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Abstract. Digital steganalysis techniques attempt to detect hidden information in dig-
ital media. The rising interest in steganalysis is attributed to the growing number of
steganography algorithms and the threats they represent. This article presents a com-
bined maximum entropy energy approach for audio steganalysis. First, the audio signal
is divided into four energy-based regions: noise, low, medium and high; then entropy is
computed from each region. Finally, a support vector machine is applied to the collected
features for discovering the hidden data in audio signals. Active speech level algorithm is
used to capture energy fluctuation in audio streams. The paper shows that the extracted
features from separate energy-based regions of the signals have significantly improved
detection accuracy of hidden messages. Our work includes comparisons with current
state-of-the-art audio steganalysis techniques. The experimental results show that our
method achieves up to 96.7% correct for an embedding rate of 25% or above of stego-
signals produced by S-tools4, Steghide and Hide4PGP while using a much smaller feature
set.
Keywords: Information hiding, Audio steganalysis, Audio steganography, Signal pro-
cessing, Maximum entropy, Energy.

1. Introduction. Digital steganography is a nascent but rapidly flourishing technique
that has emerged as a prominent source of data security. Digital steganography techniques
exploit the characteristics of digital media by utilizing them as carriers (covers) to hold
hidden information. Covers can be of different types including image [1], audio [2, 3,
23], video [5], text [6], and IP datagram [7]. Steganography entails the undetectable
modification of a multimedia file to embed data, in contrast to encryption which relies on
rendering this data unreadable to a third party [8]. Steganography techniques have found
their way into various and versatile applications. However, some of these applications are
pernicious [9, 10]. Attempting to detect the presence of hidden message, is the primarily
objective of a steganalyst. Steganalysis algorithms are regarded as ”attacks” against
steganography algorithms. These attacks could be significantly challenging especially
when the only information available is the stego-file.
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Steganalysis techniques in compressed and uncompressed audio format have been actively
investigated in the last decade. Most steganalysis method presented lately are based on
learning to differentiate between cover- and stego-audio signals. The learning process is
performed by a machine learning such as, a support vector machine (SVM) on a dataset
fed with statistical properties (features) extracted from the cover and stego-audio signals.
The right choice of these features reinforces the discriminatory power between the cover-
and stego-audio signals.

As the widespread use of WAV audio signal, various steganographic methods have been
suggested and inevitably many steganalysis schemes have been developed to attack them.
Authors in [11] have presented a WAV audio steganalysis algorithm to capture irregular-
ities between cover and stego signals’ spectrograms in high quality recorded speech. The
spectrogram of each frame in the signals is calculated using Short-Time Fourier Transform
(STFT). The collected features are classified through a non-linear SVM. According to the
authors, this approach is more suitable for high-bit rate audio steganography such as,
LSB methods and Hide4PGP. The use of audio quality measures for audio steganalysis
was proposed by [12]. The authors used audio quality measures (i.e, signal-to-noise ratio,
Log likelihood) to distinguish between the stego-signal and its de-noised version (used
as an estimate to the cover-signal). ANOVA test [13] and sequential floating search [14]
were used to select the most appropriate measures to better detect the presence of hidden
messages. In order to classify a signal as stego or cover, a linear regression and support
vector machines (SVM) classifiers were trained using the selected audio quality measures.
[15] proposed content-independent distortion measures as features for the classifier design
to improve the latter method. They proposed to use a single reference signal (common
to all tested signals) instead of creating a reference signal via a de-noised version of the
stego-signal. Authors in [16] extracted features from the histograms of both statistical
moments and frequency domain of the tested audio signal. Comparatively, [17] have used
only higher order statistical moments of histogram and frequency histogram for the signal
and its wavelet sub-bands. The same principle in selecting the features was followed by
[18], but the signal reference was a self-generated signal via linear predictive coding. [19]
proposed an algorithm based on Mel-cepstrum to detect embedded messages. Authors in
[20] combined MelCepstrum feature with temporal derivative-based spectrum analysis.

