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Abstract. For the three-dimensional (3D) mesh watermarking, the trade-off between
the robustness and transparency has been pursued by researchers. In this paper, a blind
watermarking algorithm is proposed to improve the robustness by embedding the stronger
watermark while ensuring a good performance in the transparency. In the embedding pro-
cess, we choose the distance from the vertex to the model center as the eigenvalue. Eigen-
values are divided into the corresponding bins according to the improved vertex grouping
method, which enhances the robustness of the watermark in the marginal bins. In the
process of adjusting vertices, the proposed algorithm effectively controls the transparency
of 3D models by the piecewise mapping function. The experimental results demonstrate
that the proposed approach is remarkably robust against common attacks including rota-
tion, translation, uniform scaling, vertex reordering, noise, smoothing, quantization and
subdivision.
Keywords: 3D mesh watermarking, Blind, Robust, improved vertex grouping, Piece-
wise mapping function

1. Introduction. With the rapid development of 3D modeling and multimedia technol-
ogy, more and more artificial 3D works and realistic 3D objects are permanently preserved
in the form of digital works. However, these digital works are easy to be illegally copied
and tampered for further usages in the transmission process, which makes security and
copyright of digital works face severe challenges. 3D mesh digital watermarking technol-
ogy [1] is the process of embedding the secret information into 3D models to achieve the
purpose of copyright protection.

Compared with images [2], the amount of research literatures about 3D mesh water-
marking technology is still relatively less, which mainly results from two major reasons.
Firstly, vertices of 3D mesh models [3] are disordered, which virtually increases the dif-
ficulty of the watermark embedding. Secondly, the watermark detection of 3D models
becomes extremely hard due to a series of complicated attacks.

Although the research for 3D mesh digital watermarking technology is facing a variety
of difficulties, lots of excellent algorithms have emerged since the first paper [4] about
digital watermarking of 3D models was published in 1997. In the initial period of devel-
opment, Ohbuchi et al. [5] proposed several feasible spatial algorithms including Triangle
Similarity Quadruple(TSQ) and Tetrahedral Volume Ratio(TVR) methods. Although
the robustness of these algorithms is weak, it is worth mentioning that these algorithms
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provide a feasible way for the subsequent 3D mesh digital watermarking technology. Ac-
cording to the difference of watermark embedding positions, watermarking algorithms are
classified into transform domain algorithms [6]- [8] and spatial domain algorithms [9]- [16].
The former inserts the watermark in the transform domain coefficients, while the latter di-
rectly modifies vertex positions to embed the watermark. In transform domain methods,
the multiresolution wavelet decomposition [6] and the mesh Laplacian spectral decom-
position [7, 8] are applied to the 3D watermarking. However, most of the watermarking
algorithms are spatial domain algorithms at present. In spatial domain approaches, vertex
norm [12] is used to embed the watermark in the Euclidean distance between the vertex
and a reference structure, which is a common strategy. In [12], two classical methods were
proposed to embed watermark bits by different histogram mapping functions. The first
method changes the mean value of the vertex norm and the second shifts its variance.
Later, in order to improve the performance of the transparency, several methods [13, 14]
were proposed to obtain the minimal surface distortion by different optimization methods.
For the sake of robustness against different attacks, some model surface characteristics
such as integral invariant [15] and vertex curvature [16] represent some good properties
for the watermark embedding.

Obviously, the robustness and transparency of the watermarking algorithm have been
the focus of the research in order to satisfy the demand on the copyright protection
of 3D models in the actual applications. At the same time, considering the process of
the watermark detection without the original model, the blind watermarking has greater
advantages in practical applications. Based on the facts above, we propose a robust and
blind watermarking algorithm based on improved vertex grouping and piecewise mapping
function of 3D models in this paper. In the embedding process, the distance from the
vertex to the model center is calculated for every vertex of the model, which is called the
eigenvalue. Then an ordered set of eigenvalues is obtained. According to the histogram of
ordered eigenvalues, 10% of the total number of vertices are discarded in the histogram on
both ends. Next, vertices are separated into corresponding bins on the principle that each
bin has the same amount of effective vertices. In each bin, the eigenvalues are normalized
to a range of [0,1] and then a bit watermark is embedded in a bin by the piecewise mapping
function to adjust the mean of eigenvalues.

