
Journal of Information Hiding and Multimedia Signal Processing c©2017 ISSN 2073-4212

Ubiquitous International Volume 8, Number 3, May 2017

Path ω-automaton

Hua Jiang1,2, Fumin Zou2,4, Rongde Lin3, and Lingxiang Li5,∗

1Key Lab of Granular Computing, Minnan Normal University
Zhangzhou, Fujian, China

2Beidou Navigation and Smart Traffic Innovation Center of Fujian Province
Fuzhou, Fujian, China

3School of Mathematical Science, Huaqiao university
Quanzhou,Fujian, China

4Fujian Provincial Key Laboratory of Big Data Mining and Applications
Fuzhou, Fujian, China

5School of Electronics and Information Engineering
Hunan University of Science and Engineering, Yongzhou, Hunan, China

∗Corresponding author: lilingxiang2013@hotmail.com

Received August, 2016; revised March, 2017

Abstract. Automata theory is an important branch of theoretical computer science.
ω-automaton is an important part of automata theory. The judgment standard for the
equivalence of two automata is the equivalence of their acceptance language. Acceptance
conditions for automata are expressed with state set. This paper tries to use path to ex-
press acceptance conditions for ω-automaton that is convenient for judging the automa-
tons equivalence property and transforming between different types of automata. With
the help of Path ω-automaton, Muller automaton is transformed into Büchi automaton.
Compared with the existing algorithm, the state scale of Büchi automaton has been re-
duced and the problem of state space explosion has been relieved. The research findings in
this paper contribute to enrich the existing ω-automaton theory and provide a new idea
for ω-automaton theory and application research.
Keywords: ω-automaton, Büchi automata, Muller automaton, transformation algo-
rithms.

1. Introduction. Automata theory [1] is a branch of theoretical computer science. It
studies self-operating virtual machines to help in logical understanding of input and out-
put process, without or with intermediate stage(s) of computation (or any function / pro-
cess). Finite automata on infinite objects were first introduced in the 60s [2–6]. Muller
made use of automata on infinite words, named ω-automata [4], to describe problems in
asynchronous switching theory. An ω-automaton (or stream automaton) is a variation of
finite automaton which runs on infinite, rather than finite, strings as input. Because ω-
automata do not stop, they have many kinds of acceptance conditions rather than simply
a set of accepting states. ω-automata are helpful for specific systems behavior which are
not expected to end, such as hardware, operating systems and control systems. Categories
of ω-automata contain Büchi automata [2], Rabin automata [6], Streett automata [7], par-
ity automata [8] and Muller automata [4], each deterministic or non-deterministic. These
categories of ω-automata are different only in terms of acceptance conditions. Except
for deterministic Büchi automata, ω-automata can be transformed into other types of

640

Path ω-automaton 641

ω-automata [5, 9–13]that have the same acceptance language. In other words, except for
deterministic Büchi automata, ω-automata have the same describing ability.

A Muller automaton A = (Q,Σ, δ, q0, AccS), Let |Q| = n, |AccS| = m, |δ| = O(n2).
In [13] the authors construct a Büchi automaton out of an EL automaton resulting in an
automaton of size O(mn2), but the EL automaton is a slightly different way to specify a
Muller automaton. In [14], there is an algorithm for a nondeterministic Muller automaton
which can be transformed into an equivalent Büchi automaton with O(mn2n) states. [15]
presented a construction with a detour via regular expressions,the Büchi automaton’s size
is bounded by |Q| ∗ |δ| ∗ |AccS| = O(mn3).

This paper presents Path ω-automaton, a new expressing method of ω-automaton.
Using this describing method, other types of ω-automata can be transformed into Path ω-
automaton. In the end,this paper studies an algorithm for transforming nondeterministic
Muller automaton into nondeterministic Büchi automaton. Through our research we
discover that the algorithm in this paper can directly transform a nondeterministic Muller
automaton with n states and m accepting sets into an equivalent Büchi automaton with
O(mn2) states. Compared with the existing algorithm of the same kind, the algorithm
in this paper is a direct transformation algorithm, which has an easy transformation
operation. For the upper bound of the state numbers of transformed Büchi automaton,
this algorithm in this paper is better than others.
ω-automata has been the research hotspot in computer theory all around the world.

