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Abstract. On monocular vision, in the process of the hand gesture recognition, when
the camera poses are different, the same motion trajectory can project into different tra-
jectory projections, which will affect the recognition and application of the trajectory.
To solve this problem, using the square calibration, a plane projection’s standardization
model is built and used in a new active vision based view-invariant gesture trajectory
recognition method. Firstly, the square calibration feature points on the projected plane
are extracted, and matched to the points on the ideal image plane. Secondly, using the
proposed standardization model, the Homography between the two planes is obtained. Fi-
nally, from the re-projection, the view-invariant trajectory projection is obtained and
recognized. Experimental results show that the standardized trajectory is similar to the
orthographic projected trajectory. The recognition efficiency is improved by 20%. The
processing speed in MATLAB environment is 48.86 frames per second, which meets the
real-time requirement of the hand gesture interaction.
Keywords: Hand Gesture Recognition, View-Invariant, Hand Gesture Planar Trajec-
tory, Homography, Calibration

1. Introduction. Hand gesture recognition is an important part of the behavior recog-
nition, and it improves the efficiency and the naturalist of human-computer interaction.
However, some extrinsic factors are barriers for the development of behavior recognition,
such as the requirement that the human action planes are perpendicular to the camera
optical axis, which sometimes is difficult to implement. Committed to solve this problem,
the view-invariant behavior recognition has become a research hotspot.

The existing view-invariant human action recognition methods can be broadly divided
into the following four classes [1]. (1) Spatial-temporal feature based methods: it ac-
cumulates the observed values from motion sequences with respect to the time line to
form spatiotemporal feature. Temporal and spatial characteristics of visual recognition
are extracted for recognition, but with high computational complexity [2]. (2) Proba-
bilistic state-space based methods: Each pose is regarded as a state, and the transition
probability between the states is calculated as the edge of the state diagram. Therefore,
the sequence of actions can be regarded as a chain of these states. But the probabilistic
state-space based methods need more time in training the model [3]. (3) Dimension re-
duction methods: The main idea of these methods is to extract low-level features from the
image sequences, then apply dimension-reduction algorithms to reduce feature dimension
and recognize human action with special classifiers. However, it is hard to analyze the
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data structure and the correlation of the high dimensional data in human behavior [4].
(4) Motion trajectory based methods: it focuses on the trajectories of human joints or
interesting points. The motion trajectory based method is fast and has high recognition
accuracy. And it has important research value in many areas, such as action recognition,
aviation and aerospace fields.

In the aspect of the view-invariant hand gesture recognition, Yuan, et al. [5] used
the improved centroid distance of every point as view-invariants feature for the 3D hand
gesture trajectory recognition; Ghaleb, et al. [6] also used stereo vision and combined
CRF (conditional random field algorithm) and SVM (support vector machine) for gesture
location and recognition. Using the stereo vision, the space motion of the object is easy
to percept. But the depth camera, multi-camera or stereo camera is required, which
limits its use range. In contrast, the monocular vision system has the advantages of wide
application, simple structure, and less calibration steps. Therefore, in this paper, the
gesture trajectory on monocular vision is analyzed.

In monocular vision, the researchers usually increase the trajectory classes to solve the
problem caused by multi-view. But this kind of method also increases the computational
complexity, at the same time, reduces the speed of recognition. In [7, 8], trajectory
triangulation is used to reconstruct the trajectory of curves. In [9], using well known 2D
Homography matrix, a 3D tensor across three projections is introduced, and it can be
used to recover the line-of-sight movement. In [10], the moving of the non-rigid structure
can be seen as linear weighted combination of a series of shape bases. So a series of
shape bases can be used to construct the trajectory. But the above methods all aim
at some special trajectories. The Hyun SooPark [11] of the Carnegie Mellon University
presents a linear solution for reconstructing the 3D trajectory of a moving point from its
correspondence in a collection of 2D perspective images. But, the camera’s pose should
be known first. In [12], the plane pose positioning method is proposed based on the
characteristics of elliptic. Using circular perspective projection features, it determines
the spatial plane pose by building relationships with spatial plane pose and target image.
But the circular gesture can’t control well in gesture recognition, and it will cause a great
error. Therefore, analyzing the characteristic of high degree of freedom, the difficulty of
accurately control and extract effective features, a method is proposed. Using the square’s
perspective projection features, and combining with the plane’s projection standardization
model, this method obtains the relationships between real image plane and ideal image
plane. It realizes the standardization of perspective images, and improves the classification
efficiency. The subsequent experimental results can prove it.