The rest of this paper is organized as follows. Section 2 explains the proposed method.
Experiment results are given in Section 3. Conclusions are included in Section 4.

2. The Proposed Method. In general, the information for 3D mesh models includes
vertices, facets and other attributes [17]. A 3D mesh model can be represented as
M = (V, F ) , where V = {vi ∈ R3|0 ≤ i ≤ Lv − 1} represents the set of all vertices of
the model, vi = (xi, yi, zi) denotes cartesian coordinate, Lv is the number of vertices,
F = {fj ∈ N+|0 ≤ j ≤ Lf − 1} denotes the set of all triangular facets representing mesh
topology, where fj represents a facet and Lf is the number of facets in the 3D mesh model.

In this paper, the proposed method focuses on improving the robustness of the water-
mark and guaranteeing the transparency of the model. In this section, the watermark
embedding and extracting processes are described in details. The block diagram of wa-
termark embedding and extracting is shown in Fig. 1.

2.1. Watermark Generation. Usually, the embedded watermark information is a stream
of binary bits, which consists of “0” and “1”. For the sake of simplicity, the binary pseudo
random sequence is adopted as the watermark information. The original watermark can
be denoted by W o = (wo

0, w
o
1, ..., w

o
N−1), where wo

i ∈ {0, 1} , 0 ≤ i ≤ N − 1. N is the
length of the original watermark.
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(a) (b)

Figure 1. The block diagram of watermark embedding (a) and watermark
extracting (b).

2.2. Watermark Embedding Process.

2.2.1. Calculate and sort eigenvalues. The eigenvalue is the distance from the vertex to
the model center. The process of calculating and sorting eigenvalues can be executed in
the following steps:

(a)Calculate the center of the model v̄ = (x̄, ȳ, z̄) by following formulas:

x̄ =
Lv−1∑
i=0

xi, ȳ =
Lv−1∑
i=0

yi, z̄ =
Lv−1∑
i=0

zi (1)

(b)Calculate the eigenvalue ρi for every vertex of the model. In order to obtain the
ith eigenvalue, cartesian coordinate (xi, yi, zi) of the vertex is transformed to spherical
coordinate (ρi, θi, ψi) by formulas as follows:

ρi =
√

(xi − x̄)2 + (yi − ȳ)2 + (zi − z̄)2

θi = tan−1
(yi − ȳ)

(xi − x̄)

ψi = cos−1
(zi − z̄)√

(xi − x̄)2 + (yi − ȳ)2 + (zi − z̄)2

(2)

where 0 ≤ i ≤ Lv − 1, ρi is the ith eigenvalue. Eigenvalues are used to embed the
watermark bits. θi and ψi are invariable in the watermark embedding process. These
two parameters are used to convert coordinates after the completion of the watermark
embedding.

(c)All the eigenvalues are sorted in an ascending order.
In order to intuitively show the distribution of eigenvalues, eigenvalues are divided into

100 bins. Fig. 2 shows the original model Dragon and the corresponding histogram of
normalized eigenvalues. For convenience, eigenvalues are normalized to the range of [0, 1]
in the horizontal axis. The vertical axis represents the number of eigenvalues in each bin.
The histogram of Dragon roughly obeys the normal distribution.

2.2.2. Divide eigenvalues into corresponding bins by the improved vertex grouping method.
In order to embed the watermark, eigenvalues are assigned to the corresponding bins
according to the watermark length N . In [12], eigenvalues are divided into 64 bins and
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Figure 2. The original model Dragon and the corresponding histogram of
normalized eigenvalues.

