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Abstract. Bayesian compressive sensing introduces a new framework for compressed
sensing, which has important significance. And the effect will be better when the signal
being reconstructed is sparser. This paper utilizes the statistical feature of wavelet coef-
ficients to sparse the important coefficients signals with high level because they contain
much energy. Additionally, the improved method is applied to other BCS improved algo-
rithms, and the experimental results show the significance of introducing the method.
Keywords: Bayesian compressive censing; Wavelet coefficients; Sparsing.

1. Introduction. The collection process of magnetic resonance imaging is time-consuming.
Using JPEG [1] or JPEG2000 [2] to compress will produce some waste because some large
transformation coefficients would be threw away in the compressive process while the col-
lection is expensive. The compressive sensing [3-7] proposed recently directly violates
the Nyquist criterion, which only need a few samples captured from some random linear
projections to reconstruct unknown sparse signal. The application of CS to MRI (CS-
MRI) [1-3] greatly reduces the duration of scanning. Traditional Bayesian compressive
sensing [8] and the derivative methods [9-12] all use probability distribution functions
such as Laplace distribution to model wavelet coefficients after sparsifying transforma-
tion. Wavelet coefficients have many features [13], such as spatial frequency and direction
selection, spatial clustering of high frequency, the similarity between subband coefficients,
the relative between amplitude etc. The core of some Bayesian compressive algorithms
such as JPEG2000 exploits the tree structure of wavelet coefficient. So far, Bayesian
compressive sensing utilizing wavelet structure has been proposed [14-17]. Scale feature
of wavelet coefficients is introduced in [14] and the similarity between subband coefficients
is used to model sparse prior in [15-17]. In the paper, we use energy concentration of fre-
quency domain, energy attenuation and the statistics of wavelet coefficients in different
levels to improve traditional Bayesian compressive sensing and the derivative algorithms.
Seen from visual appearance, the reconstructed effect is improved in details. The objective
evaluate criteria data PSNR is improved by 2∼6db. In conclusion, the improved effect of
the improved algorithm is obvious. The remainder of the paper is organized as follows:
In section two, we introduce the energy distribution features of wavelet coefficient and
the coefficient statistics in each wavelet level. In section three, we exploit the features of
wavelet coefficient to obtain sparser matrix. In section four, we introduce the improved
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Bayesian compressive sensing. In section five, we apply the improved idea to derivative
Bayesian compressive sensing. Simulation results presented in section six testify whether
the improved effect is from reconstruction image or data. Conclusions and discussions of
future work are provided in section seven.

2. The feature of wavelet coefficient. Compressive sensing is applied in sparse signal
reconstruction, but many natural signals are not sparse in time domain. We can project
original signal to sparse basis and obtain sparse signal. Fourier coefficient, wavelet co-
efficient, total norm of bounded variation function, Gabor coefficient of oscillator signal,
Curvelet coefficient of image of discontinuous edges, etc. are all sparse. In addition,
we can obtain the sparse representation from redundant dictionary. Natural images in-
clude smooth region, vein region and edge information. After wavelet transformation [13]
like Fig 1, energy of smooth region concentrates mostly on low frequency subband, low
frequency information of smooth region and vein region concentrate mostly on low fre-
quency subband, high frequency of vein region and edge information concentrate mostly
on high frequency subband. Since natural images mostly consist of smooth region, so low
frequency subbands include most of image energy.

Figure 1. Three-level wavelet decomposition of an image

Table 1 shows energy distribution for 256×256 brain MR image in the LL, LH, HL and
HH subbands. In conclusion, wavelet energy decreases level by level, energy summation
of LL, HL, LH and HH subbands in the third level accounts for the most energy of image
and the energy of LL subband is the highest. If subband coefficients of the third level can
be reconstructed better and LL subband coefficients can be reconstructed better, then
the quality of the reconstructed image will be improved obviously.