Part of recent researches in this field can be seen in reference [12,16–21] and [22]. Path ω-
automaton proposed in this paper is expected to further enrich the theory of ω-automaton
and provides a new perspective and method for theory research and practical application
of ω-automaton.

2. Path ω-automaton.

2.1. Basic concept.

Definition 2.1. [23] An ω-automaton is a quintuple(Q,Σ, δ, q0, AccS), where Q is a finite
set of states, Σ is a finite set of alphabets, δ : Q×Σ→ 2Q is the state transition function
,q0 ∈ Q is the inital state, and AccS is the acceptance component.In a deterministic
ω-automaton, a transition function δ : Q× Σ→ 2Q is used.

Definition 2.2. [23] For an ω-automaton A = (Q,Σ, δ, q0, AccS), a run of A on an ω-
word α = α(1)α(2)... ∈ Σω is a finite state sequence, π = π(1)π(2)... ∈ Qω, then the
following conditions hold:

(1)π(0) = q0,
(2)π(i) ∈ δ(π(i− 1), α(i))forall i ≥ 1 if A is nondeterministic,
π(i) = δ(π(i− 1), α(i))forall i ≥ 1 if A is deterministic

Let Inf(α) = {a ∈ Σ|∀i, ∃j > i.α(j) = a}

Definition 2.3. [2] An ω-automaton A = (Q,Σ, δ, q0, AccS) with acceptance component
AccS ∈ Q is called Büchi automaton if it is used with the following Büchi acceptance
condition: A word α ∈ Σω is accepted by A iff there exists a run π of A on α satisfying
the condition Inf(π) ∩ AccS 6= ∅, i.e. at least one of the states in AccS has to be visited
infinitely often during the run. Let L(A) := {α ∈ Σω|A accepts α} is the ω-language
recognized by A.

Definition 2.4. [4] An ω-automaton A = (Q,Σ, δ, q0, AccS) with acceptance component
AccS ∈ 2Q is called Muller automaton if it is used with the following Muller acceptance
condition: A word α ∈ Σω is accepted by A iff there exists a run π of A on α satisfying

642 H. Jiang, F. Zou, R. Lin, and L. Li

the condition Inf(π) ∈ AccS, i.e. the set of infinitely recurring states of π is exactly one
of the sets in AccS.

Obviously, if a word α ∈ Σω is accepted by A, there exists a run π of A on α satis-
fying the condition Inf(π) ∈ AccS, then the subgraph constructed by Inf(π) and the
transitions over it is a strongly connected subgraph.

2.2. Path ω-automaton. If ω-automaton A and B are equivalent, it means that the
acceptance language of A and B are accordant. It defines the equivalence from the view
of automaton running and it is a dynamic definition, while the acceptance condition
for commonly defined automaton is expressed by state set or state superset and it is
a static definition. Although statically defined ω-automaton is more close to the need
of practical application, dynamic definition is easier to be dealt with from the views of
language recognized by automaton, transformation between automata and the equivalence
of automaton, which can be clearly known in section 3.

Let α, β... are regular expressions, α · β means that the destination of α is the same
with the starting point of β, α · β is a path connected by α and β.

A dynamic definition of ω-automaton, Path ω-automaton, is given as follows:

Definition 2.5. A Path ω-automaton A = (Q,Σ, δ, q0,Ω) where Q is a finite set of states,
Σ is a finite set of alphabets, δ : Q×Σ→ 2Q is the state transition function ,q0 ∈ Q is the
inital state, and Ω = {(E1, F1), ..., (Er, Fr)} is the acceptance component, Ei, Fi are sets
of regular expressions, for ∀1 ≤ i ≤ r, Fi 6= ∅. For ∀1 ≤ i ≤ r, if α.β ∧ α ∈ Ei ∧ β ∈ Fi,
then ω-word α · βω is accepted by A, and if an ω-word α · βω is accepted by A, then
∃ 1 ≤ i ≤ r, α · β ∧ α ∈ Ei ∧ β ∈ Fi

Obviously, automaton A is defined with Path ω-automaton, all ω-word α · βω that
satisfy Definition 2.5 constitute acceptance language L(A) of automaton A.

