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Abstract. This paper presents a novel frame rate up-conversion (FRUC) framework
using regulations matching criterion. Motion estimation is one of the key elements
in FRUC, and the regularization matching criterion using the difference of Gaussians
(DOG) is proposed to improve the motion estimation accuracy. The proposed FRUC
framework has three steps. First, the initial motion vector field is calculated through
the unidirectional motion estimation by two-pass neighbor recursive search. Second, mo-
tion vector refinement is used to get the more reliable motion vector through the bi-
direction estimation and motion vector postprocessing. Finally, the intermediate frame
is reconstructed by linear motion compensation interpolation or overlapped block motion
compensation according to the matching energy. The experimental results show that the
proposed method can achieve comparable performance to other competitive algorithms
with low complexity.
Keywords: Frame rate up-conversion, Motion estimation, Regularization, Frame inter-
polation

1. Introduction. Frame rate up-conversion (FRUC) technology can increase the tem-
poral resolution of the video, and can be widely adopted in video communication with
limited bandwidth, liquid crystal displays (LCDs) ghost phenomenon eliminating, and
video edit. In general, there are two kinds of FRUC algorithm. One is very simple strat-
egy, including methods such as frame repetition or linear interpolation. The other kind
method, which is the motion-compensated frame rate up-conversion (MC-FRUC), have
been more widely used for its good performance. Different from the video compression,
motion estimation in MC-FRUC is aim to find the true trajectory rather than minimum
prediction error. There are two types of motion estimation method in MC-FRUC: op-
tical flow estimation and block matching estimation. Mahajan at al. [1] use the optical
flow estimation to get the remarkable interpolated frame by moving gradients and using
Poisson reconstruction. Although optical flow estimation can provide the reliable motion
vector, the computational complex is too high. Hence, the most MC-FRUC methods use
the block matching to find the motion vectors (MV) due to its lower complexity.

In general, there are three research aspects in MC-FRUC: motion trajectory estimation,
matching energy criterion and intermediate frame interpolation. For motion trajectory
estimation, there are two basic methods: unidirectional [2] [3] [4] [5] [6] [7] [8] and bi-
directional estimation [9] [10] [11] [12] [13] [14] . The unidirectional trajectory estimation
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makes all motion vectors pass through the frame to intermediate frame in one direction,
and this inevitably bring holes and overlaps in MV field. Hence, the median filter, or
spatial interpolation can be used to handle above problem. For bi-directional estimation
approach, the intermediate frame is divided into blocks before it is actually predicted, and
each block has two symmetrical motion vectors, in which one pointing to the pervious
frame and the other to the next frame. In this way, the bi-directional motion estimation
is able to avoid the problem of the holes and overlaps.

In MC-FRUC, the matching energy criterion plays an important role to find the true
motion vectors. The ordinary matching criterion use the sum absolute different (SAD) and
sum squared different (SSD), which may not work well in MC-FRUC. Usually the tempo-
ral and spatial smoothness of MV field is considered as priori knowledge, and maximum
a posteriori (MAP) estimation can be used to get more real motion vector by Markov
random field assumption. Since MAP based MV estimation such as [3] need iterative
algorithm to find optimal solution, the complexity of the motion estimation is high and
currently it is hard to use this approach for the practical application. Furthermore, several
relatively simple and effective estimation criterion models [2] [5] [7] [10] [11] [12] [13] [14]
have been proposed. Haan at al. [2] proposed the classical 3-D recursive search (3DRS)
method using the spatial and temporal neighbor blocks to get the smooth MV field with
very low complexity, and Han at al. [7] improve the spatial and temporal candidates by
MV retiming and localized global motion. Other authors put forward their own motion
estimation match criteria algorithms using the neighbor blocks correlation or regulariza-
tion weight of the MV [5] [10] [11] [12] [14]. Moreover, variable-size motion estimation
(VS-ME) and abnormal motion vector rectify are also useful to get more reasonable MV,
but it should be noted that the VS-ME computational cost is still too high for the practical
applications.

