
Journal of Information Hiding and Multimedia Signal Processing c©2017 ISSN 2073-4212

Ubiquitous International Volume 8, Number 1, January 2017

Fault Tolerant Scheduling Algorithm in Distributed
Sensor Networks

Hongxuan Duan

Northeast Petroleum University
No. 500, Middle of Hebei Str., Haigang District, Qinhuangdao, China

duanhx@nepu.edu.cn

Yan Zhou

Henan Institute of Engineering
Zhengzhou Henan, 451191, China

Miaomiao Liu

Northeast Petroleum University
No. 500, Middle of Hebei Str., Haigang District, Qinhuangdao, China

Received March, 2016; revised June, 2016

Abstract. Nowadays, distributed sensor networks have been deployed in many fields.
Sensors are usually energy limited, and thus they must be scheduled effectively by making
some of them sleep to keep the whole distributed sensor network work properly. At the
same time, sensors are usually very cheap and they fail easily, but less working sensors
(or more sleeping sensors) will make a network get wrong results. In this paper we studied
how to schedule sensors effectively to make the whole distributed sensor network consume
less energy while working fault tolerant at the same time. We designed a fault tolerant
scheduling model for distributed sensor networks, and proposed a deferred active backup
copy scheduling algorithm. We validated our proposed approach via massive simulation
experiments.

Keywords: Distributed sensor networks, Scheduling algorithm, Fault tolerant, Re-
dundant backup

1. Introduction. Distributed sensor networks consist of massive small and energy lim-
ited sensors, where sensors communicate with each other with wireless communication
protocols [1]. Sensors are placed manually or automatically by airplanes, and data are
transmitted with multi-hop protocol among sensors and finally to the remote base station
[2].

In distributed sensor networks, the power of sensors, or called nodes, is supplied with
batteries, and thus is very limited, so how to maximize the life of distributed sensor
networks by saving energy consumption of sensors is a key problem [3, 4, 5, 6]. The
commonly used method to save energy consumption is scheduling working nodes by turns,
and this method is reasonable. Sensors are placed very densely, and the data among
sensors are redundant, so setting some sensors be idle don’t affect the accuracy of data
transmitted. However, sensors are made up of low price hardware, and these hardware go
wrong frequently, so these sensors fail easily [7]. When a sensor fails, the data in it can
be missing or dirty [8].

127

128 H. X. Duan, Y. Zhou, and M. M. Liu

In order to make a distributed sensor network work properly, the working sensors need
to be minimized, while at the same time keeping the data among them fault tolerant. In
this paper, we assume each sensor as a distributed processor, and model the distributed
sensor network with a fault tolerant scheduling model. For processing the backup copy
tasks, we proposed a deferred active backup copy scheduling algorithm.

The rest of the paper is organized as follows. In section 2, we review related works about
energy saving and fault tolerant scheduling algorithms in distributed sensor networks. In
section 3, we propose a fault tolerant scheduling model in distributed sensor networks.
In section 4, we propose a scheduling algorithm for working sensors. Experiments and
conclusion are given in sections 5 and 6 respectively.

2. Related works. In this section, we review related works about energy saving and
fault tolerant scheduling algorithms in distributed sensor networks.

2.1. Energy saving by scheduling working nodes. By scheduling working nodes,
the energy of a distributed sensor network can be saved to maximize the life of the whole
network. Currently, this kind of researches can be classified into certain sleeping and
randomly sleeping. In both of the above two classifications, sleeping and working nodes
work and sleep by turns to keep the whole network running properly.

In certain sleeping, some selected nodes sleep a certain time, and the other nodes
work to keep the whole network working. In [9], Tian et al. let each node decide its
status according to whether it can manage its neighbours. If one node can manage all of
its neighbours, then it is a working node, otherwise, it sleeps. Ye et al. [10] propose a
detection based network control protocol PEAS. Xu et al. [11] partition the whole network
into virtual subnetworks, and keep one working node in each of these subnetworks. Zhang
et al. [12] study how to coverage the whole network with less working nodes. In addition,
Wang et al. [13] and Huang et al. [14] study the k-coverage problem of distributed sensor
networks, and Jin et al. [15] study how to locate sensors of distributed sensor network
before partitioning.