Compared with some research work at home and abroad, the contribution of this study
mainly lies in the follows. (1) Based on the square perspective projection features, through
the Homography relationship between real image plane and ideal image plane, a plane
projection’s standardization model is build. (2) According to the characteristics of the
gesture trajectory, a gesture trajectory calibration method is proposed, and this method
is universal in other trajectory based analysis. (3) The plane projection’s standardization
model and the gesture trajectory calibration method are tested in gesture trajectory
recognition experiment, and a certain achievement is got.

The remaining part of this paper is organized as follows. Section 2 presents the square
features based plane projection’s standardization model. Section 3 describes the whole
framework of the proposed view-invariant hand gesture trajectory recognition method,
which includes gesture trajectory calibration. Section 4 gives the experimental results
and performance analysis as compared with other related methods. Finally, the paper is
concluded in Section 5.
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2. The Square Feature Based Plane Projection’s Standardization Model. Due
to the different camera poses, the same plane may project to form different projection
images. When the optical axis of the camera is perpendicular to the shooting plane,
the view point is the front view. And we define this kind of projections as the ortho-
graphic projections. Then, the view-invariant standardization problem can be described
as the following: known the plane’s projection, to obtain one of the plane’s orthographic
projection.

2.1. The Homography Theory. In the field of computer vision, Homography is a re-
versible transformation between two projective planes. And the arbitrary two images of
the same plane are related by Homography.

From the Homography principle, for the different non-homogeneous 2D image points
(u, v) and (u′, v′) of the same plane captured in different camera pose, they meet
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 is the Homography matrix.α 6= 0 , and α is scale factor.

H can only be calculated up to a scale, so the scale factor α has no influence on the
calculation of H .

2.2. The Plane Projection’ Standardization. (1) Feature points matching: The 4
square vertices on the plane δ are P (1) = (n, 0), P (2) = (n, n), P (3) = (0, n), P (4)=(0,
0). The matched vertices on the projection β are p(i) = (x(i), y(i)), i = 1, 2, 3, 4.

Then, the perspective point p(2) = (x(2), y(2)) from projection β is matched to the
point P (2) = (n, n) on plane δ. From the Homography theory, it has
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 . It means that in the scale

α′ , there exists point P ′(2) = (1, 1), which is matched to the point p(2) = (x(2), y(2)).
By the same meaning, in the scale α′, the 4 square vertices on the plane β can match to
the points P ′(1) = (1, 0), P ′(2) = (1, 1), P ′(3) = (0, 1), P ′(4) = (0, 0) respectively.

Define the P ′(1) = (1, 0), P ′(2) = (1, 1), P ′(3) = (0, 1), P ′(4) = (0, 0) as the square’s
vertices on the ideal projection plane γ. Then, the projections on the ideal projection
plane γ have no perspective transformation. This kind of projections is the orthographic
projections, and they are similar with the original image on plane δ up to scale.

(2) The Homography matrix solving: From formula (1), one group of feature point’s
pair can provide 2 Homograph matrix (H) related linear equations.

u(h31x+ h32y + h33) = h11x+ h12y + h13

v(h31x+ h32y + h33) = h21x+ h22y + h23
(2)

From the 4 groups of vertices pairs between the projection plane β and the ideal projection
plane γ, 8 linear equations can be constructed, and then the H can be solved up to a
scale.
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(3) The plane projection’s standardization: From the Homography relationship, the
image on plane β can be re-projected to the images on ideal plane γ, which is the ortho-
graphic projection. And the purpose of view point standardization is realized.

2.3. The Experimental Proof of This Model. Fig. 1(a) is the image of a plane
projection. And its square vertices are selected manually in red circles. After the exper-
iment of projection’s standardization, the plane projection Fig. 1(a) is re-projected to
the projection Fig. 1(b). Fig. 1(b) is the so called standardized ideal plane projection,
from which the view-invariance is realized. There are some black points in Fig. 1(b). The
reason is that: the mapping relationship between Fig. 7 and Fig. 10 is the single shot,
but not surjection. Some points on the ideal plane projection γ have no corresponding
points on the image plane projection β. So they present as the black points.