To detect hidden information in MP3 audio files, [23] presented a detection method
for MP3Stego [22] based on the differential statistics of quantization step and in [24]
by exploiting recompression calibration-based feature of the number of bits in the bit
reservoir. In AMR compressed audio [25] used the joint probability of same pulse position
matrix as feature.

Although previous research on audio steganography has managed to detect hidden data
in various audio formats, it mostly relied on the change of the intrinsic properties of the
audio signals (e.g., mel cepstrum, linear prediction coefficients (LPC), audio distortion
measures, etc.) to distinguish between stego- and cover-audio signals. In addition, up
to our knowledge most of the current literatures compute these properties over full-band
audio signals, a process that could dilute the embedding error’s effect on the stego-audio
signal.

Thus, in order to capture all variations in WAV audio streams due to embedding and
to generate a set of meaningful features to the support vector machine we study continu-
ous homogeneous energy-based audio stream segments. The proposed algorithm has two
stages. First, each audio signal frame is classified based on its energy level as: noise,
low, medium or high using active speech level algorithm (ASL), defined in ITU-T Rec-
ommendation P.56 [38]. Frames from same energy are grouped together to generate four
energy-based regions of the audio signal (noise, low, medium and high). Second, maximum
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entropy is computed from each energy-based region to further enhance the discriminatory
power of the classifier between stego- and cover-signal. As a result we are able to scan,
analyze and show the impact of the embedding-process within all energetic regions of the
audio signals. In our opinion, our maximum entropy energy audio steganalysis algorithm
(EE-AS) is novel because segmenting the signal into energy-based regions has resulted
in generating more meaningful features which reduced the false positive rate. The main
contribution of this paper lies in the following:

1. Integrating energy and maximum entropy, a powerful duo, for features selection.
2. Capturing all possible variations in the audio streams resulting from data hiding.

The features are extracted from full-band and from separate energy-based regions
of the audio signal as it is commonly understood that, maximum entropy of the
full-band spectrum by itself captures only the gross peakiness of the spectrum.

3. Our proposed method has a small features selection set size while achieving 97.67%
detection rates for stego-audio signals.

4. Our scheme has lower false positive because instead of having one scan over the whole
signal we reduced the margin of error by scanning multiple continuous homogeneous
segments of the signal.

To assess the performance of the proposed method, LSBs-based audio steganographic
software like: Steghide, S-Tools, Hide4PGP, found respectively in [26, 27, 28] are used to
generate the stego-signals. EE-AS algorithm has a generalized design for detecting hidden
data in audio signals, however, these software were adopted for practicality and usability
reasons since they were used by the algorithm we are comparing our work to [20].

This paper is organized as follows: Section 2 presents a theoretical background for
entropy and justifies its use in the present context. Energy as a key parameter in audio
steganalysis is presented in Section 3 and in Section 4. Section 5 and Section 6 discuss
the preprocessing steps to generate the features used to distinguish between cover- and
stego-audio signals. In Section 7, classification results by SVM and evaluation study are
revealed. Finally, we conclude this paper with a conclusion of our work in Section 8.

2. Signal Entropy. The entropy of a signal is a measure of the amount of information
a signal carries. The successful exploitation of entropy features in speech recognition [29]
and voice activity detection [30] gave rise to their use in the context of signal and image
processing. The application of the entropy concept for signal and image steganalysis is
based on the fact that embedding techniques would modify the probability of bits of cover
medium which in turn will change the entropy value. An audio signal is denoted x(t) where
(t =0,1,2,...,N -1). Similar to the additive noise model proposed in [31], a stego-signal is
denoted s(t), which can be modeled by adding a noise or error signal e(t) to the original
signal x(t); s(t) = x(t) + e(t). The entropy of x(t), e(t) and s(t) are denoted H(x), H(e)
and H(s), respectively. To uniquely identify the value of x, Shannons entropy [32] is
employed. Small perturbations on the sample values of x produce smaller perturbations
on the measured entropy. If the sample values of x are denoted by xi then entropy is
defined as follow:

H(x) = −
∑
i

p(xi).ln(p(xi)) (1)

where p(xi) is the probability for the signal to take values xi. The entropy of the sum
of two independent discrete random variables (x, e), e.g., H(s) is at least the minimum
of their individual entropies [33, 34] given by:

max{H(x), H(e)} ≤ H(s) ≤ H(x) +H(e) (2)
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Thus, by adding more terms in the summation [33], the entropy can only increase.