The basic idea of randomly sleeping is that, each node sleeps with the probability
of p, and works with the probability of 1 − p. The focus of this kind of study is the
sleeping probability of nodes, node sensing radius and the region of subnetwork [16, 17].
In randomly sleeping, each node sleeps with fixed probability, so the whole network has
lower adaptability.

2.2. Fault tolerant scheduling in distributed systems. Classical fault tolerant tech-
niques in distributed systems include distributed voting [18], rollback recovery [19] and
backup [20]. However, these techniques don’t take run-time into consideration. In order
to satisfy run-time and fault-tolerant requirements, primary/backup copy is widely used
in distributed system. According to storing and processing data in backup sensors, dis-
tributed sensor networks can finished specified work in run-time and fault tolerant. The
primary/backup techniques can be classified into active backup copy [21], passive backup
copy [22] and overlapping backup copy [23, 24].

The method of active backup copy can be easily implemented, and has no time re-
quirement for the running time of tasks, but the deficiency is that it needs twice time of
that under non-faulty situation [21]. In method of passive backup copy [21], the backup
copy runs only when the primary copy fails. The advantage is that it doesn’t run backup
copy under non-faulty situation, but the disadvantage is that it needs synchronous over-
head between primary and backup copies. The method of overlapping backup copy has
both advantages of the above two methods. Karim et al. [23] propose a clustering based
method for partitioning the whole network and choosing the primary copies. Geeta et al.

Fault Tolerant Scheduling Algorithm in Distributed Sensor Networks 129

[24] apply an automatic network partitioning method for choosing primary and backup
copites, and propose a dynamic method for adjusting the power consumption.

3. Fault tolerant scheduling model. In this section, we propose a fault tolerant sched-
uling model for distributed sensor networks.

Considering each sensor as a processor and each data processing as a task in that
processor, then we have a group of tasks

Γ = {τ1, τ2, τ3, · · · , τN}, (1)

τi = (Ci, Ti), i = 1, 2, · · · , N. (2)

where N is the number of periodic tasks, Ci is the maximum running time of task τi,
Ti is the period of task τi. The period of each task τi equals to its limit, and periods of
different tasks are independent with each other. All tasks are preemptive, and the tasks
of the same sensor is scheduled according to their priorities [25].

The backup copies of periodic tasks can be describe as follows.

BΓ = {β1, β2, β3, · · · , βN}, (3)

βi = (Di, Ti), i = 1, 2, · · · , N. (4)

For each task τi, these is a backup copy βi, the period of βi is the same as its primary
copy task. As βi is the backup of τi, we have that Di ≤ Ci. The primary and backup
copies of a task are scheduled to different sensors. In the following, we denote γi as either
the primary copy or the backup copy, i.e. γi = τi or γi = βi.

There are three running models for backup copies of tasks in scheduling models, and
they are active backup copy, deferred active backup copy and passive backup copy. Let
Status(βi) denotes the running model of the backup copy βi, then we have Status(βi) ∈ {
common-active, passive, deferred-active }. In this paper, we applied active backup copy
and passive backup copy described by Ghosh et al. [26], and propose a deferred active
backup copy method described in the next section.

The set of sensors or processors is

P = {P1, P2, P3, · · · , PM}, (5)

where Pi is the i-th sensor, and M is the total number of sensors in a distributed sensor
network. In this paper, we assume that all sensors are the same, and each task has the
same running time on different sensors. Let P (τi, βi) denotes the sensor that runs τi or
βi. While detecting faults of sensors, we apply the acceptance test described in [27].

4. Deferred active backup copy scheduling algorithm. In this section, we propose
a deferred active backup copy scheduling algorithm. The idea of the proposed algorithm
is similar to [22], but the difference is that we defer the backup copy to the end, so some
backup copies can be run passively.

Figure 1 is an illustration of the proposed deferred active backup copy. As can be seen
from the figure that, the worst case running time of τi is Ri, and the worst case running
time of βi is BRi. During each period [hTi, (h + 1)Ti] of τi, we divide its running time
into the redundant part Rpi and the backup part Bpi. Rpi and the primary copy run
in parallel, and Bpi runs only when the primary copy fails. However, if the sensor of
the primary copy fails, the recovery time Bij (Bij = Ti − Rij) on backup sensor cannot
be left for βi, because it can be interrupted by other tasks with high priorities. So, we
must compute how much of Bij can be left to βi. If it is bigger than 0, then leave it
for the backup of βi, i,e, BackT (i). When all sensors work properly, the redundant part
of βi runs in parallel with the primary copy, and then the deferred active backup copy

130 H. X. Duan, Y. Zhou, and M. M. Liu

P1

BRi

Time

Rpi

hTi

τi

P2

Bpi

Ri

hTi+Ri (h+1)Ti

S
en

so
rs

Figure 1. Illustration of deferred active backup copy

can be considered as a period task with period Ti, ending time Rij and running time
Di −BackT (i).

