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Abstract. This paper considers compressed acquisition and advanced reconstruction of
sensor signals via compressive sensing in wireless sensor networks. Firstly, we construct
a CS-based signal acquisition scheme that exploits the spatial and temporal correlations
of sensor signals to reduce the energy consumption of networks. The scheme divides the
network into several clusters, each node in each cluster decides whether or not to sample
and transmit its signals to fusion center, with a certain probability. In order to mini-
mum the energy consumption of the whole network, we study the energy consumption of
the proposed scheme, and then work out the relationship between the number of clusters
and the transmit probability. Secondly, we propose a reweighed l1 − norm minimization
algorithm to reconstruct the original signal by selecting weight adaptively. The algorithm
integrate the re-weighting procedure into each iteration, i.e., the weights change according
to the changes of solution in each iteration process. This method promote the solution
has the same sparsity structure which is present in the original signal. The simulation
results show that our algorithm has a better performance in reconstruction accuracy and
computation complexity.
Keywords: Compressive sensing, Wireless sensor networks, Spatial and temporal cor-
relation, Signal acquisition, Sparse signal reconstruction

1. Introduction. Wireless sensor networks (WSNs) consisting of a large number of small
and low-cost sensor nodes (SNs) are well-suited for various monitoring and measuring
tasks in environmental, industrial, health and military applications [1, 2, 3, 4]. To accom-
plish these targeted applications, SNs have to collect and transmit a tremendous amount
of real-time data over their lifetime. Due to the stringent energy constraints, weak com-
puting ability and small storage capacity of SNs [5], we need to establish an efficient data
acquisition and transmission scheme to reduce the cost of information acquisition and
prolong the lifetime of WSNs.

As an economical data acquisition theory, compressed sensing (CS) [6, 7, 8] provides
a new data acquisition approach for WSNs. Applying CS theory to traditional WSNs,
SNs can realize data acquisition in a compressed way with no requirement of additional
computational overhead [9, 10]. In this way, the amount of data transmission could be
greatly reduced, so does the consumption of network energy. Energy has always been an
important factor limiting the life cycle of WSNs. Moreover, SNs only afford the calculation
of the compression part, which satisfies its characteristics of limited processing capability.
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And the reconstruction part with high computational complexity is carried out on the
terminal computer, which is without the limitation of computing capacity and energy.

CS has established a promising foundation for developing efficient data aggregation
methods in WSNs. The conventional CS approach is achieved by random projections in
the time domain, which does not suffice to efficiently recovery the signal [6]. And the
new approach that exploiting the spatial and temporal correlations of multi-signal can
obviously decrease the necessary data transmission quantity. Two significance frameworks
for multi-signal ensembles are distribute compressive sensing (DCS) [11] and Kronecker
compressive sensing (KCS) [12]. DCS was proposed to model and exploit certain types
of intra-signal and inter-signal dependencies via joint sparsity models, while KCS was
recently introduced to exploit more general correlation patterns by combining the possibly
distinct sparsifying bases from each signal dimension into a single basis matrix. DCS
and KCS have been shown to outperform single-dimensional CS approaches in terms
of compression performance and sensor energy consumption. Chen et al. [13] proposed
a Frchet mean based CS approach which leveraged both intra-signal and inter-signal
correlation to reduce the number of samples required for reconstruction of the original
signal. However, the reconstruction algorithm they proposed needed prior knowledge of
the signal sparsity, which was unrealistic, and they did not analyze the energy consumption
for the proposed data gathering approach. Quer et al. [14] proposed a new approach for
the online recovery of large data sets in WSNs using jointly CS and Principal Component
Analysis (PCA). The role of PCA was to capture the spatial and temporal characteristics
of real signals. They also make their framework self-adapt to the changes in the signal
statistics owning to a feedback control loop that estimates the signal construct error. But
this paper neglected the procedure of compression which was taken place in the SNs.

The goal of this paper is twofold. First, considering the signals detected by a group
of SNs have spatial and temporal correlations, we construct a CS-based signal acquisi-
tion scheme which takes into fully account this characteristic to reduce the networks en-
ergy consumption, and thereby, to prolong the lifetime. Second, we propose a reweighed
l1−norm minimization algorithm via GPSR (Gradient Projection for Sparse Reconstruc-
tion [15]) to reconstruct the original signal from noisy measurements, which are acquired
by the former constructed CS-based signal acquisition scheme.