After getting MV field, the intermediate frame interpolation will be done. The sim-
plest method is linear interpolation using MV. When the MV field is no consistent,
the overlapped block motion compensation (OBMC) can suppress the blocking artifacts.
The more complex approach, such as trilateral filter [5], spatio-temporal auto-regressive
(STAR) mode [8], and multiple hypotheses adaptive fusion [15], can obtain better quality
interpolation frame with the cost of complexity.

In this paper, we mainly focus on the low complex MC-FRUC method. Motivated
by the above analysis, match criterion is very important to find the reliable MV, and
the smooth property of MV field is also critical to decrease the artifacts, in which the
most of block artifacts is generated by the MV field discontinuity. The motion estimation
of the proposed MC-FRUC framework is based on weighted matching criterion , which
use the difference of Gaussians (DOG) of the block as regularization term. Overall, the
proposed FRUC method have three steps. First, the unidirectional motion estimation
is used to find the initial MV field through two-pass neighbor recursive search. Second,
motion vector refinement is performed to get the more reliable motion vector, in which
the bi-direction estimation and motion vector postprocessing are adopted sequentially.
Finally, the intermediate frame is gotten by linear motion compensation interpolation
(MCI) or OMBC according to the matching energy. Although the our approach has low
complex, the experimental results are shown that the proposed method can get comparable
subjective and objective quality, compared with the other leading methods.

2. Regularization Motion Estimation Matching Criterion. The accuracy of the
motion vectors is very important to MC-FRUC. Therefore a series of literature propose
different motion estimation criterion. In [5], edge information with high frequency data is
used to the regularization matching. However, the high frequency of the image sometime
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is affected by noise, specifically quantization noise caused by video coding. Inspired
by [5], we use the middle frequency of the frame as regularization information for motion
estimation to avoid high-frequency noise affect. The DOG feature is very suitable as
regularization item in the MC-FRUC, since the human retina extracts details from images
using DOG of the various sizes and encodes such differences with action potentials from
human visual perspective [16]. In our tests, the DOG feature can more robust describe
texture and boundary information of the frame, and it can be used as a regularization term
to find the more accurate motion vectors. Essentially, the DOG feature is a band-pass
filter, which works by performing two different Gaussian blurs on the image, subtracting
them to yield the result. The DOG of the given frame f(l) can be defined as:

bp(l) = GFσ1[f(l)]−GFσ2[f(l)] (1)

where the GFσ is Gaussian convolution with σ. After extensive testing on about 60000
frames, σ1 is set to 0.6, σ2 is set to 1.5, and the filter window is set to 7× 7 window.

Then, with the DOG feature, the matching error criterion of the current block between
the two frames can be defined as:

E(ft−1, ft+1;
−→mv) = 1

num [
∑
l∈B

K · |ft−1(l)− ft+1(l +−→mv)|

+λ
∑
l∈B
|bft−1(l)− bft+1(l +−→mv)|] (2)

where l is the pixel coordinate (x, y), num is the pixel number in the block, and bp(l) is
DOG filter defined in (2). There are two regularization parameters K and λ.

Firstly, K can be described as follows:

K =


0; if

∣∣ft−1(l)− ft−1(l +−→mv)
∣∣ < 3;

1; if
∣∣ft−1(l)− ft−1(l +−→mv)

∣∣ < 25;

2; else.

(3)

where K is first regularization parameter, and it is used to correcting domain pixel
matching error. If the two pixels in two frames are with similar values, it seems to
there two pixels belong to the same object and the difference caused by the noise can be
eliminated. If the two pixels in two frames are with very different values, these two pixels
seem to belong two different object and the match error tend to be given with bigger
weight. With the lots of test, the empirical weight is set as follows: when the difference
of two pixels are within 3, K is set to 0 and these small differences are not considered; if
the difference of two pixels are more then 25, K is set to 2.