4.1. Computing running time of backup copy. Let Primary(Pj) and Backup(Pj)
denote sets of primary and backup copy tasks scheduled to Pj respectively,
and deferred active(Pj) and common active(Pj) denote the deferred active and common
active tasks scheduled to Pj respectively.

If the passive backup copy is scheduled to Pj and the primary copy is scheduled to Pf ,
then we represent these tasks as the set passiveRecover(Pj, Pf); if the common active
copy is scheduled to Pj, and the primary copy is scheduled to Pf , then we represent
these tasks as the set common activeRecover(Pj, Pf); and if the deferred active copy is
scheduled to Pj, and the primary copy is scheduled to Pf , then we represent these tasks
as the set deferred activeRecover(Pj, Pf). In addition, we have

Recover(Pj, Pf) = passiveRecover(Pj, Pf)∪
common activeRecover(Pj, Pf)∪
deferred activeRecover(Pj, Pf).

(6)

In a deferred active backup copy, whether or not the active backup copy runs actively
is the key problem. Because the tasks are scheduled according to their priorities, running
time of backup copy is the idle time of primary copy while recovering. This idle time
ComputeFreeT ime(Bij, k) can be computed in the following three steps.

1. If the sensor Pj which runs task τi fails, compute the task set of σ = Primary(Pk)∪
Recover(Pk, Pj) on Pk;

2. sort the tasks in σ by the descending order, compute the time of each task in σ
between [Bij, Ti] according to priorities of tasks, and get the total time TimeOccupy
of σ in [Bij, Ti];

3. compute the idle time that is left for βi, i.e. BackT (i) = Bij − TimeOccupy.

While βi is scheduled to sensor Pk, if sensor Pj, which runs task τi, fails, then we can
get the idle time that is left to βi on sensor Pk in Bij.

4.2. Deciding type of backup copy. While scheduling or allocating each task, we first
schedule its primary copy, and then schedule its backup copy. The scheduling of the
backup copy can be described as the following equation. Stasus(βi) =

Fault Tolerant Scheduling Algorithm in Distributed Sensor Networks 131

passive,Bij ≥ Di,

common active,Bij < Di, BackT (i− 1) = 0,

deferred active,Bij < Di, BackT (i− 1) > 0,

(7)

where P (τi) = Pj, P (βi) = Pk and BackT (i− 1) = ComputeFreeT ime(Bij, k).
When running time of βi is equal to or smaller than Bij, the backup copy is passive;

and when running time of βi is bigger than Bij, Status(βi) is determined by BackT (i−1)
in Bij. If BackT (i − 1) = 0, βi is an active backup copy, and if BackT (i − 1) > 0, then
some backup copies are postponed and βi is a deferred active backup copy.

4.3. Scheduling periodic tasks. In this paper, we schedule the primary and backup
copies of tasks with ”best adaptability” and ”first adaptability” strategy. The main
idea is reducing the worst case response time while processing the primary copy, and
thus reducing unnecessary redundancy of backup copies under non-faulty situation by
information of primary copy earlier.

The strategy of task scheduling is that, sort primary and backup copies of tasks ac-
cording to ascending order of periods first, and let the priorities of the primary copies be
bigger than the backup copies. The order after sorting is

τ1, β1, τ2, β2, ...τN , βN . (8)

According to the above order (from τ1 to βN), we schedule the primary copy τi, and then
the backup copy βi for each task i. For the primary copy, we apply the ”best adaptability”
strategy, that is scheduling τi to M sensors, computing the worst case response time Rij

of task τi on sensor Pj. Assuming that the minimum response time of task τi on sensor
Pk (1 ≤ k ≤M) is Rik, if Rik > Ti, then τi cannot be scheduled to the above M sensors,
so we startup a new sensor to schedule τi, and let M = M + 1 and P (τi) = PM ; and if
Rik < Ti, then we judge the type of backup copy via equation (4), and let P (τi) = Pk.
After that, we find sensors that are suitable for scheduling βi from the first sensor Pm

(m = 1, 2, ...,M,m 6= k). If the above sensors exist, then let P (βi) = Pm 6= P (τi),
otherwise, we startup a new sensor and let M = M + 1 and P (βi) = PM .