In ω-automaton, there possibly exists many paths between two states, and an ω-word
α.βω also can be written as α·β∗·βω. Using Definition 2.5 to describe acceptance conditions
directly, but E and F in (E,F) will be very complicated. To be more simplified, appoint
∀1 ≤ i ≤ r,Ei 6= ∅, define p(Q1, Q2, Q3) to express the path whose starting point is qs ∈ Q1

and terminal point is qe ∈ Q3 in ω-automaton, and satisfy either reaching directly or only
passing the states in Q2.

Example 2.1. The path that state q1 directly reaches q2 can be expressed with p({q1}, ∅, {q2}),
all the paths from state q1 to q2 can be expressed with p({q1}, Q, {q2}).

Example 2.2. All the paths that start from q1 , through q2 , and finally reach q3, can be
denoted as p({q1}, Q, {q2}) · p({q2}, Q, {q3}).

Example 2.3. Use Path ω-automaton to express a Büchi ω-automaton. A Büchi ω-
automaton A = (Q,Σ, δ, q0, AccS), AccS = {q1, ..., qr}, the equivalent Path ω-automaton
is A′ = (Q,Σ, δ, q0,Ω),Ω = {(Ei, Fi)|1 ≤ i ≤ r ∧ Ei = {p({q0}, Q, {qi})} ∧ Fi =
{p({qi}, Q, {qi})} ∧ qi ∈ AccS}.

Example 2.4. Use Path ω-automaton to express a Rabin ω-automaton. A Rabin ω-
automaton A = (Q,Σ, δ, q0,Ω), Ω = {(L1, U1), ..., (Lr, Ur)}, the equivalent Path ω-automaton
is A′ = (Q,Σ, δ, q0,Ω

′),Ω′ = {(E ′, F ′)|∀1 ≤ i ≤ r, E ′ = {p({q0}, Q, {Ui\Li})} ∧ F ′ =
{p({Ui\Li}, Q\Li, {Ui\Li})} ∧ E ′i · F ′i ∧ (Li, Ui) ∈ Ω}.

Example 2.5. Use Path ω-automaton to express a Streett ω-automaton. A Streett ω-
automaton A = (Q,Σ, δ, q0,Ω), Ω = {(E1, F1), ..., (Er, Fr)}, the equivalent Path ω-automaton
is A′ = (Q,Σ, δ, q0,Ω

′),Ω′ = {(E ′, F ′)|∀1 ≤ i ≤ r, E ′ = {p({q0}, Q, {Ei})} ∧ F ′ =

Path ω-automaton 643

{p({Ei}, Q, {Ei})} or E ′ = {p({q0}, Q, {Q\Fi})} ∧ F ′ = {p({Q\Fi}, Q\Fi, {Q\Fi})} ∧
Ei · Fi ∧ (Ei, Fi) ∈ Ω}.

Example 2.6. Use Path ω-automaton to express a Parity ω-automaton. A Parity ω-
automaton A = (Q,Σ, δ, q0, c), c : Q → {0, 1, ..., k},the equivalent Path ω-automaton is
A′ = (Q,Σ, δ, q0,Ω),Ω = {(E,F)|1 ≤ i ≤ bk/2c ∧ E = {p({q0}, Q, {Fi\Ei})} ∧ F =
{p({Fi\Ei}, Q\Ei, {Fi\Ei})} ∧ Ei · Fi ∧ {(Ei, Fi)|Ei = {q ∈ Q|c(q) ≤ 2i}, Fi = {q ∈
Q|c(q) ≤ 2i+ 1}}}.