The λ in (2) is second regularization parameter and it tunes the influences of the two
distance terms in (2). The two distance terms measure the original pixel domain matching
error and the middle frequency matching error respectively. If λ is zeros, the equation
(2) became conventional motion estimation match. Although the optimized λ is changed
with the frame content, the precise prediction of λ need a large number of calculations.
In this paper, we empirical set λ = 1.2 with the lots of test.

Finally, the MV of the block B in ft can be gotten by minimize the matching error
criterion as:

−→mv(B(i)) = arg min
ft+1(l+

−→mv)∈S
(E(ft−1, ft+1;

−→mv)) (4)

where S is search window or candidate set in motion estimation.

3. The Proposed MC-FRUC Method. The framework of the proposed MC-FRUC
method is presented in Fig. 1, and the intermediate frame ft is predict by the successive
frame ft−1 and ft+1 in the same video scene. The first step is to determine the initial
motion vector field through unidirectional motion estimation, which has two-pass process



1376 Z.L. Gan, C. H. Chen, Z. G. Cui, and F. Liu

include the positive scan and inverse scan search. Then, based on above results, bi-
directional motion estimation and motion vector postprocessing are performed to get the
more reasonable motion vector. In this way, the motion vector refinement processing can
obtain the smooth MV field. Finally, the intermediate frame is reconstructed by linear
MCI or OBMC according to the matching energy.

Figure 1. Flowchart of the proposed MC-FRUC scheme

3.1. Initial motion estimation. Firstly, the unidirectional motion estimation is adopted
to roughly predict the motion vectors between the ft−1 and ft+1 in the proposed method.
In the most of existing MC-FRUC, the motion vector relevance of the spatial or temporal
neighbor blocks is the key assumption to motion estimation algorithm design, and a series
of recursive search algorithm are proposed, including the 3DRS [2], true-motion estima-
tion (TME) [6], retiming temporal and spatial candidate recursive search [7]. Here, we
want keep the algorithm simply and effectively. Therefore, our algorithm only uses the
similarity of neighbor spatial block MV. In general, motion estimation is performed block
by block in accordance with the raster scan order, which scans from left to right and from
top to bottom. If only one-pass search is used, it always has some invalid neighbor blocks
MV. Hence, the two-pass recursive search is presented to make the all neighbor blocks to
participate MV smooth constraint, as shown in Fig.2. In each pass, there are four motion
vectors of neighbor block as reference motion vector. The entire MV candidate set can
be respective defined as:

CS(1) = C(−→mv1) ∪ C(−→mv2) ∪ C(−→mv3) ∪ C(−→mv4) (5)

CS(2) = C(−→mv5) ∪ C(−→mv6) ∪ C(−→mv7) ∪ C(−→mv8) (6)

where CS(1) is MV candidate set for the first pass search, CS(2) for second pass, and
C(−→mvi) is the search MV set of neighbors reference motion vector −→mvi.

For a given motion vector −→mvi with (mvxi,mvyi), it’s search MV set C(−→mvi) can be
described as follow:

C(−→mvi) =
⋃
i,j

(−→mvci + ∆j) (7)
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Figure 2. The two-pass neighbor recursive search

where the candidate vector set −→mvci and update variable ∆j are given as follows:

−→mvci =

{(
mvxi
mvyi

)
,

(
mvxi

0

)
,

(
0

mvyi

)
,

(
0
0

)}
(8)

∆j =

{(
±1
0

)
,

(
±2
0

)
,

(
±3
0

)
,

(
0
±1

)
,

(
0
±2

)}
(9)

Once MV candidate set CS(1) and CS(2) is gotten in each pass motion estimation, the
MV of current block between the ft−1 and ft+1 can be calculated by Eq.(2). Though the
recursive search can be processed in iteration manner, non-iterative recursive search is
used to keep the algorithm with low complex and effective in this paper.