(a) Plane projection. (b) Standardized ideal plane projection.

Figure 1. The plane projection’s standardization.

3. The Proposed Method. We use the square trajectory as the gesture calibration
trajectory. Then, using the gesture trajectory calibration in the following, the 4 vertices
of the square are selected. And then based on the plane projection’s standardization
model above, the trajectory can be standardized and recognized.

3.1. Gesture Trajectory Calibration. We use the square trajectory as the gesture
calibration trajectory. But by the effect of perspective projection, the square trajectory
will projected into arbitrary quadrilateral in the image plane.

Known the gesture’s central points in discrete time space, these points are the trajectory
points, and this points set is the trajectory points set.

On the image plane, set the 4 edges of the quadrilateral L(1), L(2), L(3), L(4).
Gesture trajectory calibration model is Phand = max(

∑4
i=1NumL(i))). In this model,

on the trajectory points set, NumL(i)is the number of points with the distance from L(i)
less than d. And the set of points with the distance from L(i) less than d can have
intersection with the set of points with the distance from L(j) less than d.

To solve the gesture model is to find the appropriate model parameters L(i), i = 1, 2, 3, 4
to make the Phand gesture model contains the trajectory points as much as possible. It is
a parameter optimization problem.

Combining the greedy algorithm with RANSAC (Random Sample Consensus), the
method to solve the gesture trajectory calibration model is as follows:

(1) On the trajectory points set, the RANSAC method is used. It randomly selects two
points to generate an edge in circulation until an edge L(1) is found. And the number
of points that have the distance with the L(1) less then d is more than 1/3 of the whole
points. Then the remaining points form the unrecognized points set.
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(2) On the unrecognized points set, we continue to use the method above to find the
other edges L(2), L(3), L(4). And the numbers of points that have the distance with the
L(2), L(3), L(4) less then d are more than 1/4,1/5, and 1/5 of the whole points.

From the obtained 4 quadrilateral edges of image, the 4 vertices can be extracted, which
are the obtained feature points.

Transform the coordinate to polar coordinate system, in which the pole is the center
point of 4 trajectory feature points. Then the 4 trajectory feature points are ranked
according to the angle from small to large. These ranked 4 points are respectively matched
to the 4 square vertices P (1) = (1, 0), P (2) = (1, 1), P (3) = (0, 1), P (4) = (0, 0) of the
ideal image plane.

Using the trajectory calibration method, we extract 2 groups of gesture trajectory
feature points, as shown in the Fig. 2. In the figure, the 2 pictures in the front belong to
the group 1, and the trajectory has 12 points. The two pictures behind belong to the group
2, and the trajectory has 27 points. The superscript numbers in figure are the sequence
number of the points and the marked asterisk are the 4 vertices of the quadrilateral.
From Fig. 2, we can see that the method fits the calibration trajectory well. And it is
not affected by a small amount of noise, so it has a certain kind of robustness.

Figure 2. The calibration trajectory and its feature points.

3.2. The Proposed Hand Gesture Recognition Method. The view-invariant hand
gesture trajectory recognition flow is shown in Fig. 3. Firstly, using the calibration trajec-
tory, the matched feature points between the real image plane and the ideal image plane
are obtained to get the Homography between the two planes. Then gesture trajectory is
re-projected to the projection on ideal plane, so as to achieve the purpose of trajectory
standardization. Finally, the neural network is used to recognize the gesture trajectory.

Step 1.: The key frame extraction. Average sample M frames in each gesture sequence.
Step 2.: Skin color based gesture segmentation and gesture trajectory extraction.

YCbCr skin color segmentation: firstly, to translate the image from the RGB color space
to YCbCr color space, and then to translate the color format to YCb′Cr′ space in which
a threshold is set for gesture segmentation [13]. Denoising: to remove the noise from
image using the corrosion and expansion method. Gesture’s center point: the traditional
first order moment centroid calculation method is used to compute the central point
[14]. Gesture’s trajectory extraction: in time order, the connection of the gesture’s center
points is the extracted gesture trajectory.