(a) Bunny (b) Dragon

Figure 3. The eigenvalues are divided into 64 bins using the grouping
method in [12].

histograms of eigenvalues are showed in Fig. 3. For the convenience of display, eigenvalues
are normalized to the range of [0, 1] in the horizontal axis. In the bins with green circle
highlighted, the number of vertices in the marginal bins is far less than that of the middle
bins, which leads to the weak robustness in the marginal bins compared with the middle
bins when a bit watermark is embedded a bin in the histogram. In addition, when
the capacity is too large, the bins marked in red on both ends may fail to embed the
watermark because the number of vertices in these bins is minimal or empty. In order
to solve the above mentioned problems, we propose an improved vertex grouping method
which promises the same amount of effective vertices in each bin. Eigenvalues are divided
into N bins according to the steps below:

(a)Get rid of 10% of the total number of vertices in the histogram on both ends. The
rest number of vertices is L

′
v, where L

′
v = b0.9Lvc .

(b)The number of vertices in each bin is denoted as M =
⌊
L

′
v/N

⌋
. The remainder

L
′
v%N vertices are discarded.
(c)The mth bin Bm is represented as follows:

Bm = {ρm,j|ρm,j = ρi, i = b0.05Lvc+M ·m+ j}
where,

b0.05Lvc+M ·m ≤ i< b0.05Lvc+M · (m+ 1)

0 ≤ m ≤ N − 1, 0 ≤ i ≤M ·N − 1, 0 ≤ j ≤M − 1

(3)
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ρm,j is the jth eigenvalue of the mth bin. M ·N is the number of actual used vertices in the
watermark embedding process. In the proposed method above, eigenvalues are divided
into N bins to possess the same amount of effective vertices in each bin, which improves
the robustness of the watermark in the marginal bins. After the vertex grouping process,
all the groups for watermark embedding are obtained.

2.2.3. Normalize eigenvalues in each bin. Eigenvalues in the mth bin are normalized to a
range of [0, 1] by the following formula:

ρ
′

m,j =
ρm,j − ρmin

m

ρmax
m − ρmin

m

(4)

where ρ
′
m,j is the jth normalized eigenvalue in the mth bin, ρmax

m and ρmin
m are the maximum

eigenvalue and the minimum eigenvalue in the mth bin, respectively.

2.2.4. Embed the watermark using the piecewise mapping function for each bin. To ensure
the robustness of the algorithm, one bit watermark is embedded in a bin by adjusting the
mean of eigenvalues to satisfy the setting requirements. The mth watermark bit meets
the following embedding conditions:{

ρm<0.5− α, if wo
m = 0

ρm>0.5 + α, if wo
m = 1

(5)

ρm =
1

M
·
M−1∑
j=0

ρ
′

m,j (6)

where ρm is the mean of eigenvalues in the mth bin, α is the watermark strength. M is
the number of vertex in the mth bin. The mapping function Eq. 7 is introduced to adjust
the eigenvalues ρ

′
m,j to satisfy the condition of watermark embedding.

Y = Xk (7)

Figure 4. The mapping function Y = Xk.
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Table 1. The mapping results in the condition of the value k = 2

X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Y = X2 0 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1

∆ = |Y −X| 0 0.09 0.16 0.21 0.24 0.25 0.24 0.21 0.16 0.09 0

Table 2. The mapping results in the condition of the value k = 0.5

X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Y = X0.5 0 0.32 0.45 0.55 0.63 0.71 0.77 0.84 0.89 0.95 1

∆ = |Y −X| 0 0.22 0.25 0.25 0.23 0.21 0.17 0.14 0.09 0.05 0

Fig. 4 shows the mapping function curves with different value k. The different value k
has the different influence in the mapping process. When the value k is greater than 1,
the mapping value Y is smaller than the original value X. On the contrary, the mapping
value Y is larger than the original value X. For example, Table 1 and Table 2 show the
mapping results in the condition of the value k = 2 and k = 0.5, respectively. The variable
quantity ∆ reflects the different degree of modification to the original value X in the
mapping process. The larger variable quantity ∆ will lead to the larger local distortion
of 3D model. However, good transparency requires the smaller amplitude changes of
eigenvalues. Based on this observation, the piecewise mapping function is proposed as
follows:

ρ
′′

m,j = (ρ
′

m,j)
k
(n)
m,j (8)

when wi = 0 :

k
(n)
m,j = 1 + n ·∆k (9)

∆k =


0.002, if ρ

′

m,j ∈ [0, 0.3)

0.001, if ρ
′

m,j ∈ [0.3, 0.9)

0.0015, if ρ
′

m,j ∈ [0.9, 1]

(10)

when wi = 1 :

k
(n)
m,j = 1− n ·∆k (11)

∆k =


0.001, if ρ

′

m,j ∈ [0, 0.6)

0.0015, if ρ
′

m,j ∈ [0.6, 0.8)

0.002, if ρ
′

m,j ∈ [0.8, 1]

(12)

k
(n)
m,j denotes the mapping parameter of the jth eigenvalue in the mth bin during the nth

iteration and ∆k is the step size. In view of the magnitude of eigenvalues, the algorithm
adopts different value ∆k to obtain the piecewise mapping function, which will ensure

that the eigenvalue is mapped to a controllable range. The initial n is 0 and k
(0)
m,j is 1.

When the watermark bit is “0”, ρ
′′
m,j can be obtained by Eq. 8 and the mean of eigenvalues

ρm is calculated by Eq. 6. If the embedding conditions in the Eq. 5 are met, a watermark
bit is embedded in the bin. Otherwise, n adds 1 and the updated ρ

′′
m,j is obtained. With

the increase of n, a watermark bit is embedded successfully in the bin once meeting the
embedding conditions. After the watermark bit is embedded, the modified eigenvalue is
ρ

′′
m,j.
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Table 3. The watermark strength in the experiment

α Bunny Dragon Rabbit Venus
Cho approach 0.03 0.03 0.03 0.03

Proposed approach 0.05 0.05 0.05 0.045

2.2.5. Inversely normalize the eigenvalue and transform coordinates. Upon the comple-
tion of the watermark embedding, the inverse normalization process is executed corre-
sponding to the normalization process. The eigenvalues of mth bin are converted to the
original range by the following formula:

ρ̃m,j = (ρ
′′
m,j) · (ρmax

m − ρmin
m ) + ρmin

m (13)

The last step is that spherical coordinate (ρ̃i, θi, ψi) of the vertex is converted to carte-
sian coordinate (x

′
i, y

′
i, z

′
i). Conversion formula is as follows:

x
′

i = ρ̃i · cos θi · sinψi + x̄

y
′

i = ρ̃i · sin θi · sinψi + ȳ

z
′

i = ρ̃i · cosψi + z̄

(14)

the coordinate (x
′
i, y

′
i, z

′
i) is the cartesian coordinate of the new vertex in the watermarked

model.

2.3. Watermark extracting process. The proposed algorithm is a blind watermarking
algorithm and the watermark extraction process is relatively simple. Firstly, the eigen-
value is calculated for every vertex of the 3D model and all the eigenvalues are sorted in
an ascending order. Secondly, after 10% of the total number of vertices are discarded,
vertices are assigned to the corresponding bins by the improved vertex grouping method
in each bin. The number of bins is determined by the foregone length of the embedded
watermark. Then eigenvalues in each bin are normalized to the range of [0, 1]. In the end,
the mean eigenvalue ρdi of the ith bin is calculated and the watermark bit in the ith bin is
obtained by the following formula:

wd
i =

{
0, if ρdi ≤0.5

1, if ρdi >0.5
(15)

where 0 ≤ i ≤ N − 1. So the extracted watermark bits are represented by the following
sequence:

W d = (wd
0, w

d
1, ..., w

d
N−1) (16)

3. Experimental Results. In this paper, the proposed algorithm is implemented on a
DELL computer with an Intel Core i5 3.30 GHz processor and 8 GB of memory using
OpenGL library and Visual Studio 2013. In the experiments, the length N of the wa-
termark is 64. Table 3 shows the embedding watermark strength α of the experimental
parameter. The proposed algorithm is compared with the algorithm of Cho et al. [12].
The contrasted algorithm has been implemented with the same models using the given
parameters.