As we sort tasks by the descending order of priorities, we only need to check the
schedulability of tasks at each task allocation. At the same time, we allocate tasks under
the no sensor failure and one failure of any sensor two situations.

5. Simulation experiments. Status of sensors affects the energy consumption, and
also reflects whether or not sensors are faulty. More sleeping sensors mean less energy
consumption of the whole network, but also less resistant ability to sensor faults. In this
experiments, we mainly focus on comparison of sleeping rate and faulty rate of sensors.

The simulation experiments are implemented in a 300× 300 unit region, where sensors
are placed randomly with radius 40 unit. We use histograms to illustrate the sleeping
rate (SR), and curve figures to illustrate coverage rate (CR). Here, the less CR is, the
more likely sensors fails.

Figure 2 and 3 illustrate sleeping rate and coverage rate of sensors of our method
under different probabilities (p) of sensor sleeping. As can be seen from the figures that,
however p is, SR is nearly the same as p, so when p increases, the number of working
sensor increases, and this would make more sensors be redundant. For example, when
the number of sensors increases from 200 to 300, if p = 50%, then there are 100 and 150
sensors working.

In addition, we implement three scheduling strategies in equation 8, and the results are
in figures 4-7, 8-9 and 10-11 respectively. Figures 4, 5, 6 and 7 are the DR and CR of the

132 H. X. Duan, Y. Zhou, and M. M. Liu

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p

0.0

0.2

0.4

0.6

0.8

1.0

S
R

n=100

n=200

n=300

Figure 2. Constant probability scheduling (SR)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

0.0

0.2

0.4

0.6

0.8

1.0

C
R

n=100

n=200

n=300

Figure 3. Constant probability scheduling (CR)

passive backup copy method under different k and sensor number. When we increase the
backup number k (in figures 4 and 5), the coverage rate of the whole network increases
too, but the sleeping rate decreases. When the density of the network increases (in figures
6 and 7), the sleeping rate increases too, and the reason of this phenomenon is the same as
the constant probability scheduling method. We let k be fixed, and observe how coverage
is affected by node number (density of the network). When k is small, the sleeping rate is
very high, but the coverage rate is low. The reason is that the value of k is unreasonable,
and neighbourhood of sensors cannot be updated in real time.

Figures 8 and 9 are results of the common active recover method. In this experiment,
we supervise scheduling with dynamic sensor information. In figure 8, the sleeping rate
increases with the number of sensors. In figure 9, different settings of k have little effect
on the network coverage, and the only exception is k = 1, where there is no backup copy.

Figures 10 and 11 are results of the deferred active recover method. In this experiment,
we supervise scheduling of sensors with distances to its neighbours. Figure 10 illustrates
the change of sleeping rate of sensors along with the number of nodes, and figure 11 is
the coverage rate of sensor with respect to the number of nodes. As can be seen from
the two figures that, the sleeping rate of sensors increases with the node number, and the
coverage rate stabilizes when the node number reaches 150. This reflects that the node
number has little effect on the coverage rate in a stable sensor network.

Fault Tolerant Scheduling Algorithm in Distributed Sensor Networks 133

1 2 3 4 5 6 7 8 9 10

k

0.0

0.2

0.4

0.6

0.8

1.0

S
R

n=100

n=200

n=300

Figure 4. Passive scheduling performance based on backup number (SR)

1 2 3 4 5 6 7 8 9 10

k

0.0

0.2

0.4

0.6

0.8

1.0

C
R

n=100

n=200

n=300

Figure 5. Passive scheduling performance based on backup number (CR)

100 150 200 250 300 350

Node Number

0.0

0.2

0.4

0.6

0.8

1.0

S
R

k=1

k=2

k=3

Figure 6. Passive scheduling performance based on neighbour number (SR)

At last, we compare our method with the DT (Dynamic Time) [?] method scheduling
method. The DT method clusters sensors into groups according to their locations, and use
sensors of the same cluster to backup. Figure 12 illustrates the sleeping rate comparison
of the two methods. In our model, we let σ = 0.2 and k = 2 respectively. From this figure