3.2. Motion estimation refinement. In the proposed MC-FRUC method, motion es-
timation refinement aims to get the more fine MV field using the initial MV between the
ft−1 and ft+1. Assuming the object with constant velocity, the relationship between the
three frame ft−1, ft and ft+1 can be given as follows:

ft−1(l) = ft(l + 0.5 · −→mv(l)) + nt

= ft+1(l +−→mv(l)) + nt+1

(10)

where nt and nt+1 are noise, and ft(l + 0.5 · −→mv(l)) is called the virtual pixel in ft in this
paper. It means that the pixel ft−1(l) in ft−1 move to the virtual pixel ft(l + 0.5 · −→mv(l))
in ft, and to ft+1(l + −→mv(l)) in ft+1. Hence, for the block B(i) in ft, it’s rough MV can
be gotten as follows:

−→mv0(B(i)) =
1

n(b)

∑
ft(l+0.5·−→mv(l))∈B(i)

0.5 · −→mv(l) (11)

where n(b) is the number of the virtual pixel belong to the block B(i).
Then the bi-direction estimation with regularization matching can get more accuracy

MV. And the search window is mvx ∈ [−4 : +4] and mvy ∈ [−3 : +3] with the center of
−→mv0(B(i)), taking into account the horizontal movement of the object is more common
and range in the daily video. In this way, the computation cost can be saved without loss
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of performance. Then the matching criterion as:
−→mv(B(i))

= arg min
−→mv∈S

{ 1

num
[
∑
l∈B

K · |ft−1(l−−→mv)− ft+1(l +−→mv)|

+ λ
∑
l∈B
|bft−1(l−−→mv)− bft+1(l +−→mv)|] +W}

(12)

where K in (12) is same to Eq.(3). There are two regularization item in (12). The first
item is DOG feature. The second item is W , and it has two factors. One is penalty term
of deviation from initial −→mv and the other is deviation from (0, 0). Thus, the K can be
defined as follows:

W = 4
∥∥−→mv −−→mv0

∥∥
2

+ 2 max{max(mvx,mvy)− 2, 0} (13)

In the MC-FRUC, once the MV field appears to be discontinuity, the artifacts may be
appear. Here, the MV postprocessing is used to make more smooth MV field in order to
better subjective visual effects. The reliability of the block −→mv is defined by:

R(−→mv) =


0.1, DOB > th1 & MVD > th2;

1, DOB < th1 & MVD < th2;

0.75, others.

(14)

In (14), the DOB is given by:

DOB(−→mv) =
1

num

∑
l∈B
|ft−1(l −−→mv)− ft+1(l +−→mv)| (15)

and the MVD is the measure for the similarity of neighborhood blocks MV, by:

MVD(−→mv(Bi)) =
∑

−→mvi∈N(Bi)

|−−→mvi −−→mv| (16)

In this paper, based on the experimental results, th1 is set as 12, and th2 as 6.4.
Finally, for given block B(i), it’s all neighbor blocks including its own are involved in

the MV postprocessing by:

−→mvp(B(i)) =

∑
i∈N

R(B(i))·−→mvi(B(i))
DOB(B(i))∑

i∈N

R(B(i))
DOB(B(i))

(17)

3.3. Frame interpolation. When the MV in the frame ft is gotten by Eq.(17), the
intermediate frame will be reconstructed. Since the bi-directional motion estimation is
used, the problem of the holes and overlaps can be avoided. However, the occlusion,
which refers to the appearance of new objects and disappearance of existing objects when
comparing adjacent frames, is another difficult problem. In our interpretation, when
occlusion is happen to the block in ft, the matching error of the block tend to become
larger. In this case, the frame interpolation is more like video inpainting due to lack the
original information of intermediate frame. Data fusion approach, such as [5] [8] [15],
can better exploit the temporal correlation and deal with occluded areas. In addition,
variable-size motion estimation also can reduce the influence of occlusion. Nevertheless,
the main disadvantage of above methods is high computational complexity.