Lemma 2.1. An Muller ω-automaton A1 = (Q,Σ, δ, q0, AccS), AccS = {Q1, ..., Qr}, Qi =
{qi1, ..., qit},A Path ω-automaton is A2 = (Q,Σ, δ, q0,Ω),Ω = {(Ei, Fi)|1 ≤ i ≤ r ∧ Ei =
{p({q0}, Q, {qi1})} ∧ Fi = {p({qi1}, Qi, {qi2}) · p({qi2}, Qi, {qi3}) · ... · p({qit}, Qi, {qi1})};
then L(A1) = L(A2).

Obviously, all paths of Fi in A2 pass all the states in Qi and pass the states in Qi only;
it is in accordance with the definition of acceptance conditions for Muller ω-automaton in
Definition 2.4, it is equivalent to A1 in acceptance language. Lemma 2.1 shows that Muller
ω-automaton and Path ω-automaton have the same acceptance language and describing
ability.

From the above examples we know that no matter how the acceptance conditions define,
it can be easily transformed into Path ω-automaton, which provides the transformation
among different types of ω-automaton with a fast way.

3. Muller automaton transforming into Büchi automaton. According to Lemma
2.1 and Example 2.3, both Muller automaton and Büchi automaton can be expressed
with Path ω-automaton. The transformation algorithm from a Muller automaton A =
(Q,Σ, δ, q0, AccS) into the equivalent Büchi automaton A′ = (Q′,Σ, δ′, q0, AccS

′) is pre-
sented in Algorithm 3.1.
Algorithm 3.1. Letm = |AccS|, AccS = {S1, S2, ..., Sm}, Sh = {q(h,1), q(h,2), ..., q(h,x)}, x =
|Sh|(1 ≤ h ≤ m), and

1. Q′ = Q, δ′ = δ, h = 1
2. Copy the states in Sh = {q(h,1), q(h,2), ..., q(h,x)}, rename it as q′(h,1), q

′
(h,2), ..., q

′
(h,x) ,

and add the states after renaming to Q′

3. Copy the states in Sh = {q(h,1), q(h,2), ..., q(h,x)} for x backups, rename them as the
following rules, the backups of ∀q(h,j) ∈ Sh, q(h,j) can be renamed as q(h,j,1), q(h,j,2), ..., q(h,j,x)
respectively, and add the states after renaming to Q′

4. ∀a ∈ Σ
for(i = 1; i ≤ x; i+ +)
for(j = 1; j ≤ x; j + +)
if(δ(q(h,i), a) = q(h,j))
{ δ′ = δ′ ∪ {δ′(q(h,i,k), a) = q′(h,j,k)|1 ≤ k ≤ x} ∪ {δ′(q′(h,i), a) = q(h,j,i)}
if(j = 1) δ′ = δ′ ∪ {δ′(q(h,i), a) = q′(h,j)} ∪ {δ′(q(h,i,x), a) = q′(h,j)}
else δ′ = δ′ ∪ {δ′(q(h,i,j−1), a) = q′(h,j)}
}

5. for 2 ≤ h ≤ m, repeat step 2 to step 4.
6. AccS ′ = {q′(i,1)|1 ≤ i ≤ m}.

By Algorithm 3.1, a nondeterministic Muller automaton A = (Q,Σ, δ, q0, AccS) can
be transformed into a nondeterministic Büchi automaton A′ = (Q′,Σ, δ′, q0, AccS

′). An
example of a Muller automaton transforming into Büchi automaton by Algorithm 3.1 is
shown in Example 3.1.

644 H. Jiang, F. Zou, R. Lin, and L. Li

Example 3.1. A Muller automaton transforms into Büchi automaton by Algorithm 1 is
shown in Fig.1.

(a)

(b)

Figure 1. Muller automaton transforms into Büchi automaton by Al-
gorithm 1. (a) Muller automaton (AccS = {{q(1,1), q(1,2)}}). (b) Büchi
automaton(AccS ′ = {q′(1,1)}).

In Example 3.1, the Muller automaton accepts a.(f.g)ω , Büchi automaton in this
example exists acceptable path q1q(1,1)q(1,2)(q

′
(1,1)q(1,2,1)q(1,1,1)q

′
(1,2)q(1,1,2)q(1,2,2))

ω. The word

corresponding to the path is a · f · g · (f · g · f · g · f · g)ω , and it is obviously equivalent
to a · (f · g)ω.