134 H. X. Duan, Y. Zhou, and M. M. Liu

100 150 200 250 300 350

Node Number

0.0

0.2

0.4

0.6

0.8

1.0

C
R

k=1

k=2

k=3

Figure 7. Passive scheduling performance based on neighbour number (SR)

100 150 200 250 300 350

Node Number

0.0

0.2

0.4

0.6

0.8

1.0

S
R

k=1

k=2

k=3

Figure 8. Common active scheduling performance based on node number (SR)

100 150 200 250 300 350

Node Number

0.980

0.985

0.990

0.995

1.000

C
R

k=1

k=2

k=3

Figure 9. Common active scheduling performance based on node number (CR)

we can see that, σ = 0.2 and k = 2 have similar SR, and both of them are bigger than
the DT method.

Fault Tolerant Scheduling Algorithm in Distributed Sensor Networks 135

100 150 200 250 300 350

Node Number

0.0

0.2

0.4

0.6

0.8

1.0

S
R

σ=0.1

σ=0.2

σ=0.3

σ=0.4

Figure 10. Deferred active scheduling performance based on neighbour
distance (SR)

100 150 200 250 300 350

Node Number

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

C
R

σ=0.1

σ=0.2

σ=0.3

σ=0.4

Figure 11. Deferred active scheduling performance based on neighbour
distance (CR)

100 150 200 250 300 350

Node Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
R

Model σ=0.2

Model k=0.2

DT

Figure 12. Ours vs. position based

6. Conclusion. Distributed sensor networks are ubiquitous and applied in many fields.
In order to handle the contradiction of less working sensors and more easily faults, we
designed a fault tolerant scheduling model for distributed sensor networks, and proposed

136 H. X. Duan, Y. Zhou, and M. M. Liu

a deferred active backup copy scheduling algorithm. Massive simulation experiments
validated the effectiveness of our proposed approach.

In the future, we will deploy a distributed sensor network in a real scenario, and validate
the efficiency and real-time ability of the proposed algorithm with real applications.

Competing interests. The authors declare that they have no competing interests.

Acknowledgement. This work was supported by Qinhuangdao Science and Technology
Bureau Supporting Project (No. 201502A003).

REFERENCES

[1] V. Lesser, C. L. Ortiz Jr and M. Tambe. Distributed sensor networks: A multiagent perspective.
Springer Science & Business Media, vol. 9, pp. 132-153, 2012.

[2] R. Sumathi and M. Srinivas, A survey of QoS based routing protocols for wireless sensor networks,
Journal of Information Processing Systems, vol. 8, no. 4, pp. 589-602, 2012.

[3] A. A. Aziz, Y. A. Sekercioglu, P. Fitzpatrick and M. Ivanovich, A survey on distributed topology
control techniques for extending the lifetime of battery powered wireless sensor networks, Commu-
nications Surveys & Tutorials, IEEE, vol. 15, no. 1, pp. 121-144, 2013.

[4] H.-C. Wu, S.-C. Huang and C.-Y. Lin, MEMS Sensors Applied in Finswimming Movement Analysis.
Journal of Computers and Applied Science Education, vol. 2, no. 1, pp. 32-44, 2015.

[5] T.-T. Nguyen, T.-K. Dao, M.-F. Horng and C.-S. Shieh, An Energy-based Cluster Head Selection
Algorithm to Support Long-lifetime in Wireless Sensor Networks, Journal of Network Intelligence,
vol. 1, no. 1, pp. 23-37, 2016.

[6] F.-C. Chang and H.-C. Huang, A Survey on Intelligent Sensor Network and Its Applications. Journal
of Network Intelligence, vol. 1, no. 1, pp. 1-15, 2016.

[7] E. Ould-Ahmed-Vall, B. H. Ferri and G. F. Riley, Distributed fault-tolerance for event detection
using heterogeneous wireless sensor networks, Mobile Computing, IEEE Transactions on, vol. 11,
no. 12, pp. 1994-2007, 2012.

[8] C.-H. Yang, G. Deconinck and W.-H. Gui. Fault-tolerant scheduling for real-time embedded control
systems, Journal of Computer Science and Technology, vol. 19, no. 2, pp. 191-202, 2004.