Since this paper mainly focus on the low complex method of MC-FRUC, the OBMC
method is a rational solution to the occlusion problems because this approach not only
increases prediction accuracy but also reduce blocking artifacts with acceptable compu-
tational complexity. In this paper, two methods, include linear MCI and OBMC, are
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Figure 3. Illustration of OBMC in the proposed MC-FRUC

used to reconstruct the intermediate frame according to the matching energy error. If the
DOB of the block less than th3, the linear MCI is used. Otherwise the OBMC is used.
The threshold th3 in this paper is given based on the experimental results, as:

th3 = 2.9 · (

∑
B(i)∈ft

DOB(−→mvp(B(i)))

num(B(i))
) (18)

The pixel ft(l) can be interpolated through linear MCI, as follows:

ft(l) =
1

2
(ft−1(l−−→mvp) + ft+1(l +−→mvp)) (19)

The OBMC predict is illustrated in Fig.3, there are three different regions. The pixels in
region A, which overlaps the four blocks are interpolated by

ft(l) =

∑
i=0,1,2,4

(MVD(−→mvp(i)) · ft(l)(i))∑
i=0,1,2,4

MVD(−→mvp(i))
(20)

where the ft(l)
(i) is defined by:

ft(l)
(i) = ft−1(l−−→mvp(i)) + ft+1(l +−→mvp(i)) (21)

The pixels in region B, which overlaps two blocks, are interpolated by

ft(l) =

∑
i=0,4

(MVD(−→mvp(i)) · ft(l)(i))∑
i=0,4

MVD(−→mvp(i))
(22)

The pixels in region C, which overlaps only one block, are interpolated through linear
MCI by Eq.(19).

4. Experimental Results. In this section, we perform experiments of eight standard
video, which are four video sequences with CIF (352 × 288), three video sequences with
720P (1280× 720) and one video sequence with 1080p (1920× 1080), to demonstrate the
efficacy of the proposed method. Six MC-FRUC methods, which are 3DRS [2], BME [9],
TF [5], DME [12], HD [7] and MHAF [15], are used for comparison. To measure the
quality of the interpolated frames, the 60 even frames is removed and reconstruct them
from the related 61 odd frames for each sequence using MC-FRUC techniques, and then
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compare the reconstructed frames to the original frames. The three 720P video sequences
are tested from the third frame since the first two frames are noise data, and the other
sequences are tested from the first frame. The test platform is all the C codec for seven
kind FRUC methods on the intel I7 2620(m) CPU with 8GB memory.

In the experiments, the motion search range of BME, TF, DME and HD is seted to
[−18 : +18], and motion estimation block size used in these benchmarks is 8 × 8. There
are three iterations in the 3DRS method with block size 16 × 16. In MHAF, the block
size varies from 32 × 32 to 4 × 4. In the tests, two size blocks with 8 × 8 and 16 × 16
are used and the overlap size is three for OBMC in the proposed method. Only the
luminance channel is used for comparison, the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM)[17] are computed between the ground truth (original frame)
and the interpolation frame and the results of the average PSNR (dB), SSIM and run
time (s) per frame are shown in Table 1. From the Table 1, we can see that the

Table 1. PSNR (dB) (top), SSIM (middle) and the average run time
(s) per frame (bottom) results (in luminance) of the interpolated frames.

squence format 3DRS[2] BME[9] TF [5] DME[12] HD [7] MHP[15] Proposed Proposed
8× 8 16× 16

Bus CIF
25.89 25.83 25.95 26.01 25.60 26.72 26.35 26.18
0.9192 0.9327 0.9382 0.9388 0.9154 0.9401 0.9391 0.9354
0.020 0.150 80.01 0.171 0.161 4.021 0.102 0.096

City CIF
32.11 32.19 32.45 32.91 33.01 34.2 33.52 33.70
0.9493 0.9566 0.9571 0.9598 0.9612 0.9711 0.9622 0.9606
0.021 0.157 98.017 0.192 0.177 6.122 0.110 0.96

Football CIF
21.35 22.01 22.07 22.37 21.73 23.95 23.17 22.72
0.7792 0.7962 0.7953 0.8012 0.7951 0.831 0.8259 0.8095
0.030 0.153 100.015 0.187 0.197 5.349 0.103 0.97