Theorem 3.1. By Algorithm 3.1, a nondeterministic Muller automaton
A = (Q,Σ, δ, q0, AccS) can be transformed into the nondeterministic
Büchi automaton A′ = (Q′,Σ, δ′, q0, AccS

′), then L(A) = L(A′).

Proof. For a nondeterministic Muller automaton A = (Q,Σ, δ, q0, AccS), based on Defini-
tion 2.4,a word α ∈ Σω is accepted by A iff there exists a run π of A on α satisfying the
condition: Inf(π) ∈ AccS.

Any α ∈ L(A) and corresponding π satisfy Inf(π) = Si, α can be divided into two
parts: infinite and finite. Infinite part only passes the states in Si and the states in Si are
passed for infinite times. Finite part is the rest of α that removes infinite part; it is the
prefix of infinite part.

For finite part, because the transition diagram of Büchi automaton
A′ = (Q′,Σ, δ′, q0, AccS

′) reserves all part of A, it can simulate finite part in A′.

Path ω-automaton 645

For infinite part, take a finite fragment in α that satisfies the starting point is q(i,j),
terminal point is q(i,j+1) and length > 1(if length=1, then take q(i,j+1) that appears
next time.), it only passes the states in Si. In A′, the corresponding subgraph to
q(i,1,j), q(i,2,j), ..., q(i,x,j) completely copies the corresponding subgraph to Si, the fragment
can be simulated by A′. Take any state q(i,j) in Si, if visiting q(i,j) for infinite times, α must
contain infinite incident arc and outgoing arc(all or part) of q(i,j). Observe q′(i,j) in A′, word

contains infinite incident arc and outgoing arc of q′(i,j) and visits q′(i,1) for infinite times,

q′(i,1) ∈ AccS ′. According to the definition of Büchi automaton, α ∈ L(A′), L(A) ⊆ L(A′).

Let α′ ∈ L(A′) and the corresponding π′ satisfies q′(i,1) ∈ Inf(π′), α′ can be divided into
two parts: infinite part and finite part. Finite part corresponds to the part before reaching
state q′(i,1) that can be completely simulated by A. For infinite part, q′(i,1) ∈ Inf(π′),

because word α′ needs to pass q′(i,1) for infinite times, it must pass q′(i,2), ..., q
′
(i,x) for infinite

times, q′(i,2) ∈ Inf(π′), ..., q′(i,x) ∈ Inf(π′).Take the finite fragment in α′ that satisfies

the starting point is q′(i,j) and terminal point is q′(i,j+1), the corresponding subgraph to
q(i,1,j), q(i,2,j), ..., q(i,x,j) completely copies the corresponding subgraph to Si ,so the fragment
can be simulated by the corresponding subgraph to Si. Any fragment in the infinite part
of α′ can be simulated by Si. Because α′ needs to pass q′(i,j)1 ≤ j ≤ |Si| for infinite times,

α′ must contain infinite incident arc and outgoing arc of q′(i,j) (all or part); so α′ can be

simulated by A, it must visit q(i,j) for infinite times, i.e. α′ can be simulated by A, it must
visit all states in Si for infinite times. According to the definition of Muller automaton,
α′ ∈ L(A), L(A′) ⊆ L(A).

Therefore L(A) = L(A′)

Theorem 3.2. A nondeterministic Muller automaton A = (Q,Σ, δ, q0, AccS) , where Q
has n states and AccS contains m sets, can be transformed into an equivalent nondeter-
ministic Büchi automaton A′ = (Q′,Σ, δ′, q0, AccS

′), with O(mn2).

Proof. Let |Q| = n, |AccS| = m, by step 1 of Algorithm 3.1, |Q′| = n; and by step 2,
|Q′| ≤ n+mn; and furthermore by step 3, |Q′| ≤ n+mn+mn2 = O(mn2).