3. Maximum Entropy and Signal Energy. Audio signal contains different amount
of entropy and energy levels over time. Since stego-signal is additive [31], data hiding will
change the entropy value. The effect of this change is related to changes in the signal en-
ergy. The proposed steganalysis algorithm exploits these irregularities in the stego-signals
to detect steganography. Entropy-based algorithms in information theory literature such
as Shannons entropy [32], Lempel-Ziv-Welch (LZW) complexity [35], Huffman [36] and
Golomb-Rice coding (GR) [37], can be used to measure the irregularities in the tested
signals. As a show case we used three distinct algorithms: LZW, Huffman and GR. These
algorithms were chosen because of the differences in entropy values generated for the same
audio stream. This feature leads to more informative data that can be used to enhance
the classifier capability. Maximum entropy values shown in Figure 1 are computed from
noise regions Figure (1a) and full-band signal Figure (1b). These Figures also illustrate
the relation between entropy and signal energy, we can observe that entropy value in-
creases as energy level decreases. Moreover, entropy values computed on full-band audio
streams are not strong features on their own. Hence, the similarity between feature values
collected from Huffman and LZW will not be of much help to the classifier. Consequently,
time domain full-band entropy captures the gross distortion due to data hiding, for im-
proved resolution, entropy features are also computed from energy-based regions: noise,
low, medium and high of the audio signal. Audio division is carried out by ASL algorithm
as presented in the next section.
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Figure 1. Tradeoff between entropy and energy

4. Energy-Based Signal Division. Active speech level algorithm (ASL) is used to dis-
criminate between noise, low, medium and high energy regions within the audio signal.
ASL determines speech activity factor (Spl) which represents the fraction of time where
the signal is considered to be active speech and the corresponding active level for the
speech part of the signal [38]. The speech activity algorithm computes the speech en-
ergy value at each sample time (frame). To determine which frames belong to the high,
medium, low and noise power classes, the active speech level Spl of the signal is first de-
termined according to [38], then compared with a discrete set of thresholds as presented
in Table 1. This thresholds set is chosen based on experimental considerations [39, 40]
and they are specific to normalized audio files of our datasets. A detailed classification
of the frames into the four power classes is presented in [39]. To build our audio signals
database, we collected 1080 on-line audio files of 10 s length each from different types
such as speech signals in different languages (i.e, English, Chinese, Japanese, French, and
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Table 1. Datasets composition statistics in terms of audio signal parts and
thresholds used to categorize the frames as noisy, low, medium or high.

Power classes Audio (%) Speech (%) Music (%)

10800 sec 6200 sec 4600 sec

Noise 14.76 22.47 2.6

Low 15.54 22.56 6.5

Medium 50.03 39.17 63.64

High 19.67 15.8 27.26

Power Threshold

classes (dB)

noise -45

Low -35

Medium -25

High -15

Thresholds for
power classes.

Arabic), and music (classic, jazz, rock, blues). All signals are sampled at 44.1 kHz and
quantized at 16-bits. The statistics of the dataset are shown in Table 1. An example of
audio-signal division process based on the set of the chosen thresholds is illustrated in
Figure (2).