Wavelet coefficients can be modeled by two kinds of distributions [18]. θ is wavelet
coefficients and φ is a variable of wavelet coefficient distribution. Probability density
function P (θ) can be given by:

P (θ) =

∫
∞
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(1)
Where v is peak value of coefficient distribution and β is width. In compressive sensing,

if θ is sparser, then the effect of reconstruction is better. Fig 2 shows HL coefficients and
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Table 1. Energy distribution for 256×256 brain MR image

HH coefficients in each level after three-level wavelet decomposition for a brain MR image.
From left to right, it is from the high level to the low level. We can conclude that the
number of large coefficients in HL subband is bigger than the number in HH subband of
the corresponding level.

Figure 2. HL coefficients vs HH coefficients in every level

3. Sparse Matrix. The reconstruction of compressive sensing can be translated into
other problem. Suppose the prior probability distribution for θ is a kind of sparse dis-
tribution like Laplace distribution and maximize posterior probability to solve l1 norm
problem. Bayesian compressive sensing mostly used sparse prior, therefore if θ is sparser,
the effect of prior distribution model is better. Recent Bayesian compressive sensing [8-
12,14-16]combined scale feature of wavelet coefficients [14] and tree structure [15,16] to
model sparse prior distribution, but energy features of wavelet coefficients are not used.
In the reconstruction process, we reconstruct row by row to decrease the number of ob-
servation matrix. Exchange HL subband and HH subband in the same level, Fig3 shows
the kurtosis changing of the first sixty four row coefficients for 256×256 brain MR image
before and after exchange. Kurtosis is a value to judge whether the signal is sparse or
not. Kurtosis is bigger, and the signal is sparser. In Fig 3, after exchange, the kurtosis of
the first thirty two row coefficients which include LL subband is small, but the kurtosis
of the last thirty two row coefficients which include high level subband is bigger than
before exchange. So, we can use the regularity to sparsing those important coefficients by
changing the distribution of wavelet coefficients.
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Figure 3. The kurtosis before and after exchanging for the first sixty four
row wavelet coefficients of 256×256 brain MR image

4. The improved Bayesian compressive sensing. From the above sections we can
see, after wavelet transformation, the wavelet coefficients of L×N image are θ = (θ1, θ2, ..., θL).
Exchange HH subband and HL subband of each level and add white Gaussian noise
ẽ N(0, σ2), then the reconstruction problem about compressive sensing can be translated
into:

Y = (y1, y2, ..., yL) = (Φw1 + e,Φw2 + e, ...,ΦwL + e) = Φw + e (2)

where Φ ∈ RM×N is objective matrix. This function is similar to a multi-task learning
problem [11][19]. Then the Gaussian likelihood modeling is :

p(yi|wi, σ2) = (2πσ2)
−Mi/2 exp(− 1

2σ2
‖yi − Φwi‖2

2) (3)

where i = 1, 2, ..L. Many Bayesian methods can solve function (3). We choose RVM [20,
21] and introduce hierarchy sparse prior model. The first prior can be given by:

p(wi|αi) =
N∏
j=1

N(wi,j|0, α−1
i,j ) (4)

where i = 1, 2, ..L, j = 1, 2, ..N. αi is weight, the second prior can be given by:

p(αi|a, b) =
N∏
j=1

Γ(αi,j|a, b) (5)

Therefore we can compute the sparse prior of

wip(wi|a, b) =
N∏
j=1

∫ ∞
0

N(wi,j|0, α−1
i,j )Γ(αi,j|a, b)dαi,j (6)

Gamma prior Γ(αi,0|c, d) introduces noise variance αi,0 = 1/σ2, Gamma prior distri-
bution is a kind of sparse prior distribution. In order to compute conveniently, we set
a = b = c = d = 0 . Suppose that αi and αi,0 have been known, posterior density function
of can approximate to a Gaussian distribution, the mean and variance are:

µi = αi,0ΣiΦ
Tyi (7)
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Σi = (αi,0ΦTΦ + Ai)
−1