Theorem 3.3. A nondeterministic Muller automaton A = (Q,Σ, δ, q0, AccS) , where Q
has n states and AccS contains m sets, can be transformed into an equivalent nondeter-
ministic Büchi automaton A′ = (Q′,Σ, δ′, q0, AccS

′), with O(mn2) by Algorithm 3.1, and
the time complexity is O(mn3).

Proof. In Algorithm 3.1, the core operation is copying subgraphs that correspond to all
elements in AccS. There are n2 transition relations at most in each subgraph, and each
subgraph can be copied for n times. There are m subgraphs to be copied, so the time
complexity needed for copying subgraph corresponds to all sets in AccS is O(m.n3).

The efficiency of Algorithm 3.1 can be further improved on some technical aspects:
Muller automaton A can be simplified, some unnecessary operations can be reduced, and
transformation computations can be more efficiently, which are shown as the following:

1. Any unreachable state from q0 can be removed from Q, the corresponding transition
relations can be removed from δ.

2. Any state that starts from this state and cannot reach accepting state can be removed
from Q, the corresponding transition relations can be removed from δ.

3. For a certain acceptance set in AccS, if the state and the transition relations adhered
to it cannot constitute a strongly connected subgraph, this acceptance set can be removed
from AccS.

4. When a certain acceptance subset |Sh| = 1, skip step 3 in Algorithm 3.1, and step 4
is modified as follows:

646 H. Jiang, F. Zou, R. Lin, and L. Li

if(x = 1)
∀a ∈ Σ
if(δ(q(h,1), a) = q(h,1))
δ′ = δ′ ∪ {δ′(q(h,1), a) = q′(h,1)} ∪ {δ′(q′(h,1), a) = q(h,1)}

Example 3.2. Given Muller automaton in Fig 2, if AccS = {{q2}, {q3, q4}}, because
{q3, q4} and the transition relations adhered to it cannot constitute a strongly connected
subgraph, it can be removed from AccS, the acceptance component in Muller automaton
can be simplified as AccS = {{q2}}.

Example 3.3. Fig.3(a) shows a Muller automaton with acceptance subset |Sh| = 1
(AccS = {{q(1,1)}}) , so the step 3 of Algorithm 3.1 can be skipped,and use the step 4
of improved algorithm makes the equivalent Büchi automaton shown in Fig.3(b).

Figure 2. Muller automaton (AccS = {{q2}, {q3, q4}})

(a)

(b)

Figure 3. Muller automaton transforms into Büchi automaton by im-
proved Algorithm 3.1. (a) Muller automaton (AccS = {{q(1,1)}}). (b)
Büchi automaton(AccS = {q′(1,1)}).

Path ω-automaton 647

4. Conclusion. Path ω-automaton put forward in this paper is an expressing way of
path method for ω-automaton. Compared with the definition of existing ω-automaton,
although acceptance conditions for the definition are a little complicated, using Path
ω-automaton to express nondeterministic Muller automaton and nondeterministic Büchi
automaton, the algorithm for transforming nondeterministic Muller automaton into non-
deterministic Büchi automaton can be found easily.

In this paper, we use nondeterministic Muller automaton to construct a language equiv-
alent nondeterministic Büchi automaton and get a new Büchi automaton whose state scale
has polynomial relationship to the state scale and the accepted set scale of nondeterminis-
tic Muller automaton. Compared with the existing transformation algorithm of the same
kind, Büchi automaton got from the algorithm in this paper has the least state scale upper
bound. We believe that Path ω-automaton will enrich the existing theory of ω-automaton
and provide a new perspective and method for studying ω-automaton.

Acknowledgment. This work is supported by National Nature Science Foundation of
China (No.61472406), Nature Science Foundation of Fujian
(No.2015J01269 and No.2016J01304), and the Talent Introduction Foundation of Minnan
Normal University.

REFERENCES

[1] J. E. Hopcroft, Introduction to automata theory, languages, and computation, [M]. Education In-
dia,1979.

[2] R. Bchi, On a decision method in restricted second order arithmetic, International Congress on
Logic, Method and Philos. Sci. , pp. 1-11, 1962.