5. Features Extraction. The features extraction step starts by creating features vector
representing the entropy value difference (HDif) between received (tested) audio-signals
st and their self-generated reference version sr. which are created by randomly modifying
the first LSB layer in the temporal domain of the given signal using S-tools4, Steghide and
Hide4PGP. Features extraction is achieved in three main steps detailed in the following
subsections:

5.1. Frames classification. Each signal (tested and its reference) is divided into 4 parts
based on the energy level. This process is detailed as follows:

1. The audio signal is split into M frames of 10 ms and N samples each, st(m,N), 1 ≤
m ≤M .

2. Compute Spl as in ITU-T P.56 [38] for each frame using the library tool voicebox
[41].

3. Classify the frame as high, medium, low or noisy by comparing its Spl to the values
shown in Table 1.

4. Reassemble the frames of the same category into one part as shown in Figure 2.
At the end of the process, each audio file is divided into four energy-based regions:
noisy, low, medium and high. The classification process is described in the following
Algorithm.

5.2. Entropy Computation. Following signals division phase, maximum entropy (ηi)
for each energy-based region is computed using three distinct entropy algorithms: Huff-
man, LZW and GR. This process results in 15 entropy values (ηi, i=1...15), three values
for each energy-based region of the audio signal (noisy, low, medium, high and full band
signal). The following example shows how to compute noisy region entropy values: η1, η2
and η3.
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Algorithm 1 Signal division to energy-based regions

INPUT: st(m,N)
OUTPUT: stNoise

, stLow , stMedium
, stHigh

for m = 1 to M do
if Spl(st(m,N)) ≤ −45 then
stNoise

+← st(m,N)
end if
if −45 ≥ Spl(st(m,N)) ≤ −35 then
stLow+← st(m,N)

end if
if −35 ≥ Spl(st(m,N)) ≤ −25 then
stMedium

+← st(m,N)
end if
if −25 ≥ Spl(st(m,N)) ≤ −15 then
stHigh

+← st(m,N)

end if
end for

• η1 ← Huffman(stNoise
)

• η2 ← LZW (stNoise
)

• η3 ← GR(stNoise
)

Similarly, we calculate the entropy values of the reference signal to produce the entropy
difference (HDifi, i=1...15). HDifi is computed between similar energy regions of tested
signal st and its reference sr as shown in the following equation:

HDifi =
√
|ηti| −

√
|ηri| (3)

The reason for presenting HDifi by Eq.3 is that square root is not differentiable at 0.
Hence, small η,

√
|ηti| −

√
|ηri| may be much larger than |ηti − ηri| and eventually will

signify their impact in the classification process.
The features vector of each audio signal contains 15 coefficients:
Features = HDif1, HDif2, HDif2, ..., HDif15

The 15 HDif coefficients are the features set to be fed to the SVM classifier with an RBF
kernel. Each HDif coefficient is computed by one of the entropy algorithms on an energy-
level region of the audio signal (i.e, HDif1 is the difference in entropy value measured by
rar in the noisy regions of the tested signal and its reference). Thus, a features vector of
15 ratio coefficients is retrieved from each audio signal such as: HDif1, HDif2,..., HDif15.
The feature extraction process is further illustrated in Figure 3.

Figure 4 shows entropy values computed for the cover-audio, stego-audio and their
reference versions. The results can be summarized as follow:

1. Entropy values in higher energy regions (e.g., medium and high) are smaller than
those of lower energy regions.

2. The cover and the stego signals are better discriminated in lower energetic parts of
the audio signals.

3. Regardless of the energy level, the difference in entropy value between the cover and
its reference signal 4a is always larger than that of the stego and its reference 4b.
This observation is in fact the key to detecting the existence of hidden data.
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Figure 2. Speech signal division energy-based region using ASL. Temporal

representation (blue curve) of a speech signal (left y-axis) and its division to

different power classes (noise, low, medium and high) using the energy in (dB)

per audio signal frame (right y-axis) computed by ASL (red curve) and classified

to power classes using the thresholds set.

Figure 3. Features extraction workflow.

6. Features Classification.

6.1. Datasets. For each tested steganographic tool, two datasets are produced: training
and testing (Tr and Ts). Each dataset contains 1080 WAV audio signals of 10 s length.
All signals are sampled at 44.1 kHz and quantized at 16-bits. Each training and testing
dataset contains 540 positive (stego) and 540 negative (cover) audio samples. We used
on-line audio files from different types such as speech signals in different languages (i.e,
English, Chinese, Japanese, French, and Arabic), and music (classic, jazz, rock, blues).
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Figure 4. Entropy values of cover- (a), stego-signal (b) and their respective
reference versions.