The remainder of this paper is organized as follows. Sect. 2 covers the mathematical
background for CS and gives several necessary assumptions for a considered WSN. Sect.
3 presents an energy-efficient CS-based data acquisition scheme. Sect. 4 proposes an
adaptive reweighing via GPSR algorithm. Sect. 5 provides simulation experiments that
compare performance of our proposed algorithm against other algorithms. Finally, Sect.
6 concludes this paper.

2. Preliminaries. In this section a short mathematical background on CS is given. Then
we make a brief assumption for a considered WSN.

2.1. Compressed sensing. Let f ∈ RN be a real-valued signal vector and it can be
represented in a basis Ψ ∈ RN×N as f = Ψx. x is side to be S − sparse in basis Ψ if x
has S � N non-zero entries. While for natural signals not perfectly sparse, they are said
to be compressible if the energy of coefficient in x is concentrated in a relatively small set
of entries, and they exhibit a power law decay [16] as

∣∣x(i)∣∣ ≤ Cpi
−p, for all i = 1, · · · , N ,

where p ≥ 1 affects the rate of decay and Cp is a constant depending only on p.
CS theory demonstrates that this kind of signals can be accurately reconstructed from

M < N liner measurements y ∈ RM as

y = Φf = ΦΨx = Ax (1)
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where Φ ∈ RM×N is the measurement matrix and A ∈ RM×N is the sensing matrix.
The problem to recover the signal representation x from the measurements y is ill-posed

as the number of equations M is smaller than the number of variables N . [17] shows that
the solution for (1) can be achieved using the l0 − norm minimization problem. The
recovery procedure corresponds to the problem given by:

x̂ = arg min ‖x‖0 s.t. y = Ax (2)

However, since (2) is an NP-hard problem, it is not feasible to solve it, especially
for the reconstruction of multi-dimension signal. Instead we consider its best convex
approximation, the l1 − norm minimization problem [18]:

x̂ = arg min ‖x‖1 s.t. y = Ax (3)

which can be solved efficiently via linear or quadratic programming techniques.
It is by now well-known that under the Restricted Isometry Property (RIP) of sensing

matrix A and the incoherence between Ψ and Φ [19], both (2) and (3) have the same
unique solution. [20] demonstrates that a random Gauss matrix being highly incoherent
with any Ψ. Therefore, we choose random Gauss matrix as the measurement matrix.

2.2. Description of considered WSN and sensor signals. We consider a single-sink
multi-hop data gathering WSN, which consists of K battery-powered sensors, capable of
acquiring, transmitting and receiving data. The sensors are densely deployed in an event
area to periodically monitor physical phenomena at a pre-defined rate. And the acquired
information to be sent and individually reconstructed by a fusion center (FC). In order to
optimize network model to further cut down the volume of data transmitted, we propose
a cluster based model for a data acquisition scheme in WSN, more details are given in
section 3 below.

fi =
(
f
(1)
i , · · · , f (n)

i

)T
denotes the sampling vector of the ith SN at a sampling instant,

then fi is an n-dimensional discrete vector which is time-related. For this signal, data at
time-adjacent point are highly correlated, which, actually, is the reason why the signal can
be compressed in the time domain. Furthermore, two SNs adjacent in distance share one
monitoring environment, which lead to the signals of these two SNs are highly correlated
as well. Thus, for WSN, especially for that of densely placed SNs, it is reasonable for us
to get fully use of spatial-temporal correlations of signals to reduce the amount of data
transferred via network. According to [21, 22], the network energy consumption of signal
transmitting and receiving is far larger than that of signal acquisition. So it is of great
significance to reduce the signal transmit quantity via network.

Actually, the signal sent by an SN is noisy. For the signal fi, we assume that its
sparsifying basis is Ψi, sparse representation is xi, measurement matrix is Φi, then the
measurement yi can be described as:

yi = Φifi + ni = ΦiΨixi + ni (4)

where ni represents the noise level of measurement and each entry in ni is selected as i.i.d.
N (0, σ2).

It is indicated in [23] that many signals such as real-word audio and video images or
biological measurements are sparse. The selection of sparsifying basis is not the emphasis
of this paper. We assume that the sparsifiying basis used here is proper.