[3] B. A. Trakhtenbrot. Finite automata and the logic of one-place predicates, Sibirian Mathmatical
Journal (English translation in: AMS Transl., vol.3, pp.103-131, 1962.

[4] D. E. Muller, Infinite sequences and finite machines Switching Circuit Theory and Logical De-
sign,Proceedings of the Fourth Annual Symposium on. IEEE, pp. 3-16, 1963.

[5] R. McNaughton, Testing and generating infinite sequences by a finite automaton, Journal of Infor-
mation and control, vol. 9, no. 5, pp. 521-530, 1966.

[6] M. O. Rabin ,Decidability of second-order theories and automata on infinite trees, Journal of Trans-
actions of the American Mathematical Society, , pp. 1-35, 1969.

[7] R. S. Streett, Propositional dynamic logic of looping and converse is elementarily decidable, Journal
of Information and control, vol. 54, no. 1, pp. 121-141, 1982.

[8] A. W. Mostowski, Regular expressions for infinite trees and a standard form of automata, Lecture
Notes in Computer Science, vol. 208, pp. 157-168, 1984.

[9] S. Miyano, T. Hayashi, Alternating finite automata on w-words, Journal of Theoretical Computer
Science, vol. 32, no. 3, pp. 321-330, 1984.

[10] O. Kupferman, M. Vardi, Weak Alternating Automata Are Not That Weak, Theory of Computing
Systems, Israel Symposium on the. IEEE Computer Society, pp. 147-147, 1997.

[11] S. Safra, On the complexity of w-automata, Foundations of Computer Science, 1988., 29th Annual
Symposium on. IEEE, pp. 319-327, 1988.

[12] C. Tian, Z. Duan, Büchi Determinization Made Tighter, Journal of arXiv preprint arXiv, pp.
1404.1436, 2014.

[13] S. Safra and M.Y. Vardi, On w-automata and temporal logic, 21st ACM Symposium on Theory of
Computing, pp. 127137, Seattle, May 1989.

[14] E. Grädel, Automata, Logics, and Infinite Games, LNCS 2500, Springer 2002, pp. 3-21.
[15] D. Perrin, J. Pin, Infinite words: Automata, Semigroups, Logic and Games, Pure and Applied

Mathematics, vol. 141, Elsevier, 2004.
[16] S. Schewe, T. Varghese, Determinising Parity Automata, Journal of arXiv preprint arXiv:1401.5394,

2014.
[17] M. Skrzypczak, Descriptive set theoretic methods in automata theory, Journal of [Online]. Available:

http://www.mimuw.edu.pl/~mskrzypczak/docs/sk14_thesis.pdf,2014.
[18] Z. W. Han, Y. M. Li, Quantum Mller automata and monadic second-order quantum logic, Journal

of Ruan Jian Xue Bao/Journal of Software, vol. 25, no. 1, pp. 2736 (in Chinese), 2014.

648 H. Jiang, F. Zou, R. Lin, and L. Li

[19] J. Klein, C. Baier, S. Klppelholz, Compositional construction of most general controllers, Acta
Informatica. DOI 10.1007/s00236-015-0239-9. Springer-Verlag Berlin Heidelberg 2015.

[20] F. Song, T. Touili, Model checking dynamic pushdown networks, Formal Aspects of Computing,
vol. 27, no. 2, pp. 397-421, 2015.

[21] R. Chadha, A. P. Sistla, M. Viswanathan, Y. Ben, Decidable and Expressive Classes of Proba-
bilistic Automata, Foundations of Software Science and Computation Structures, Lecture Notes in
Computer Science, vol. 9034, pp. 200-214, 2015.

[22] E. Filiot, Logic-Automata Connections for Transformations, Logic and Its Applications, Lecture
Notes in Computer Science V8923, pp. 30-57, 2015.

[23] C. Löding, Methods for the transformation of ω-automata: Complexity and connection to second
order logic, Diplomata thesis, Christian-Albrechts-University of Kiel, 1998.