All stego-audio signals are generated by hiding data from different types: text, image,
audio signals, video and executable files. The stego-signals produced by Hide4PGP with
25% maximal hiding capacity while in Steghide and Stools with 50%.

The datasets Tr and Ts consist of a matrix of {HDifi, li},where HDifi refers to 15
entropy features, and li ∈ {±1}. The values +1 and -1 correspond to ”Stego-audio” and
”non Stego-audio” classes, respectively. The performance of the proposed steganalysis
algorithm is measured by the ability of the system to recognize and distinguish between
stego- and cover-audio signals.

6.2. Classification Step. The problem is basically formulated as a two-class, classifi-
cation problem: both training and testing sets contain audio signals belonging to either
cover- or stego-signal. This representation is combined with a powerful machine learning
technique (SVM) [42], which is used to classify the two sets, and has proved to be very
effective classifier in the last decade. SVMs, enjoy strong foundations in statistical learn-
ing theory, and have been successfully applied to data classification. The SVM algorithm
addresses the general problem of learning to discriminate between positive and negative
examples of a given class of n-dimensional vectors. SVM has been successfully applied
to a number of applications ranging from bioinformatics [43], face detection [44], digital
images steganalysis [45] and to digital audio steganalysis [15, 20]. In addition, SVM does
not normally require complex parameters tuning. It minimizes the prediction error and
generalizes well even for small training samples [43]. SVM classifier is used in conjunction
with the Radial Basis Function (RBF) kernel [46].

In this study, we employed SVMs library tool [47]. The tuning parameters: γ(> 0) the
scaling parameter and C(> 0) the regularization parameter which decides the trade-off be-
tween the training error and the margin of separation are set to 0.1 and 1 respectively. We
prepared Tr and Ts datasets (listed in the previous section) for each steganography tool
involved in this experiment: Steghide, S-Tools4, Hide4PGP v2.0 and our steganographic
algorithm.

7. Results and Discussion. Our assessment of the performance of EE-AS on our
datasets is based on two experiments. The first experiments assesses the recognition
ability of our method in classifying stego- and cover-signals and it contains three sce-
narios. The second experiments compares the performance of our technique to other
state-of-the-art audio-steganalysis methods. The mean and standard deviation (STD) of
the length of 540 training and 540 testing audio samples datasets are listed in Table 2.

The accuracy of our predictions is measured by Precision (PP), Recall (R), F-measure,
and the receiver operating characteristic (ROC). The precision is defined as the ratio of
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Table 2. Mean and standard deviation of training and testing audio sig-
nals datasets

Mean STD
Training dataset 4.5510e-006 0.1228
Testing dataset 1.6519e-005 0.0637

TP
(TP+FP )

. The recall is defined as R = TP
(TP+FN)

. The F-measure combines precision and

recall such as: 2. PP.R
(PP+R)

. The ROC is the fraction of true positives (TPR = true positive

rate) versus the fraction of false positives (FPR = false positive rate). In this experiment,
TP, FP and FN are defined in the contingency Table 3.

Table 3. The contingency table

Stego-signal Cover-signal
Stego classified True positives (TP) False Negatives (FN)
Cover classified False Positives (FP) True Negatives (TN)

The entries of the contingency table are described as follows:

• TP : stego-audio signal classified as stego-audio signal
• TN : cover-audio signal classified as cover-audio signal
• FN : stego-audio signal classified as cover-audio signal
• FP : cover-audio signal classified as stego-audio signal

It is possible that we might end-up with a high precision results (despite having a
high number of FN), or a high recall (despite having a high number of FP). However,
F-measure and the area under the ROC curve are two of the most popular computational
methods to find a balance between false positives and false negatives.