3. Sensor signals acquisition.
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3.1. CS-based signal acquisition scheme. Considering the spatial-temporal correla-
tions of sensor signals, we present a CS-based signal acquisition scheme for a clustered
WSN model to achieve the most information at the minimal expense of energy consump-
tion.

Assume that K SNs are randomly and evenly deployed in the monitoring area, which
covers L×L m2. The whole WSN is equally divided into W clusters, each cluster selects
the SN having the most energy as a cluster head, as show in FIGURE.1. In an arbitrary
sampling cycler, each member node independently decides whether or not to collect and
transmit its signal to FC, along with sampling cycle and node ID, with probability ptx ∈
(0, 1). Besides, to insure the globality of monitoring information, the cluster heads with
enough energy participate in sampling at every cycle. In this way, it can be achieved for
SNs to sleep and work periodically; consequently, network energy can be balanced well.

Figure 1. Clustered WSN Model

3.2. Energy consumption analysis. We use the first-order radio model [24] to analyze
energy consuming of our compressed data acquisition scheme. The energy consumption of
one SN is categorized into transmit message radio, receive message radio and message fuse
expenditures. As shown in FIGURE.2, the transmit consumptions are mainly in operating
the transmitter electronics and the transmitter amplifier; the receive consumptions are
mainly in operating the receiver electronics.

l bit packet
Transmit

Electronics
Tx Amplifier

Eelec * l amp * l * d
n

Etx(d)

Receive

Electronics

l bit packet
Erx(d)

Eelec * l

d

Figure 2. First Order Radio Model

According to the distance d between a transmitting node and a receiving node, we
separately use free-space model (d2 power loss) and multi-path fading model (d4 power
loss) to to calculate energy consumption for communication. Energy required to transmit
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an l − bit message over a distance d is

Etx (l, d) =

{
l × Eelec + l × εfsd2, d < d0
l × Eelec + l × εmpd4, d ≥ d0

(5)

where Eelec is the energy needed to run the radio, εmp and εfs is the energy required to
run the transmitter amplifier. When transmission distance is more than the threshold
distance d0, we use multi-path fading model to compute energy consumption, otherwise,
use the free-space model. The threshold distance d0 is

d0 =

√
εfs
εmp

(6)

Under normal circumstance, free-space model is used for intra cluster transmission, and
multi-path fading model is used for the transmission between cluster heads and FC. To
receive an l − bit message, energy consumption is

Erx (l) = l × Eelec (7)

For the network model we described, each cluster covers an area of L2
/W . In order

to simplify the calculation, we assume one cluster is a circle of radius r = L/√πW , and
the member nodes deployed in each cluster subjects to uniformly distribution. Thus the
probability density function of member nodes in one cluster is

ρ (x, y) =
W

L2
(8)

The distance between member nodes and head node in one cluster is dtoCH , the expectation
of its square is

E
(
d2toCH

)
=

∫∫ (
x2 + y2

)
ρ (x, y) dxdy

=

∫∫
x2ρ (r, θ) rdrdθ

=
W

L2

∫ 2π

0

dθ

∫ L/
√
πW

0

r2dr

=
L2

2πW

(9)

Member nodes expend energy only in the process of transmitting message to cluster head.
Thus, from (7) and (9), the energy consumption of whole network member nodes is

ECM = W

(
K

W
− 1

)
ptx
(
lEelec + lεfsd

2
toCH

)
= ptx (K −W )

(
lEelec + lεfs

L2

2πW

) (10)

Head nodes consume energy in both the process of receiving message from member
nodes and transmitting it to FC. Because the nodes acquire the sensor signal that has
already been compressed, we do not integrate the received data on head nodes. The
energy consumption of receiving message of head nodes is

ECHrx = W

(
K

W
− 1

)
ptxlEelec (11)
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Moreover, the energy consumption of transmitting message of head nodes is

ECHtx = W

[(
K

W
− 1

)
ptx + 1

] [
lEelec + lεmpd

4
toFC

]
(12)

From (11) and (12), we derive the energy consumption of whole network head nodes is

ECH = ECHrx + ECHtx

= 2ptx (K −W ) lEelec +WlEelec

+ (K −W ) ptxlεmpd
4
toFC +Wlεmpd

4
toFC

(13)

