple objects),
the obtained endmembers should be independent, i.e., endmembers have higher inde-
pendence. Since the spectrum of spatial and temporal has variability, it is possible to
extract different endmembers for the same object in practical operation. Therefore, this
paper uses higher relevance endmembers instead of lower independence endmembers, and
selects endmembers belonging to the same objects to do thinning in order to improve
the accuracy of the terminal endmembers. Endmember relevance is calculated as follows
in [14]:

r =

c∑
k=1

(Rik − R̄i)(Rjk − R̄j)√
[

c∑
k=1

(Rik − R̄i)2][
c∑

k=1

(Rjk − R̄j)2]

(4)

Where, Rik and Rjk are the grey levels of the i-th endmember and j-th endmember on
k-band, and represent respectively the average gray levels of the i-th endmember and j-th
endmember, c represents the number of bands.

4.2. Thinning Technology. Thinning technique is common method, it obtains regional
framework in the field of image processing. Its purpose is to reduce the redundant infor-
mation to highlight the main shape of the targets. Thinning technique can be divided
into two categories of non-iterative algorithms and iterative algorithms. Non-iterative
algorithms produce regional framework by one image scanning. Iterative algorithms iter-
atively delete pixels that meet certain conditions until the regional framework is obtained.
In iterative algorithms, parallel algorithms firstly mark deleted points, and all points are
unified deleted until all the points in the image are processed. Serial algorithms find a
deleted point in the process of scanning images, and the point is immediately deleted.

According to the above introduction, the serial algorithms are similar to the endmember
search process. So in this paper, the algorithm is applied to endmember extraction to
compose endmember extraction thinning criterion. Specific methods are as follows:

(1) In the initial extracted endmembers, using endmember independence selects end-
members and composes the scanning area.

(2) In the iterative process, improved volume calculation criteria as a condition is met,
endmembers are replaced in the scanning area and volume is calculated.

(3) If the volume becomes larger, the corresponding endmember is replaced, until the
largest simplex volume is obtained.

4.3. Improved algorithms description. In this paper, two improved endmember ex-
traction algorithms are proposed based on the above. In the improved N-FINDR algo-
rithm, endmember independence and high-dimensional simplex volume calculation crite-
rion are used as the thinning criterion. The algorithm is called NFINDRCTN algorithm.
The flowchart is shown as Fig. 1, the specific implementation of the algorithm is as follows:

Step 1 Extract the initial endmembers by N-FINDR algorithm, the number is p;
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Step 2 Calculate high-dimensional simplex volume V1 of the initial endmembers by
Equation (3);

Step 3 Calculate the initial endmembers relevance by Equation (4), and select end-
members whose relevance value are greater than relevance threshold r to construct the
scanning area;

Step 4 Select a replaced endmember D in scanning area;
Step 5 Select a pixel Q from other pixels to replace the endmember D, recalculate

high-dimensional simplex volume V2. If V2 > V1, the pixel Q replaces the endmember D,
if not, reserve the endmember D;

Step 6 Determine whether traverse all pixels, if so, continue to step 7; if not, return to
Step 5;

Step 7 Determine whether traverse all replaced endmembers, if so, continue to step 8;
if not, return to Step 4;

Step 8 Output the final endmember set.
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Figure 1. Flowchart of NFINDRCTN

In the improved TN algorithm, endmember independence and simplex volume calcula-
tion criterion are used as the thinning criterion. The algorithm is called TNCNFINDR
algorithm. The flowchart is shown as Fig. 2, the specific implementation of the algorithm
is as follows:

Step 1 Extract the initial endmembers by TN algorithm, the number is p;
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Step 2 Calculate the initial endmembers relevance by Equation (4), and select end-
members whose relevance value are greater than relevance threshold r to construct the
scanning area;

Step 3 The original hyperspectral data down to p-1dimensions, calculate simplex volume
V1 of the initial endmembers by Equation (1);

Step 4 Select a replaced endmember D in scanning area;
Step 5 Select a pixel Q from other pixels to replace a endmember D, recalculate simplex

volume V2. If V2 > V1, the pixel Q replaces the endmember D, if not, reserve the
endmember D;

Step 6 Determine whether traverse all pixels, if so, continue to step 7; if not, return to
step 5;

Step 7 Determine whether traverse all replaced endmembers, if so, continue to step 8;
if not, return to step 4;

Step 8 Output the final endmember set.
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Figure 2. Flowchart of TNCNFINDR

5. Experiment and analysis.

5.1. Experiment purpose. In this paper, the method in [6] is called TN, the method
in [15] is called SN-FINDR. Both methods proposed in this paper are called NFIND-
RCTN and TNCNFINDR. This paper mainly uses synthetic data and real hyperspectral
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images to compare and analyze results of N-FINDR, TN, SN-FINDR, NFINDRCTN and
TNCNFINDR.

