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Abstract. Self-similarity is a property existing in natural, social, technological, biolog-
ical, and many other networks. The whole and the parts, or one part and another part of
self-similar networks present some similarity. In the past dozen years, researchers have
proposed some deterministic self-similar networks by utilizing various kinds of mecha-
nisms. In this paper, we propose a new deterministic self-similar network model based
on the tree fractal. Furthermore, we give the analytic solutions to several important topo-
logical characteristics of the proposed model.
Keywords: Deterministic models, Tree-structured network, Self-similar network, De-
gree distribution, Average path length, Clustering coefficient.

1. Introduction. Complex systems widely exist in natural, social, biological, engineer-
ing, and many other fields. It is one of the most challenging issues to research the modeling
problem of complex systems, and it has an important significance for deeply analyzing
and scientifically understanding the internal relationship between system structures, func-
tions and dynamics. The complex network theory provides a new way of thinking and
perspective for the research of complex science, especially complex systems.

Complex network models can be divided into probabilistic models and deterministic
models. The famous probabilistic models include ER random network [1], WS small-
world network [2], NW small-world network [3] and BA scale-free network [4] and so on.
Although probabilistic models conform to the main features of most of real-life networks,
it is difficult for people to have an intuitive understanding of the formation of complex
networks and the interaction between different nodes. On the other hand, if a real-life
network (e.g., a neural network) has fixed interconnections, the probabilistic technique is
no longer suitable to model its generation process. Constructing network models in deter-
ministic manners not only has important theoretical significance, but also has potential
application value. The main advantage of deterministic networks is that their topological
features can be computed analytically.

Deterministic models can be divided into models with self-similarity and without self-
similarity. Self-similarity refers to that there is similarity between the overall and the
parts of a system, or between one section and another section. Many researchers have
proposed deterministic models without self-similarity. Comellas et al. [5] proposed the
first deterministic small-world network based on graph-theoretic methods. Zhang et al.
[6] presented a deterministic small-world network created by edge iterations. Lu and
Guo [7] introduced a deterministic small-world network derived from the deterministic
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uniform recursive tree. Guo et al. [8] constructed a tree-structured deterministic small-
world network. In addition, Lu et al. [9] presented a deterministic scale-free small-world
network model. Other researchers have also proposed deterministic models with self-
similarity. Dorogovtsev et al. [10] proposed a pseudofractal scale-free graph which grows
under the mechanism of preferential linking nodes with higher numbers of links attach
higher numbers of new edges. Zhang et al. [11] presented an incompatibility network
based on Sierpinski fractals. In addition, Hinczewski and Berker [12] constructed a scale-
free hierarchical-lattice small-world network. Inspired by forked branches in the nature,
in this paper, we propose a simple deterministic self-similar network.

2. Proposed Deterministic Self-similar Network. For a common tree in real-life,
its whole and any branch are very similar in form, and the only difference lies in their
different sizes. We construct our self-similar network based on the tree fractal. Assume
the obtained network after t iterations is SSt that has Nt nodes and Et edges, where
t = 0, 1, 2, ..., T − 1, and T is the number of iterations performed. Assume each node
is labeled with a natural number increasing with the generation time, then the proposed
generation process can be illustrated as follows:

Step 0: Initialization. Set t = 0, SS0 contains an edge that connects two nodes labeled
as ‘1’ and ‘2’. Obviously, N0 = 2 and E0 = 1.

Step 1: Generation of SS1 from SS0. A new node labeled as ‘3’ is generated at the
midpoint of the edge generated in Step 0. And two nodes labeled as ‘4’ and ‘5’ branch
from Node ‘3’. Thus, N1 = 5 and E1 = 4.

Step 2: Generation of SSt+1 from SSt for t > 0. A new node is generated at the
midpoint of the each newly-generated edge in SSt. And two nodes branch from each new
node. Obviously, after the above step, we have Nt+1 = 2Nt + 1 and Et+1 = 2Nt.

Step 3: If t < T − 1, set t = t + 1 and go to Step 2. Otherwise, the algorithm is
terminated.

The above iterative process is repeated for T − 1 times, and then we can obtain a
deterministic self-similar network as shown below. In fact, in the above generation process,
we mimic the growth of a tree to some extent. Fig. 1 shows the obtained network after
the first four iterations. According to the relationships Nt+1 = 2Nt + 1 and Et+1 = 2Nt

together with the initial conditions N0 = 2 and E0 = 1, we can easily prove that Nt =
3× 2t − 1 and Et = 3× 2t − 2, thus we can obtain the average node degree as follows

< k >t=
2Et

Nt

=
2× (3× 2t − 2)

3× 2t − 1
= 2× (1− 1

3× 2t − 1
) (1)

Since lim
t→∞

< k >t = 2 , we can see that the proposed network is a sparse graph whose

nodes have fewer links than possible.