(8)

where Ai = diag(αi,1, αi,2, ..., αi,N). In RVM, αi and αi,0 and are determined by maxi-
mizing the marginal likelihood. Logarithmic function can be given by:

L(αi, αi,0) = log p(yi|αi, αi,0) = log

∫
p(yi|wi, αi,0)p(wi|αi)dwi

= −1

2
[M log 2π + log |Ci|+ yTi C

−1
i yi]

(9)

where Ci = α−1
i,0 I + ΦA−1

i ΦT . Maximize Ci = α−1
i,0 I + ΦA−1

i ΦT to estimate αi and αi,0.
To save calculating time, we update single αi,j in each iteration process but not update
the whole matrix αi .The Ci in(7) can be:

Ci = α−1
i,0 I +

∑
k 6=j

α−1
i,kΦkΦ

T
k + α−1

i,j ΦjΦ
T
j = Ci,−j + α−1

i,j ΦjΦ
T
j (10)

where Ci,−j Ci is excluding basis function Φi,j. The inverse matrix and absolute value can
be given by:

|Ci| = |Ci,−j|
∣∣1 + α−1

i,j ΦT
j C
−1
i,−jΦj

∣∣ (11)

C−1
i = C−1

i,−j −
C−1
i,−jΦjΦ

T
j C
−1
i,−j

αi,j + ΦT
j C
−1
i,−jΦj

(12)

Combine with (7), we can get:

L(αi, αi,0) = −1

2
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,

(13)
where Si,j and qi,j are si,j = ΦT

j C
−1
i,−jΦj, qi,j = ΦT

j C
−1
i,−jyi.

Maximize L(αi, αi,0), differentiate l(αi, αi,0) and set the result to zero, we can get:

αi,j =


s2
i,j

q2
i,j − si,j

ifq2
i,j − si,j > 0

∞ otherwise

(14)

Use (7), (8) and (15) to iterate. We can obtain exchanged wavelet coefficients w1, w2, ..., wL
after adding, deleting, updating and get reconstructed image after inverse wavelet trans-
formation and the exchanging of HL subband and LL subband. The whole reconstruction
process is shown in algorithm 1:
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5. The extension of other algorithms. Since Bayesian framework has been intro-
duced into compressive sensing, many improved Bayesian compressive sensing methods
based on traditional compressive sensing are proposed. One improved idea is to make prior
probability distribution sparser, such as [9] and [15]. [9] introduces Laplace distribution
into hierarchy model and [15] introduces spike-and-slab prior distribution which recently
uses Bayesian recession and modeling [22-26]. The two distributions are all peaky distri-
butions. Apply the improved idea above to the derivative algorithms (Laplace, BCSvb),
the improved effect is well.

6. Experiment results. In this section, we choose three groups of MR images which
include ten images in each group with the size128×128, 256×256 , 512×512 , respectively.
All softwares are written in MATLAB, and run on PCs with 1.73 GHz CPU and 1 GB
memory. Add white Gaussian noise to each image. Fig 4 shows the original images and
reconstructed images via BCS and improved BCS. The first and the forth rows show
the 256×256 and 512×512 MR images. The second and the fifth rows are reconstructed
images via BCS algorithm. The third and the sixth rows are reconstructed images via
improved BCS algorithm.

Fig 4 shows reduced MR images, and details are not shown clearly. Fig 5 shows the
details compared original images to reconstructed images via BCS and improved BCS.
Fig 5(a) is one of the ten 512×512 original MR images in Fig 4. Fig 5(b) and 5(c) is
reconstructed image via BCS and improved BCS respectively. White rectangles show
the details of MR images. Fig 5 shows that many details are not clear in the image
reconstructed via BCS, but the corresponding details in improved BCS image are well
reconstructed, which illustrates that the whole reconstruction quality is improved. Except
the visual appearance, we also computed PSNR, a value used in estimating image quality.