Step 3.: The Homography matrix between the real image plane and the ideal image
plane. Gesture trajectory calibration: in gesture trajectory calibration, the greedy algo-
rithm combined with RANSAC is used, and then the 4 vertices as the trajectory’s feature
points are extracted. The 4 feature points are matched to the 4 square vertices of the
ideal image plane. And the process is in Section 3.1. Homography matrix estimation: to
estimate the Homography matrix between the real image plane and the ideal image plane,
and the process in detail is in Section 2.2.
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Figure 3. The view-invariant hand gesture trajectory recognition flow

Step 4.: Gesture trajectory image standardization and trajectory’s distance feature
extraction. Gesture trajectory image standardization: using the Homography matrix,
the gesture trajectory is re-projected to the ideal image plane, and by this way, the
gesture trajectory image is standardized. Distance calculation: the Euclidean distance
between the gesture’s central point and the trajectory’s central point on discrete time is
calculated, and the result is the distance sequence G = (r1, r2, . . . , rM). The normalized
distance feature: the distance sequence is normalized by ln = mod(rn, 5)+1, to transform
the distance to 1 ∼ 5 integer, and the result is the normalized distance feature D =
(l1, l2, ..., lM).

Step 5.: Neural network training and recognition. Neural network training and recog-
nition: using the normalized distance feature as the input and its class as the output, the
neural network of 2 layers is used for training and recognition.

4. The Experiment and Analysis.

4.1. The Simulation. MATLAB is used to simulate. The moving object is the square
shape. The initial marked points in square are (-1, -1) (-1, 0), (-1, 1), (0, 1), (0, 0), (0,
1), (1, 1), (1, 0), (1, 1). The distance between the camera and trajectory plane is 5. The
internal camera parameter matrix Q=[600 0 300; 0 600 300; 0 0 1]. The object’s moving
is defined as following: rotation angle θ, translation (Sx, Sy). The moving time is 1∼ 6.
When the object’s moving parameter θ = π/9, Sx = 1, Sy = 1, on gesture plane and the
image plane, the observed trajectories are in Fig. 4. In the first moment, the projected
square’s 4 vertices A, B, C, D (signed on the finger) are set as the extracted calibration
trajectory’s feature points, which are matched to the feature points (-1, -1), (-1, 1), (1,
-1), (1, 1) of the ideal image plane. Through the Homography matrix calculation and
trajectory re-projection, the view-invariant standardized trajectory is in Fig. 5. From the
Fig. 5, we can see that in this ideal case, through the trajectory image standardization,
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the real trajectory in moving plane can be recovered accurately up to a scale. In the re-
projected trajectory of ideal plane, the coordinate axes have a certain kind of translation
and rotation compared with the trajectory on gesture plane. This simulation proves the
correctness of the model indirectly.

Figure 4. The trajectories on gesture plane and image plane.

Figure 5. The standardized trajectory.

4.2. The View-Invariant Gesture Trajectory Recognition. Experimental platform:
hardware environment is Inter(R) Core(TM) i3-2120, 4G, 3.30GHz; software environment
is the MATLAB R2013a in Windows 7. The dynamic gesture video library in experiment
consists of 0, 1, 2, 3, 7 dynamic gestures. The experimenter repeats 20 times for each
gesture, and 100 hand gestures are obtained. The gesture’s duration time is about 2s
to 10s (frame rate 20fps). And to simulate the gesture recognition applications in near
distance, the experimenter is 30×80cm far away from camera, and the image resolution is
320×240, 24bit true color. The average sampling number of the key frame is M = 17. The
training samples are the trajectories of the frontal shot. When the recognition samples
are shooting, the angle between the camera optical axis and the gesture plane is ζ ≈ 30.
(1) The standardized trajectory image. Fig. 6 shows part of the image samples

in experiment. In Fig. 6, the first row is the perspective projected trajectories. And the
second row is the corresponding standardized trajectories. The numbers marked in figure



View-Invariant Hand Gesture Planar Trajectory Recognition on Monocular Vision 83

are the sequence numbers of key frames in video. As the figure shows, the standardized
trajectories are more close to the real trajectories.

Figure 6. The perspective projected trajectories and the standardized trajectories.