5.2. Calculation of unmixing error. The unmixing effect is measured by unmixing
error. This paper employs fully constrained least squares method as unmixing algorithm.
For real hyperspectral image unmixing, endmember spectrum and its corresponding abun-
dance information generally are unknown. At this time, using RMSE is used to evaluate
and analyze unmixing effect. Assuming that X is the original spectral image, in the
original image, residual of the i-th pixel Xi is:

εi = Xi − ASi (5)

RMSE of the i-th pixel Xi is:

RMSEi =

√√√√1

l

l∑
j=1

ε2i,j (6)

RMSE of whole image is:

RMSEi =

√√√√ 1

N · l

N∑
i=1

l∑
j=1

ε2i,j (7)

5.3. Synthetic data simulation experiments. Synthetic data are divided into two
groups. The first group is to compare simplex volume of N-FINDR with NFINDRCTN,
TN with TNCNFINDR. In the compared experiments, (-15, 0), (0, 20) and (15, 0) are as
the theoretical endmembers. Based on three theories synthesize, 1000 points which add
to gaussian noise of mean is 0 and variance is 2 are randomly generated by normalized
coefficients and linear mixed model. Synthetic data and experimental results of N-FINDR
and NFINDRCTN, TN and TNCNFINDR are shown as Fig. 3 and Fig. 4. The composed
volume are shown in Table 1 and Table 2.

Table 1. Comparison of N-FINDR and NFINDRCTN

Endmember extraction algorithm NFINDR NFINDRCTN
Simplex volume 11.1073 11.1273

Table 2. Comparison of TN and TNCNFINDR

Endmember extraction algorithm TN TNCNFINDR
Simplex volume 0.6165 0.6481

From Table1 and Table2, the volume of NFINDRCTN and TNCNFIND are greater
than N-FINDR and TN respectively. The triangle by the extracted endmembers of TN,
N-FINDR, NFINDRCTN and TNCNFIND are shown in Fig. 3 and Fig. 4. Compared
with N-FINDR and TN, the extracted endmembers using NFINDRCTN and TNCNFIND
are closer to the theoretical endmembers, the searched volume are larger.

The second group is to compare unmixing effect of N-FINDR, TN, SN-FINDR, TNCN-
FINDR and NFINDRCTN. Data synthetic rules are as follows: randomly generate vector
a and b. The dimension is 1*12. Vector a and b which add to random noise with mean
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Figure 3. experimental results of
NFINDRCTN

 

Figure 4. experimental results of
TNCNFINDR

Table 3. Comparison of unmixing error with four methods with synthetic data

Endmember extraction algorithm N-FINDR TN TNCNFINDR NFINDRCTN
Unmixing error 0.1573 0.1067 0.1395 0.1244

Table 4. Experimental objects and the number of pixels

Name of
object

Corn
1

Corn
2 RanchBush

Hay Bean
1

Bean
2

Bean
3

Arbor

Number of
pixels

1428 830 483 730 478 972 2455 593 1265

Table 5. Comparison of experimental results with different number of
pixels of 6 objects

Species of
actual objects

Number of pixels Method
Unmixing

error
Species of

separated objects

6 objects
(the number of

endmembers is 7)

360 pixels
(60 pixels per type)

N-FINDR 0.013059 4

TN 0.011774 5
SN-FINDR 0.013291 5

TNCN-
FINDR

0.011723 5

NFIND-
RCTN

0.011175 5

480 pixels
(80 pixels per type)

N-FINDR 0.011723 4

TN 0.012336 3
SN-FINDR 0.017719 3

TNCN-
FINDR

0.011296 4

NFIND-
RCTN

0.010979 4
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is 0 and variance is 0.5 are used to generate matrix A and B. The dimension is 1200*12.
Matrix A and B with different proportions synthesize matrix C. The data of C is as
follows: 1 to 200 is 100% of A from 1 to 200, 201 to 400 is 80% of A from 201 to 400
and 20% of B from 201 to 400, and so on, the synthesized ratio of A decreases from
100% to 0%, the synthesized rate of B increased from 0% to 100%, the rate is 20%. In
the extraction process, the number of the endmembers is two. The unmixing error of four
methods is given in Table 3. From Table 3, it shows that the proposed algorithms have
improvement, the unmixing error of NFINDRCTN is better than NFINDR. Because the
endmembers number is small, the unmixing error of TNCNFINDR is bigger than TN. If
the endmembers number is increasing, the unmixing error is decreasing. The experiment
results are shown in the real hyperspectral image simulation experiments.