7.1. Performance Evaluation of EE-AS.

7.1.1. Scenario 1. In this scenario, we assess the recognition ability of our method EE-AS
in classifying 540 stego and 540 non-stego audio files (speech and music). The 15 features
set are extracted from different energy-based regions: noisy, low, medium, high and full
band audio signal. In Table 4, we record the overall accuracy where higher score values
are interpreted as high detection rate. In this work, we were able to achieve high detection
scores especially for Hide4PGP which shows almost 100% recognition rate. However it is
pertinent to provide more analysis of the algorithm’s performance and results.

Table 4. ROC and F-measure recorded from testing EE-AS on a 540 dataset

of Audio signal

Hiding methods F-measure ROC
S-Tools 0.909 091
Steghide 0.791 0.795

Hide4PGP 1 1
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7.1.2. Scenario 2. We assess the recognition ability of our method in classifying between
540 stego and 540 audio signals by using entropy features extracted only from full-band
signal. The feature vector used contains only three elements and each of these elements
is generated by one of the entropy algorithms (Huffman, LZW and GR). F-measure and
ROC are listed in Table 4.

Table 5. ROC and F-measure recorded from testing EE-AS by using features

vector of three elements extracted from full-band audio signals.

Hiding methods F-measure ROC
S-Tools 0.775 0.785
Steghide 0.578 0.63

Hide4PGP 0.985 0.985

Despite the small size of the feature set (3 elements) used, we managed to achieve good
results, especially in detecting S-Tools and Hide4PGP steganography. Entropy features
extracted from full-band signals are not strong on their own and have to be combined
with features from multi energy regions (Table 4). Nevertheless, all these results show
the high potential of entropy-based audio steganalysis.

7.1.3. Scenario 3. For the third scenario, we further investigate the recognition ability
of our algorithm when the dataset contains only speech or music signals. The aim of
this experiment is to put more emphasis on the behavior of the proposed algorithm when
music-audio signals are used to convey hidden data versus those of speech. We split the
dataset into two sets A (460 speech signal) and B (460 music signal). Each set is further
split into 230 stego- and 230 cover-signal to create a training and testing dataset for
speech and music. A set up similar to that described in scenario 1 is employed. In Table
6 we show ROC and F-measure. The statistical characteristics of speech- and music-
signals are given in Table 1. Overall, these results show the high discriminatory power of
energy-based statistics features on the detection accuracy. The features extracted from
speech signals offer better accuracy compared to music, therefor speech signals are more
vulnerable to our steganalysis method. This is due to the fact that the percentage of lower
energy regions in speech (Table 1) is higher compared to that of music audio-signals.

Table 6. Music versus Speech energy-entropy audio Steganalysis

Hiding methods Audio Type F-measure ROC

S-Tools Speech 0.94 0.94
Music 0.885 0.885

Steghide Speech 0.797 0.805
Music 0.763 0.775

Hide4PGP Speech 1 1
Music 0.9999 0.9999

7.2. Comparison of Time Complexity and Detection Accuracy. We tested an-
other state-of-the-art audio-steganalysis methods, 2D-Mel [20] and we compared to our
methods based on time complexity and classification rates. Additionally, we also tested
2D-Mel with a reduced feature set based on filtered MFCCs (29 FMFCCs) coefficients
instead of combined 58 FMFCCs and MFCCs stated in [20]. The test is carried out to
achieve two main objectives. First, to reduce the computation time of 2D-Mel. Second,
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to fully align with Liu’s proposal where he proved that FMFCCs are the main source of
embedding error. F-measure and ROC values of the primary experiment on a dataset of
540 training and 540 testing audio-signals are summarized in Table 7. Higher scores in
the table correspond to a more accurate detection performance.