So, the whole network energy consumption is

Etotal = ECM + ECH

= [3ptx (K −W ) +W ] lEelec

+ [ptx (K −W ) +W ] lεmpd
4
toFC +

ptxL
2

2π

(
K

W
− 1

)
lεfs

(14)

It can be found in (14) that the minimum value of Etotal exists. Let us take the partial
derivative with respect to W , and then make ∂Etotal

∂W
= 0; consequently, when the Etotal is

minimal, the relationship between W and ptx satisfies

W 2 =
ptxKL

2lεfs
2π [(1− 3ptx) lEelec + (1− ptx) lεmp]

(15)

By this means, if the probability of member nodes that participate in signal acquisition
is determined, we can obtain the number of clusters for whole network.

Our CS-based WSNs signal acquisition scheme exploits the spatial-temporal correla-
tions of sensor signal, which can not only reduce the amount of signal transmitted, but also
balance network energy. Compared with the WSNs signal acquisition schemes which are
not based on CS, or those base on CS but only use the spatial correlation or the temporal
correlation, our scheme is undoubtedly more efficient in saving energy consumption.

Cluster heads receive signals of their members and transmit them to FC, and FC uses
the algorithm which is proposed in Sec. 4.2 to reconstruct original signals. The entire
signal acquisition process is shown in Table 1.

Table 1. CS-based signal acquisition scheme

a) Divide the whole network into clusters evenly;
b) In every sampling cycle, each SN checks its remaining energy, and select the ones
have the most remaining energy as the cluster head in one cluster;
c) Cluster members independently decide whether or not to sample signals with proba-
bility ptx, while the cluster heads always do sampling;
d) After being acquired by a SN, the original signal f is projected under matrix Φ to
yield measurement y, which is to be sent to the cluster head;
e) In each cluster, head node uses vectorization operator to make all the received signals
into one signal Y , which is to be sent to the FC;
f) After receiving the signals from all the cluster heads, the FC individually reconstruct
them using the adaptive reweighing via GPSR algorithm which is proposed in Sect. 4.2
to yield their sparse representations;
g) At last, the original signals are obtained, which are the products of sparse represen-
tations and the sparsifying basis.
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4. Sensor signals reconstruction. On account of WSNs’ measurement signals with
noise, large amount of data, and high requirements of instantaneity. Reconstruction algo-
rithms have to fulfill the requirement of high reconstruction accuracy of multi-dimensional
signals, which are measured with noise, meanwhile it has to reduce the time complexity
as much as possible. This paper design an advanced l1−norm minimization algorithm for
signal reconstruction, which find a better balance between time complexity and recovery
accuracy.

This section begin with an overview of the classic GPSR algorithm [15] (in Sec. 4.1),
which serves as the necessary background before the discussion of our proposed algorithm.
Then the proposed algorithmadaptive reweighing via GPSR is presented (in Sec. 4.2).

4.1. The GPSR-Basic algorithm. The key difference between l1 and l0 norms is the
dependence on magnitude: lager coefficients are penalized more heavily in the l1 norm
than smaller coefficients, unlike the more impartial penalization of the l0 norm [22]. To
reconcile this imbalance, a new l1 − norm minimization form of (3) was designed as:

min
x

τ‖x‖1 +
1

2
‖Ax− y‖22 (16)

For an n-dimensional sparse signal x, GPSR introduce vector u and v to split the
variable x into its positive and negative parts:

x = u− v, u ≥ 0, v ≥ 0 (17)

where ui = (xi)+, vi = (−xi)+ for all i = 1, 2, · · · , N , and (xi)+ = max {0, x}. In this way,
(16) can be rewritten as the following bound-constrained quadratic program (BCQR):

min
u,v

τITNu+ τITNv +
1

2
‖y − A (u− v)‖22

s.t. u ≥ 0, v ≥ 0
(18)

where IN = [1, 1, . . . , 1]T ∈ RN . Finally, (18) can be written in more standard BCQR
form:

min
z

cT z +
1

2
zTBzT ≡ F (z)

s.t. z ≥ 0
(19)

where z =

[
u
v

]
, b = ATy, c = τI2N +

[
−b
b

]
, and B =

[
ATA −ATA
−ATA ATA

]
. And (19) is the

problem will be solved by the gradient projection (GP) algorithm.