3.1. The experimental models. We choose the Bunny, Dragon, Rabbit and Venus
as experimental models in this section. Experimental models have different number of
vertices and facets. Their data information are shown in Table 4 and the experimental
models are shown in Fig. 5.
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Table 4. The data information of the experimental models

Model Bunny Dragon Rabbit Venus
Vertices 34835 50000 70658 100759
Facets 69666 100000 141312 201514

(a) Bunny (b) Dragon (c) Rabbit (d) Venus

Figure 5. The original models in the experiment.

Table 5. The results of the transparency in the experiment (×10(−3))

MRMS Bunny Dragon Rabbit Venus
Cho approach 0.326 0.306 0.354 0.223

Proposed approach 0.244 0.306 0.261 0.216

3.2. The evaluation of the transparency. In the experiment, we use maximum root
mean square (MRMS) as the evaluation of transparency. The MRMS is calculated using
the following formula by Metro [18].

E(V, V
′
) = max

{
ef (V, V

′
), eb(V

′
, V )

}
(17)

ef (V, V
′
) =

1

|V |

∫
V

{
min
v′∈V ′

{
||v − v′ ||

}}
dv (18)

eb(V
′
, V ) =

1

|V ′|

∫
V ′

{
min
v∈V

{
||v′ − v||

}}
dv

′
(19)

Note that ef (V, V
′
) and eb(V

′
, V ) denote the forward and backward root mean square

(rms) errors, respectively. V and V
′

represent the original and watermarked mesh model,
respectively. The smaller MRMS value represents the lower distortion of the model. Ta-
ble 5 shows the experimental results of the transparency under the embedding watermark
strength in Table 3.

Table 3 and Table 5 show that the MRMS values of our method are smaller than the
Cho’s method when our method embeds the larger watermark intensity. Therefore, our
method have the stronger robustness under the condition of the better transparency.

3.3. The evaluation of the robustness. The robustness of the watermark is measured
by the correlation value between the extracted watermark and the original watermark.
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(a) Noise(0.5%) (b) Quantization(8 bits) (c) Smoothing(50 times) (d) Subdivision(loop)

Figure 6. The different attacked Bunny models.

Table 6. The robustness results of noise attacks

Model
Amplitude MRMS Corr

(%) Cho Proposed Cho Proposed

0.1 0.397 0.327 0.97 1.00
Bunny 0.3 0.740 0.712 0.84 0.90

0.5 1.165 1.141 0.61 0.68
0.1 0.389 0.391 0.90 1.00

Dragon 0.3 0.795 0.795 0.87 1.00
0.5 1.254 1.255 0.65 0.75
0.1 0.410 0.334 1.00 1.00

Rabbit 0.3 0.718 0.680 0.97 0.97
0.5 1.111 1.084 0.81 0.87
0.1 0.395 0.391 0.97 1.00

Venus 0.3 1.005 1.006 0.71 0.72
0.5 1.653 1.654 0.26 0.25

The correlation value is defined as follows:

Corr =

N−1∑
i=0

(wd
i − wd) · (wo

i − wo)√
N−1∑
i=0

(wd
i − wd)2 ·

N−1∑
i=0

(wo
i − wo)2

(20)

where wd is the mean of the extracted watermark bits, wd
i is the ith watermark bit of the

extracted watermark. In the same way, wo is the mean of the original watermark bits,
wo

i is the ith watermark bit of the original watermark. The correlation value is on the
range of [-1,1]. The greater correlation value shows that the extracted watermark is more
similar to the original watermark.