News CIF
36.59 36.62 36.64 35.73 36.82 37.91 37.52 37.02
0.9821 0.9828 0.9810 0.9770 0.9812 0.9892 0.9838 0.9828
0.0015 0.122 76.323 0.165 0.154 3.941 0.085 0.072

Mobcal 720p
33.62 34.34 33.01 34.53 34.11 35.19 34.98 35.20
0.9961 0.9952 0.9938 0.9957 0.9951 0.9982 0.9973 0.9983
0.133 1.010 721.470 1.493 1.386 32.117 0.776 0.649

Shields 720p
33.95 33.55 33.27 34.12 34.1 34.60 34.32 34.65
0.9945 0.9901 0.9921 0.9951 0.9950 0.9961 0.9953 0.9962
0.125 1.130 698.114 1.541 1.421 34.322 0.721 0.684

Parkrun 720p
31.71 31.53 31.61 31.82 31.98 32.39 32.25 32.41
0.9902 0.9856 0.9891 0.9912 0.9907 0.9925 0.9910 0.9924
0.102 1.126 714.52 1.651 1.329 33.214 0.728 0.704

Tractor 1080p
33.27 33.21 33.4 33.9 34.12 34.50 34.27 34.48
0.9917 0.9912 0.9914 0.9921 0.9924 0.9973 0.9961 0.9977
0.230 2.536 1609.463 3.721 2.998 74.771 1.641 1.586

Total average PSNR 31.06 31.16 31.05 31.42 31.43 32.43 32.03 32.15

Total average SSIM 0.9503 0.9538 0.9548 0.9564 0.9533 0.9644 0.9613 0.9591

Run time rank 1 2 8 6 5 7 4 3

proposed method perform better than 3DRS[2], BME[9], TF [5], DME [12], and HD [7].
The MHF method [15] is better than the proposed method when the sequence format is
CIF, and have almost the same performance level when the sequence is high resolution.
It is not surprising that the proposed method is worse than the MHF method [15] as the
whole, since multiple hypotheses Bayesian estimation and VS-ME are used in MHF with
increasing computational complexity. From the results, for motion estimation block size
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Figure 4. FRUC results for Bus (4th frame).Top row: Original and
3DRS[2]; Second row: BME[9] and TF[5]; Third row: DME [12], HD [7] ;
Bottom row: MHP [15], Proposed method with 8× 8 block.

in the proposed MC-FRUC, 16 × 16 size block tend to be better when the video is high
definition(HD) format. We try the 32× 32 and 64× 64 block in the proposed MC-FRUC
for the HD test video, and the results become worse. The probable reason may be that
although the bigger size block used in motion estimation can get more precise motion
vector in the interior areas of the object for the HD video, but it get worse in the edge
areas. The 16× 16 size block can achieve better compromise for HD video.

Since the adaptive content processing strategy is used in the proposed method, it is
difficult to give the computational complexity of the algorithm systematically like other
FRUC methods. Table 1 also shows the processing time(s) for 8 video sequence using
different algorithms. The computing time of 3DRS method is minimum. The proposed
method has rank 3 and has low complexity compared with other methods. The TF [5]
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method have the maximum run time because the trilateral filtering are used and it takes
the most computation cost.

Fig. 4 shows an example with the interpolation results of the Bus sequence, it can be
seen that the interpolated frame by the proposed method have less artifacts compared
with other methods. In addition, it should be noted that the occlusion is still the difficult
problem to MC-FRUC at present. For example, the upper red boxes in Fig.4 show that
all algorithms fail to reconstruct the marked occlusion area.

5. Conclusion. In this paper, we proposed a novel MC-FRUC framework based on the
regularization motion estimation matching criterion. The contributions of our work are
two-fold. First, the DOG feature is used as a regularization term for match criterion to
find the more accurate motion vectors. Second, we redesigned the MC-FRUC framework
with low complexity, which has three steps: initial motion estimation, motion estima-
tion refinement and frame interpolation. Experiment results show the advantage of our
approach.
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