Define the vector g(k) by g
(k)
i =

{ (
∇F

(
z(k)
))
i
, if z

(k)
i > 0 or

(
∇F

(
z(k)
))
i
< 0

0, else
.The

pseudocode outlining the important steps are presented in Algorithm 1.

4.2. Adaptive reweighing via GPSR. The GPSR-Basic algorithm solves (16) for a
fixed value of τ , or the algorithm with a continuation step solves the problem for a sequence
of values of τ . The first type of GPSR algorithm performs not well in reconstruction
accuracy, and the second type has an additional calculation. In order to improve signal
reconstruction performance, we present a new GPSR algorithm that performs an internal
adaptive reweighing in each GPSR iteration. Differ from solving (16) multiple times
with different weights as GPSR do, adaptive reweighing adjusts the weights inside the
algorithm. And the reweighed l1 − norm minimization form of (16) can be described as:

min
x

N∑
i=1

wi |xi|+
1

2
‖Ax− y‖22 (20)
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Algorithm 1 GPSR-Basic

Input: A, y, τ, αmin, αmax

Output: z∗, F (z∗)
1: (initialization) Give z(0), choose parameters β ∈ (0, 1) and µ ∈ (0, 1/2 ); set k = 0

2: compute α0 =
(g(k))

T
(g(k))

(g(k))
T
B(g(k))

, and replace α0 by min (αmin, α0, αmax)

3: (backtracking line search) Choose α(k) to be the first number in the sequence
α0, βα0, β

2α0, · · · such that

F
((
z(k) − α(k)∇F

(
z(k)
))

+

)
≤ −µ∇F

(
z(k)
)T (

z(k) −
(
z(k) − α(k)∇F

(
z(k)
))

+

)
And set z(k+1) =

(
z(k) − α(k)∇F

(
z(k)
))

+

4: Terminate with approximate solution z(k+1) if it satisfied ‖min (z,∇F (z))‖ ≤ ε; oth-
erwise set k ← k + 1 and return to 2

where wi > 0 denotes the weight of xi.
Adaptive reweighing wi can selectively penalize the different coefficients in the solution,

thus to promote the same sparsity structure in the solution that is present in the original
signal. Suppose index i is a zero location of original signal, but its estimate x̃i 6= 0 is a
small value, we select wi that has a large value to encourage x̃i toward zero in the next
iteration. And if x̃i = 0 or x̃i is a lager value, we select the weight of xi has a small value
to remain it unchanged. So, naturally, we have:

wi =

{
1

|x̃i|+ε , i ∈ Γ
1

max
i∈Γ
|x̃i| , i /∈ Γ (21)

Γ denotes the support of x̃. The term support is the index set of nonzero coefficients.
Due to the reality of there is no prior information of original signal, the weights are

adjusted according to the solution at the previous iteration. In each GP step, we first
update the solution x(k) ← x(k−1), and then update the support Γ(k) ← Γ(k−1), finally
update the weight w(k) ← w(k−1). Specifically, in the experiment, for ∀i ∈ Γ, we update
wi as:

w
(k)
i =

w
(k−1)
i

γ
∣∣∣x(k−1)i

∣∣∣+ ξ
(22)

where x
(k−1)
i denotes the solution from previous reweighing iteration, we fix ξ = 1 and

update γ ← M‖x
(k-1)‖2

2/‖x(k-1)‖2

1

at each reweighing iteration, M is the dimension of mea-

surements. Suppose that x(k−1) is not sparse enough, the value of γ is small, and thus the
value of wi is large, i.e., to punish more severely on the support of x(k−1), thus improve
sparsity of solution. For ∀i /∈ Γ, we update wi as:

w
(k)
i = min

(
w

(k−1)
i ,

w
(k−1)
i

|xi|

)
(23)

It is more flexible and reliable to separately use the formulations (22) and (23) to update
the weights on different index. And this method effectively control the sparsity of the
solution and greatly decrease the object function value.
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Rewrite c as c = wI2N+

[
−ATy
ATy

]
, the pseudocode of our proposed adaptively reweighing

via GPSR algorithm is presented in Algorithm 2.