3. Topological Properties.

3.1. Degree Distribution and Degree Correlation. Degree distribution is one of the
most important topological characters of a network. The degree of Node i is defined as
the number of edges it connects to other nodes, and degree distribution P (k) is defined as
the fraction of nodes in the network with degree k. According to the iteration algorithm,
we can easily prove that the possible degree values in the proposed network are 1 and 4.
Thus, we can easily obtain

P (k) =
2t+1

3× 2t − 1
δ(k − 1) +

2t − 1

3× 2t − 1
δ(k − 4) (2)



274 C. Dong and Z. M. Lu

Figure 1. The first four iterations of the growth of the proposed network

Where δ(k) = 1 for k = 0 and δ(k) = 0 for k 6= 0. When t→∞, we can easily obtain the
following degree distribution

lim
t→∞

P (k) =
2

3
δ(k − 1) +

1

3
δ(k − 4) (3)

Therefore, the degree distribution of the proposed network is discrete.
Degree correlation describes the relationship between nodes with high-degree and nodes

with low-degree in a network. The Pearson correlation coefficient r [13] can be used to
describe degree correlation. It is defined as follows

r =
M−1∑

i jiki − [M−1∑
i
1
2
(ji + ki)]

2

M−1
∑

i
1
2
(j2i + k2i )− [M−1

∑
i
1
2
(ji + ki)]2

(4)

Where M is the number of edges and ji, ki are the degrees of the nodes at the ends of the
i-th edge, with i = 1, 2, ...,M , r lies in the range −1 ≤ r ≤ 1. When r < 0, the network
is disassortative. When r > 0, the network is assortative. We give the simulation results
of r in Fig. 2. From Fig. 2, we can see that the Pearson correlation coefficient r of the
proposed network is less than zero. So it is disassortative.

3.2. Clustering Coefficient. The clustering coefficient is a measure of degree to which
nodes in a graph tend to cluster together. The clustering coefficient of a network is the
average of the local clustering coefficients over all the nodes in the network. The local
clustering coefficient Ci for Node i with degree ki is defined as the number of links ni that
actually exist between its nearest neighbors divided by the number of links that could
possibly exist between them, i.e., Ci = 2ni/[ki(ki − 1)]. Since there are no triangles in
the proposed network, we can easily know that the clustering coefficient of it is zero. The
network is not a kind of small-world network.

3.3. Diameter and Average Path Length. Average path length (APL) is also an
important parameter to characterize a network. APL is defined as the average number
of edges along the shortest paths for all possible pairs of nodes in a connected network.
It is difficult to obtain the analytic solution of APL for most network models. We can
adopt another parameter called diameter to analyze APL indirectly. Diameter is defined
as the maximal distance between any two nodes in the network, which characterizes the
maximum communication delay in the network. If a network is with a small diameter,
then this network is undoubtedly with a short APL. Here, we denote the diameter at
Iteration t as D(t). Because of the tree structure, one can easily see that the diameter
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F  2. The r versus the number of the iterations. Figure 2. The r versus the number of the iterations

always lies between one top node from left branch and one top node from right branch
at this iteration. Take the node pair (2t+1, 3 × 2t − 1) for example, while traveling from
Node 2t+1 to Node 3× 2t− 1, the shortest path includes 2t edges. Thus, the diameter for
the proposed network has the following simple formula

D(t) = 2t =
2 ln(Nt + 1)

ln 2
− 2 ln 3

ln 2
(5)

Thus, the diameter D grows logarithmically with the number of nodes. Because the
average path length is smaller than D, the APL should increase more slowly. To show
the relationship more clearly, we give the simulation results in Fig. 3. To have an insight
into the frequency distribution of shortest path lengths, we also give a plot in Fig. 4 to
show the fraction of cases in which the shortest path between a pair of nodes is m, where
m = 1, 2, ..., D(t) for t = 4. From Fig. 4, we can see that for t = 4, most shortest paths
are with lengths 5 and 6, which corresponds to the average path length 5.02 as shown in
Fig. 3.

According to the above discussion, we can conclude that our model is a deterministic
self-similar network, for it is based on the tree fractal and has self-similarity. The network
is sparse with a short average path length.

4. Conclusions. In this paper, we have presented a deterministic self-similar model
based on the tree fractal. We have derived the analytic solutions for degree distribu-
tion, clustering coefficient and diameter of the deterministic model. The network satisfies
the two necessary properties for small-world networks, but its clustering coefficient is zero.
So it is not a small-world network. The proposed model provides a new way of thinking to
generate a self-similar network with specific properties. Our future work will concentrate
on how to add extra links to improve the clustering coefficient from 0 to a high value.
This will help us to obtain a small-world network.
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FIGURE 3. The APL and D versus the logarithm of the number of nodes. 

Figure 3. The APL and D versus the logarithm of the number of nodes
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FIGURE 4. The frequency distribution of shortest path lengths for t=4. 

Figure 4. The frequency distribution of shortest path lengths for t=4
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