In order to evaluate the robustness of the algorithm, the attacked models are obtained
with different strengths and attacks using the software which is provided by LIRIS lab [19].
For noise attacks, noise intensities are 0.1%, 0.3% and 0.5%. The parameter λ for smooth-
ing attacks is 0.03 and iterations choose 10, 30 and 50, respectively. The vertex coordinates
of the model are quantified by intensities including 9 bits, 8 bits and 7 bits. Three types
of subdivision attacks are loop subdivision, midpoint subdivision and sqrt(3) subdivision.
Fig. 6 shows the part models of the attacked Bunny.
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Table 7. The robustness results of smoothing attacks

Model
Number of MRMS Corr
iterations Cho Proposed Cho Proposed

10 0.411 0.342 0.87 1.00
Bunny 30 0.746 0.705 0.50 0.77

50 1.079 1.046 0.35 0.38
10 0.412 0.412 0.90 1.00

Dragon 30 0.854 0.856 0.56 0.80
50 1.298 1.301 0.17 0.55
10 0.342 0.250 1.00 1.00

Rabbit 30 0.366 0.292 0.84 1.00
50 0.428 0.377 0.63 0.88
10 0.238 0.238 0.90 1.00

Venus 30 0.372 0.379 0.72 0.94
50 0.525 0.535 0.52 0.72

Table 8. The robustness results of quantization attacks

Model
Intensity MRMS Corr

(bits) Cho Proposed Cho Proposed

9 0.616 0.578 0.94 0.97
Bunny 8 1.106 1.076 0.57 0.58

7 2.093 2.085 0.22 0.17
9 0.645 0.643 0.74 0.97

Dragon 8 1.173 1.181 0.43 0.52
7 2.327 2.319 0.22 0.25
9 0.539 0.482 0.88 0.97

Rabbit 8 0.901 0.865 0.69 0.88
7 1.705 1.691 0.07 0.37
9 0.701 0.697 0.74 0.88

Venus 8 1.338 1.340 0.48 0.58
7 2.712 2.704 -0.01 -0.12

The proposed algorithm can completely resist rotation, translation, uniform scaling
and vertex reordering attacks. Because the algorithm uses the distance from the vertex
to the model center as the eigenvalue. The eigenvalue is the relative value and all the
eigenvalues are executed the sorting operation. So the extracted watermark bits and the
original watermark bits are exactly same, which means that their correlation value is 1.
Table 6, 7, 8, 9 show the robustness and the corresponding transparency after four attacks.
It is noticed that our approach has better correlation value than those of Cho in a series
of attacks. In addition, because of the increased watermark strength, the robustness for
mild noise and smoothing attacks is quite strong so that the correlation value between
the extracting watermark and the original watermark is 1. Along with the increase of
the attack strength, the accuracy of the extracted watermark has the different degree
of reduction under the condition of common attacks. The transparency is evaluated by
MRMS value between the original model and the attacked watermarked model. The
greater the attack intensity is, the larger the distortion of 3D models is. In terms of the
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Table 9. The robustness results of subdivision attacks

Model
Types of MRMS Corr

subdivision Cho Proposed Cho Proposed

Loop 0.414 0.350 0.38 0.72
Bunny Midpoint 0.323 0.239 0.81 0.93

Sqrt(3) 0.387 0.317 0.70 0.70
Loop 0.409 0.410 0.65 0.80

Dragon Midpoint 0.301 0.300 0.82 0.94
Sqrt(3) 0.371 0.349 0.74 0.80
Loop 0.343 0.250 0.91 1.00

Rabbit Midpoint 0.352 0.259 1.00 1.00
Sqrt(3) 0.344 0.251 0.94 1.00
Loop 0.239 0.237 0.74 0.94

Venus Midpoint 0.221 0.213 0.87 0.97
Sqrt(3) 0.232 0.230 0.78 0.94

transparency, the smaller MRMS value represents the lower distortion of 3D models. Our
algorithm has an advantage over Cho’s method in the aspect of the transparency.

4. Conclusions. In this paper, we propose a blind and robust 3D watermarking algo-
rithm based on improved vertex grouping and piecewise mapping function to improve the
robustness while ensuring a good performance in the transparency. On the one hand, the
algorithm reasonably divides eigenvalues into corresponding bins to enhance the robust-
ness of the watermark in the marginal bins by the improved vertex grouping method. On
the other hand, the algorithm adjusts the mean of eigenvalues to embed the watermark
by the piecewise mapping function, which ensures the low distortion of the model. The
experiment results demonstrate that the proposed method is more robust against common
attacks compared with the Cho’s method.
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