Algorithm 2 Adaptive Reweighing via GPSR

Input: A, y, αmin, αmax

Output: z∗, w∗, F (z∗)
1: (initialization) Give z(0), w(0), choose parameters β ∈ (0, 1) and µ ∈ (0, 1/2 ); set
k = 0

2: compute ∇F
(
z(k)
)

= Bz(k) + c

3: compute α0 =
(g(k))

T
(g(k))

(g(k))
T
B(g(k))

, and replace α0 by min (αmin, α0, αmax)

4: (backtracking line search) Choose α(k) to be the first number in the sequence
α0, βα0, β

2α0, · · · such that

F
((
z(k) − α(k)∇F

(
z(k)
))

+

)
≤ −µ∇F

(
z(k)
)T (

z(k) −
(
z(k) − α(k)∇F

(
z(k)
))

+

)
And set z(k+1) =

(
z(k) − α(k)∇F

(
z(k)
))

+

5: update the support Γ

6: update the weight w: if i ∈ Γ, let w
(k)
i =

w
(k−1)
i

γ|zk−1
i |+ξ

, otherwise w
(k)
i =

min

(
w

(k−1)
i ,

w
(k−1)
i

max|zi|

)
7: Terminate with approximate solution z(k+1) if it satisfied ‖min (z,∇F (z))‖ ≤ ε; oth-

erwise set k ← k + 1 and return to 2

The main computational cost at each step of adaptive reweighing via GPSR algorithm
comes from a |2N | × |2N | multiplication in step 2 for computing ∇F

(
z(k)
)

, and the

calculation in step 4 for α(k). It is worth noting that the matrixes B and ATy stay the
same in each iteration, which can be pre-computed at the start of the algorithm. And we
perform a backtracking line search for α(k) until a sufficient decrease is obtained in F . In
the simulation experiments, it is found that in most cases a proper α(k) can be searched
quickly. Occasionally it requires many more searches to meet a α(k), here jump out of the
liner search and reset α0 = 1 will not reduce the performance of reconstruction algorithm,
and thereby reduce the algorithm complexity.

What is noteworthy is that our proposed adaptive reweighing via GPSR algorithm
does not require prior knowledge of the sparsity of the signal. This is no doubt in line
with that in reality, which the degrees of sparseness of a signal are generally unknown.
Considering that, our algorithm is more practical than other algorithms demand the
degrees of sparseness such as OMP [25], CoSaMP [26], etc.

5. Performance comparison: reconstruction algorithms. In this section, we present
some experiments to evaluate the performance of our proposed adaptive reweighing via
GPSR algorithm, which we will call ARGP, in terms of the computational cost and the
reconstruction accuracy. We show that, in comparison with GPSR-Basic [15], GPSR-
BB [15], ARW-H (a state-of-the-art algorithm) [27] and the classic greedy OMP [25]
algorithm, solving the recovery problem using ARGP yields significantly higher quality
signal reconstruction, at a small computational cost.
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5.1. Simulation setting. We reconstruct the 0-1 sparse signal to demonstrate the per-
formance of the algorithms. In addition to the images can be directly expressed as 0-1
signals, many natural signals can be expressed as 0-1 signals using binary coding. The
measurement of the ith SN yi is generated according to (4), with σ2 = 10−4.

In GPSR-Basic and GPSR-BB, we set β = 0.5, µ = 0.1, and τ = 0.1
∥∥ATy∥∥∞ as

suggested in [14].And in ARW-H,we set τ = σ
√

logN as suggested in [26]. For our
proposed ARGP, we initialize all the weights with a value of τ = 0.3

∥∥ATy∥∥∞ for which
the solution is a zero vector, and the other parameters in ARGP are as same as those in
GPSR series algorithms.

We use mean squared error (MSE) to measure the reconstruction error. The MSE is
computed as:

MSE =

(
1

n

)
‖x̂− x‖22 (24)

where x̂ denotes the estimate of x. And we use CPU times to measure the computational
cost of algorithms. Our simulation environment is MATLAB R2010a.

5.2. Fidelity of the signal reconstruction algorithms. In our first experiment, we
consider a typical CS scenario, where the goal is to reconstruct a length-n sparse signal
from m measurements. Here, n = 4096, m = 1024, and the original signal x contains
160 randomly placed ±1 spikes. And we will call GPSR-Basic, the monotone version of
GPSR-BB, and the nonmonotone version of GPSR-BB as GPSR series algorithms, the
adaptive reweighing via homotopy algorithm as ARW-H.