[9] D. Tian and N. D. Georganas, A coverage-preserving node scheduling scheme for large wireless
sensor networks. Proceedings of the 1st ACM international workshop on Wireless sensor networks
and applications, ACM, pp. 32-41, 2002.

[10] F. Ye, G. Zhong, J. Cheng, S. Lu and L. Zhang. PEAS: A robust energy conserving protocol for
long-lived sensor networks, Distributed computing systems, 2003. Proceedings. 23rd international
conference on. IEEE, pp. 28-37, 2003.

[11] Y. Xu, J. Heidemann and D. Estrin, Geography-informed energy conservation for ad hoc routing.
Proceedings of the 7th annual international conference on Mobile computing and networking. ACM,
pp. 70-84, 2001.

[12] H. Zhang and J. C. Hou, Maintaining sensing coverage and connectivity in large sensor networks,
Ad Hoc & Sensor Wireless Networks, vol. 1, no. 1-2, pp. 89-124, 2005.

[13] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless and C. Gill, Integrated coverage and connectivity con-
figuration in wireless sensor networks, Proceedings of the 1st international conference on Embedded
networked sensor systems. ACM, pp. 28-39, 2003.

[14] C.-F. Huang and Y.-C. Tseng, The coverage problem in a wireless sensor network. Mobile Networks
and Applications, vol. 10, no. 4, pp. 519-528, 2005.

[15] Z. Jin, D. Shi, Q. Wu and H. Yan, Random Walk Based Location Prediction in Wireless Sensor
Networks. International Journal of Distributed Sensor Networks, vol. 2013, 2013.

[16] S. Kumar, T. H. Lai and J. Balogh, On k-coverage in a mostly sleeping sensor network, Proceedings
of the 10th annual international conference on Mobile computing and networking. ACM, pp. 144-158,
2004.

[17] S. Shakkottai, R. Srikant and N. B. Shroff, Unreliable sensor grids: Coverage, connectivity and
diameter, Ad Hoc Networks, vol. 3, no. 6, pp. 702-716, 2005.

[18] L. Xu and J. Bruck, Deterministic voting in distributed systems using error-correcting codes, IEEE
Transactions on Parallel and Distributed Systems, vol. 9, no. 8, pp. 813-824, 1998.

[19] T.-H. Lin and K. G. Shin. Damage assessment for optimal rollback recovery, IEEE Transactions on
Computers, vol. 47, no. 5, pp. 603-613, 1998.

Fault Tolerant Scheduling Algorithm in Distributed Sensor Networks 137

[20] R. Davoli, L.-A. Giachini,O. Babaoglu, A. Amoroso and L. Alvisi, Parallel computing in networks
of workstations with Paralex, IEEE Transactions on Parallel and Distributed Systems, vol. 7, no. 4,
pp. 371-384, 1996.

[21] C. Yang and G. Deconinck, A fault-tolerant reservation-based strategy for scheduling aperiodic tasks
in multiprocessor systems. Parallel, Distributed and Network-based Processing, 2002. Proceedings.
10th Euromicro Workshop on. IEEE, pp. 319-326, 2002.

[22] A. Bari, A. Jaekel, J. Jiang and Y. Xu, Design of fault tolerant wireless sensor networks satisfying
survivability and lifetime requirements, Computer Communications, vol. 35, no. 3, pp. 320-333, 2012.

[23] L. Karim, N. Nasser and T. Sheltami, A fault-tolerant energy-efficient clustering protocol of a wireless
sensor network, Wireless Communications and Mobile Computing, vol. 14, no. 2, pp. 175-185, 2014.

[24] D. Geeta, N. Nalini and R. C. Biradar, Fault tolerance in wireless sensor network using hand-off and
dynamic power adjustment approach. Journal of Network and Computer Applications, vol. 36, no.
4, pp. 1174-1185, 2013.

[25] A. Li and N. Xie, A robust scheduling for reconfigurable manufacturing system using Petri nets
and genetic algorithm, Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World
Congress on. IEEE, vol. 2, pp. 7302-7306, 2006.

[26] S. Ghosh, R. Melhem, D. Moss and J. S. Sarma, Fault-tolerant rate-monotonic scheduling, Real-Time
Systems, vol. 15, no. 2, pp. 149-181, 1998.

[27] M. Goljan, J. Fridrich and T. Filler, Large scale test of sensor fingerprint camera identification.
IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, pp. 72540I-72540I,
2009.