Table 6. Comparison of experimental results with different number of
pixels of 9 objects

Species of
actual objects

Number of pixels Method
Unmix-

ing
error

Species of
separated objects

9 objects
(the number of

endmembers is 10)

540 pixels
(60 pixels per type)

N-FINDR 0.012591 7

TN 0.01305 7
SN-

FINDR
0.015734 6

TNCN-
FINDR

0.012388 8

NFIND-
RCTN

0.012052 7

720 pixels
(80 pixels per type)

N-FINDR 0.013224 5
TN 0.014185 6
SN-

FINDR
0.014806 6

TNCN-
FINDR

0.012164 7

NFIND-
RCTN

0.012475 5

5.4. Real hyperspectral image simulation experiments. The original AVIRIS im-
age is used in this paper. It was a part of remote sensing research area in Northwest
Indian, Indiana, USA. It was shot in June, 1992. In this paper, 200 bands are used re-
moving noise and water vapor absorption. Due to spatial resolution of AVIRIS image is
only 20m×20m, pixel mixing probability is higher. Some objects contains only dozens of
pixels, those pixels can not fully represent the spectral properties of the object. So this
paper only selects 9 objects with the larger pixels number as candidate endmembers. The
names of 9 objects and the pixels number are shown in Table 4.

In [15], it only gives performance improved methods with 9 objects, and the experimen-
tal results with different objects number and different pixels number are not discussed.
Therefore, in this paper, the selected types of objects respectively is 6 and 9, and the
pixels numbers is 60, 80. The six objects are Corn 1, Corn 2, Ranch, Bean 1, Bean 2 and
Bean 3. In order to ensure the reasonableness of comparative experiments, the number
of the selected endmembers is Z + 1 (Z is the number of types of objects).
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For unknown hyperspectral images, the endmembers number is obtained automaticly
by using OSP endmember extraction algorithm combined with Endmember indepen-
dence [14]. First, extracte i endmembers by OSP algorithm, and calculate endmember
relevance to compose endmembers correlation matrix Mi. The number of non-diagonal el-
ements which is higher than endmember relevance threshold on upper triangle Mi, is called
strong relevance index of endmember i and denoted ESCIi. The endmember number i
increases from 1. When i meet ESCIi≥1 for the first time, i is actual the endmembers
number. In order to more comprehensively analyze the advantages and disadvantages of
the proposed algorithms, in addition to the unmixing error, the classification accuracy of
algorithm is also introduced in this paper.

Before the final experimental comparison, first, the selection of relevance threshold
(r) with improved algorithms is analyzed. By analyzing the unmixing error curves, for
6 objects, the relevance thresholds with TNCNFINDR respectively are: 0.97, 0.93, the
relevance thresholds with NFINDRCTN respectively are: 0.95, 0.92. For 9 objects, the
relevance thresholds with TNCNFINDR respectively are: 0.93, 0.94, the relevance thresh-
olds with NFINDRCTN respectively are: 0.92, 0.95.

For different number of pixels, the experimental results of 6 objects are shown in Table
5. From Table 5, it can conclude that the unmixing error and classification accuracy of
TNCNFINDR are improved than TN algorithm. Similarly, the unmixing error and classi-
fication accuracy of NFINDRCTN algorithm are improved than N-FINDR algorithm. In
addition, the results obtained by the two methods are better than SN-FINDR algorithm,
and NFINDRCTN algorithm is better than TNCNFINDR algorithms.

In different number of pixels, the experimental results of 9 objects are shown in Table
6. As can be seen from Table 6, TNCNFINDR algorithm and NFINDCTN algorithm can
also improve the TN algorithm and N-FINDR algorithm in different number of pixels.
But TNCNFINDR algorithm is better than NFINDRCTN algorithm.

6. Conclusions. The improved endmember extraction algorithms based on endmember
independence and thinning technology are proposed. The algorithms combine endmem-
ber independence and endmember thinning criteria to complete extraction and thinning
of endmember. Based on different objects and different number of pixels, the real hyper-
spectral data experiments show that the algorithms can improve the original algorithms.
But the algorithms have different advantages, TNCNFINDR has great advantages for
more objects type, NFINDRTN has great advantages for less objects type. In practical
application, the better method is selected. In addition, TN algorithm takes a long time
to extract endmembers based on more pixels, and make computational time rise. How to
reduce the computational time, and improve the algorithm usefulness is one of the next
works to be solved.
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