Table 7. F-measure and ROC recorded from testing EE-AS, 2D-Mel on a 540

dataset of Audio signal

Hiding methods Steganalysis Method F-measure ROC
S-Tools 2D-Mel 0.706 0.725

FMFCCs 0.885 0.745
EE-AS 0.909 0.91

Steghide 2D-Mel 0.63 0.67
FMFCCs 0.712 0.79
EE-AS 0.791 795

Hide4PGP 2D-Mel 0.854 0.855
FMFCCs 0.887 0.855
EE-AS 1 1

The results registered in Table 7 show that EE-AS has better accuracy reflected by
higher F-measure and roc. In addition, testing 2D-Mel steganalysis using only FMFCCs
coefficients as features has resulted in a significant downsizing in the classification feature
set (29 features instead of 58) and hence has improved the performance of 2D-Mel. These
results could be explained as follows:

• The information extracted from FMFCCs are sufficient and more informative for the
classification process.
• The 29 MFCCs features have added more noise than valuable information to the

classification.

It is further found that EE-AS has better time complexity than 2D-Mel. The entropy
features of N samples takes a maximum time complexity of O(N logN) [48], meanwhile
the computation of mel cepstrum as indicated in Eq.4 requires O(N2(logN)2) knowing
that FFT time complexity is O(N logN) [49].

MFCCs = FFT (MT (FFT (D2
s))) =


fmel1

fmel2

...
fmel29

 (4)

In addition to the complexity time, the computational time needed in the training stage
in EE-AS is smaller, since, we only used 15 features compared to the 58 features in 2D-Mel.

Further details on the behavior of each algorithm are represented in term of ROC curves
in Figures (5a), (5b) and (5c). In each graph, a higher curve corresponds to a more
accurate detection rate. While a lower curve corresponds to a less accurate detection
rate. As an example, combined 2D-Mel produced a ROC of 85.5% for Hide4PGP while
EE-AS have achieved a 100% accuracy. For Stools, 91% has been registered against
72.5%. Moreover, the proposed method offers a better accuracy with regards to stego-
audio streams detection expressed by higher rate of true positive (TP) as shown in Figure
(5d).

Using any of these performance measures, EE-AS method performs better than 2d-Mel.
Thus, the features extracted by EE-AS are more informative for the classification process.
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Figure 5. ROC curves for EE-AS and 2D-Mel [20] tested by Hide4PGP (5a),

Stool (5b), Steghide (5c) and performance comparison of EE-AS and 2D-Mel

based on TP rates (5d)

Beside the overall accuracy out-performance, EE-AS has two more advantages over 2D-
Mel. Firstly, the 2D-Mel method is computationally more intensive as the classification
vector has 58 elements against 15 only required by our algorithm. Secondly, the proposed
method offers a better accuracy with regards to stego audio files detection which is the
main objective of steganalysis techniques. As an example, Figure 5d shows that stego
files in our method are 100% detected when Hide4PGP and Stool are used versus 77 %
and 47% respectively in 2D-Mel. For steghide, 93% accuracy has been registered against
34%.

8. Conclusion and Future work. In this paper we present an efficient audio steganal-
ysis technique. Our method is based on the assumption that embedding techniques would
modify the entropy and the energy content of audio signals. This assumption is justified
by the additive property of stego-signal which can be modeled by adding noise or error-
signal to the cover-signal. However, the main feature of this algorithm is to demonstrate
that maximum entropy in conjunction with energy can be very powerful technique for
audio steganalysis. The experimental results show that our method (EE-AS) applied on a
large audio signal dataset achieved a true positive rate above 97.67% for embedding rate
of 25% or above while improving the computational time. EE-AS requires reduced feature
vector to detect changes in audio signal due to steganography with higher F-measure and
ROC. The improved accuracy of our method follows from the integration of energy and
entropy which are two powerful information content measures. In addition, the use of
SVM classifier empowered the proposed algorithm, since it is based on strong foundations
in statistical learning theory and proved to be effective classifier in the last decade.
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Finally, the success of the proposed steganalysis method in detecting steganographic
audio signals encouraged us to pursue future investigations to further minimize the fea-
tures vector and the embedding rate, introduce signal complexity and extend our proposed
method to other steganographic applications developed in transform and coded domains.
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