FIGURE.3 shows that the original signal, the estimate obtained by solving (20) using
the ARGP, and the estimates obtained by solving (16) using the ARW-H and GPSR
series algorithms. It is indicated in FIGURE.3 that ARGP not only does an excellent
job at locating the spikes but also exhibits a much lower MSE which is 3.16× 10−5 with
respect to the original signal, and the GPSR series algorithms and ARW-H have larger
MSEs which are 2.3×10−4 and about 2.45×10−3, respectively. On behalf of all the other
algorithms, ARW-H which have the smallest MSE is compared with ARGP to indicate
more details about their recovery signals. As shown in FIGURE.4, the estimate obtained
by ARGP is almost as same as the original signal, and ARW-H get a poor performance
in locating of spikes and evaluating the values of spikes.
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Figure 3. Original signal and reconstruction results

In FIGURE.5, we plot the evolution of the objective functions versus iteration number,
for ARGP and both GPSR series algorithms. And it also shows the change in MSEs
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Figure 4. Comparison of the recovery performances of ARGP and ARW-H

versus iteration number. We observed that the objective function and MSE of ARGP are
clearly smaller than those of both GPSR series algorithms.
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Figure 5. Objective function and MSE plotted against iteration number

Table 2. Average CPU times and MSEs of several algorithms

CPU time (s) MSE

ARGP 0.7004 3.4364e-005
ARW-H 19.8901 2.3652e-004
GPSR-BASIC 0.6053 2.6065e-003
GPSR-BB-mono 0.5117 3.0561e-003
GPSR-BB-nonmono 0.4493 2.6106e-003

Table 2 reports average CPU times (over ten experiments) required by ARGP, ARW-H
and the GPSR series algorithms as well as the average reconstruction MSE with respect
to the original signal. The results in this table show that, the MSE for ARGP is clearly
much smaller than other algorithms. Although the CPU time for ARGP pertains to the
same order as the GPSR series algorithms CPU time, the MSE for ARGP is about two
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order of magnitude smaller than the GPSR series algorithms. We think it is worthy to
exchange a slight CPU time increase for a significant MSE decrease.

5.3. Efficiency of the signal reconstruction algorithms. Next, we compare the com-
putational efficiency of ARGP algorithm against OMP, often regarded as a classical greedy
algorithm that obtains the estimates by solving (2). Due to the real case, the degrees of
sparseness of a signal are unknown and unfixed, the comparison of the reconstruct perfor-
mance against different degrees of sparseness is necessary. In our experiment, we consider
a ranger of degrees of sparseness: the number of nonzero spikes in x ranges from 5 to 250.
For each value of the number of nonzero spikes, we generate a random measurements set
and obtain the reconstruction signal from it. And then we compute average MSE and
average CPU time, over the ten runs.
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Figure 6. Average MSE and CPU times plotted against the number of
nonzero components of x

FIGURE.6 plots the average reconstruction MSE and the average CPU times as a
function of the number of nonzero components in x. We observe that our purposed
ARGP in generally obtain exact reconstructions for the number of nonzero spikes in x up
to 200, and the OMP method starting to degrade earlier and faster. It is clearly that our
ARGP algorithm is faster and more accurate than OMP algorithm.

6. Conclusions. In this paper, we consider compressed acquisition and advanced recon-
struction of sensor signals with CS for WSNs. Firstly, we construct an energy-efficient
CS-based signal acquisition scheme, which exploits the spatial and temporal correlations
of sensor signals to reduce the energy consumption of networks. By analyzing the energy
consumption of proposed scheme, we work out the relationship of the scheme parameters,
the number of clusters and the transmit probability. Secondly, we propose a reweighed
l1 − norm minimization algorithm to reconstruct the original signals from the measure-
ments, which are acquired by the proposed signal acquisition scheme. The algorithm
performs an internal adaptive reweighing in each iteration, so that the weights can be ad-
justed to selectively penalize different coefficients in the solution. The simulation results
show that the proposed algorithm can significant enhance the reconstruct performance.
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