PSNR = 10log10

(
2552

MSE

)
(15)

MSE =
1

A×B

A−1∑
i=0

B−1∑
j=0

(
x (i, j)− _

x (i, j)
)2

(16)

where (i, j) is pixel of A × B image x. Fig 6 shows the PSNR values of twenty MR
images reconstructed by BCS and improved BCS in Fig. 4. We conclude that the PSNR
values of improved BCS algorithm increase about 2∼6db, therefore the improved effect
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Figure 4. Two groups of original images and reconstructed images via
BCS and improved BCS

Figure 5. The details of reconstructed image via BCS or improved BCS

is well. According to the fifth section, the improved algorithms of extension Bayesian
compressive sensing are well. Table 2 is the comparison between three types of Bayesian
compressive sensing algorithms and the corresponding improved algorithms. We compute

PSNR, Rerr =
∥∥∥θ − θ̂∥∥∥

2
/‖θ‖2 average values of three groups of ten images with the size

of 128×128, 256×256, 512×512. It can be obviously seen that the reconstruction effect is
improved via the improved method.

Fig 7 shows the Rerr and PSNR values of reconstructed images via three types of
Bayesian compressive sensing algorithms and the corresponding improved algorithms in
different objective values. The horizontal axis represents sample ratio, the ratio of objec-
tive values and original values. Whether the objective values are more or less, the Rerr
of the improved algorithm decreases about 0.1 and PSNR increases about 3db than those
of the corresponding Bayesian compressive sensing algorithms. Therefore, our improved
effect is obvious.

To illustrate the effect of exploiting different subbands wavelet coefficients to our im-
proved algorithm, we pay attention to LL subband coefficients and the third subband



8 Y. Wu, H. Shi, and ,S. Y. Yu

Figure 6. BCS vs improved BCS

Table 2. Comparison between three types of Bayesian compressive sensing
algorithms and the corresponding improved algorithms

Figure 7. Rerr and PSNR of three Bayesian compressive sensing algo-
rithms and corresponding improved algorithms for a random 256×256 MR
image in Fig 4. (a)different Rerr value, (b)different PSNR value
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coefficients which gather the most energy of an image. Fig 8 shows reconstructed wavelet
coefficients of a random 128×128 MR image in Fig 4. Fig 8(a) shows the whole wavelet
coefficients of three types Bayesian compressive sensing algorithms and the correspond-
ing improved algorithms. Fig 8 shows that our improved method is not better than the
original corresponding method in small coefficients, but is better in large coefficients. Fig
9 shows the first 1024 coefficients, which are the third level coefficients including LL, HL,
LH and HH subbands. According to Fig 9, it can be easily seen that the effect of recon-
structed wavelet coefficients in the third level via improved method is obviously better,
meanwhile it testifies that our improved idea which introduces the wavelet energy feature
and wavelet coefficients statistic is good for reconstruction.

Figure 8. Compare to three Bayesian compressive sensing and corre-
sponding improved algorithms:The whole wavelet coefficients, the number
are 16384.

Figure 9. Compare to three Bayesian compressive sensing and corre-
sponding improved algorithms: Wavelet coefficients of the third level

7. Conclusions. After wavelet transformation, previous Bayesian compressive did not
use wavelet coefficients characteristics, but wavelet coefficients have many features and we
exploit energy feature of wavelet coefficients. Energy of high level subband is the highest
and its influence to image quality is the biggest. According to the wavelet coefficients
statistics, we conclude that large coefficients mostly group on high subband of high energy.
Exploit wavelet coefficients feature to make subband coefficients of high energy sparse.
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The signal is sparser, the reconstruction effect of Bayesian compressive sensing is better.
We exploited the feature and proposed improved Bayesian compressive sensing algorithm.
Compared to the corresponding traditional Bayesian compressive sensing and derivative
Bayesian compressive sensing algorithms, the effect of the new improved algorithm is
better both from visual appearance and evaluated criterion data. In the future research,
we can introduce the wavelet coefficients features more deeply into compressive sensing
to improve reconstruction quality.
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