(2) The gesture trajectory’s distance feature. Fig. 7 is the gesture trajectory’s
distance features in experiment. In Fig. 7, from top down, are the trajectory’s distance
features of the frontal shot, the trajectory’s distance features when the angle between
the camera optical axis and the gesture plane is ζ, and the distance features of the
standardized trajectories. And from left to right, the pictures are the distance features
of 0, 1, 2, 3, 7 respectively. It can be easily concluded that the standardized trajectory’s
distance feature curves are more close to the trajectory’s distance feature curves of the
frontal shot.

Figure 7. The gesture trajectory’s distance features.
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(3) The gesture trajectory’s recognition result. Table 1 is the gesture trajectory’s
recognition result. And the average recognition rate reaches to 82%. Compared with
the recognition rate of the unstandardized trajectory, recognition rate of standardized
trajectory is improved by 20%.

Table 1. The gesture trajectory’s recognition result by neural network

The recognition result 0 1 2 3 7 The whole dataset

Recognized Number after Standardization 15 18 3 4 20 60
Recognized Number of Unstandardization 19 15 13 15 20 82
Recognition Rate after Standardization 0.95 0.75 0.65 0.75 1 0.82

4.3. The Recognition Analysis. In order to test the performance of the proposed
method, the proposed method is compared with the method in Ref. [6], [13], [15], [16],
and the result is in Table 2.

Table 2. The performance of the method and its comparisons

Method Idx. 1 Idx. 2 Idx. 3 Idx. 4 Idx. 5 Idx. 6 Idx. 7

This paper 3.3 GHz 20 82 3.78 75.64 320×240 0.89
Ref. [13] 3.3 GHz 25 87.67 5 120∼130 160×120 0.46
Ref. [15] 2.2 GHz 8∼16 84.6 3∼5 18∼38 176×144 1∼3
Ref. [16] 600MHz 10 91.7 1.2 12 160×120 ≥2.07
Ref. [6] - ≥92.5 - - 320 240×120 -

Index 1∼7 are the Computer frequency, Frame rate(f/s), Recognition rate (%),
Average sequence length(s), Average sequence length(frame), Image resolution,
Running time(s) respectively.

According to Table 2, using the ordinary camera, with high frame rate, high image
resolution, the proposed method has the running time of 0.89 seconds/ sequence (84.99
frames/ sec). And the gesture recognition rate is 82%. Comparing the running time, in
the surface, the Ref. [13] is the fastest, but its image resolution is low, which is only the
1/4 of the resolution in this paper. If we multiply the running time of the Ref. [13] by 4
times, the result is 1.84, which is larger than this papers 0.89. So the proposed method
runs fast, and fully meets the real-time requirement. Comparing the recognition rate, The
Ref. [6] has the highest recognition rate, but Ref. [6] uses a stereo camera system. And in
the standard desktop, its training time is very long, according to the observation window
of different training time from 20 minutes to several hours, with recognition time more
quickly, but the paper did not give specific speed. Compared with the Ref. [13], [15], [16],
the proposed method has a low recognition rate. However, the proposed method is tested
on the samples of the non-frontal shot videos, with other methods on the samples of the
frontal shot videos.

Error analysis: because the experimenter makes the square trajectory gesture by him-
self, the trajectory will not have high accuracy in shape. Furthermore, through the process
of gesture segmentation and center point extraction, the obtained 4 quadrilateral vertices
are not accurate compared the real 4 vertices of the square projection. They all could
influence the accurate results of the gesture trajectory standardization.

5. Conclusions. Firstly, from the projective geometry, through the gesture trajectory
calibration model analysis and the calibration trajectory feature point extraction, the
Homography between the real image plane and the ideal image plane is obtained. Then
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using this Homography, the gesture trajectory image is standardized and recognized. Ex-
perimental results show that, under the ideal condition, the method can get the real
trajectory accurately up to scale. In the actual gesture trajectory recognition experiment,
the method improved the recognition efficiency by 20%, with fast running speed of 84.99
frames/s. In this paper, under the premise of trajectory calibration, the view-invariant
method can be used, but manual trajectory calibration will produce error. In the subse-
quent work, the standardization method, which is un-calibrated, and which only uses the
image data, should be considered.
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